Check if a number is divisible by 3 in logic design - algorithm

i seen a post on the site about it and i didn't understand the answer, can i get explanation please:
question:
Write code to determine if a number is divisible by 3. The input to the function is a single bit, 0 or 1, and the output should be 1 if the number received so far is the binary representation of a number divisible by 3, otherwise zero.
Examples:
input "0": (0) output 1
inputs "1,0,0": (4) output 0
inputs "1,1,0,0": (6) output 1
This is based on an interview question. I ask for a drawing of logic gates but since this is stackoverflow I'll accept any coding language. Bonus points for a hardware implementation (verilog etc).
Part a (easy): First input is the MSB.
Part b (a little harder): First input is the LSB.
Part c (difficult): Which one is faster and smaller, (a) or (b)? (Not theoretically in the Big-O sense, but practically faster/smaller.) Now take the slower/bigger one and make it as fast/small as the faster/smaller one.
answer:
State table for LSB:
S I S' O
0 0 0 1
0 1 1 0
1 0 2 0
1 1 0 1
2 0 1 0
2 1 2 0
Explanation: 0 is divisible by three. 0 << 1 + 0 = 0. Repeat using S = (S << 1 + I) % 3 and O = 1 if S == 0.
State table for MSB:
S I S' O
0 0 0 1
0 1 2 0
1 0 1 0
1 1 0 1
2 0 2 0
2 1 1 0
Explanation: 0 is divisible by three. 0 >> 1 + 0 = 0. Repeat using S = (S >> 1 + I) % 3 and O = 1 if S == 0.
S' is different from above, but O works the same, since S' is 0 for the same cases (00 and 11). Since O is the same in both cases, O_LSB = O_MSB, so to make MSB as short as LSB, or vice-versa, just use the shortest of both.
thanks for the answers in advanced.

Well, I suppose the question isn't entirely off-topic, since you asked about logic design, but you'll have to do the coding yourself.
You have 3 states in the S column. These track the value of the current full input mod 3. So, S0 means the current input mod 3 is 0, and so is divisible by 0 (remember also that 0 is divisible by 3). S1 means the remainder is 1, S2 means that the remainder is 2.
The I column gives the current input (0 or 1), and S' gives the next state (in other words, the new number mod 3).
For 'LSB', the new number is the old number << 1, plus either 0 or 1. Write out the table. For starters, if the old modulo was 0, then the new modulo will be 0 if the input bit was 0, and will be 1 if the new input was 1. This gives you the first 2 rows in the first table. Filling in the rest is left as an exercise for you.
Note that the O column is just 1 if the next state is 0, as expected.

Related

Error correcting codes and minimum distances

I was looking at a challenge online (at King's website) and although I understand the general idea behind it I'm slightly lost - maybe the wording is a little off? Here is the problem and I'll state what I don't understand below:
Error correcting codes are used in a wide variety of applications
ranging from satellite communication to music CDs. The idea is to
encode a binary string of length k as a binary string of length n>k,
called a codeword such that even if some bit(s) of the encoding are
corrupted (if you scratch on your CD for instance), the original k-bit
string can still be recovered. There are three important parameters
associated with an error correcting code: the length of codewords (n),
the dimension (k) which is the length of the unencoded strings, and
finally the minimum distance (d) of the code. Distance between two
codewords is measured as hamming distance, i.e., the number of
positions in which the codewords differ: 0010 and 0100 are at distance
2. The minimum distance of the code is the distance between the two different codewords that are closest to each other. Linear codes are a
simple type of error correcting codes with several nice properties.
One of them being that the minmum distance is the smallest distance
any non-zero codeword has to the zero codeword (the codeword
consisting of n zeros always belongs to a linear code of length n).
Another nice property of linear codes of length n and dimension k is
that they can be described by an n×k generator matrix of zeros and
ones. Encoding a k-bit string is done by viewing it as a column vector
and multiplying it by the generator matrix. The example below shows a
generator matrix and how the string 1001 is encoded. graph.png Matrix
multiplication is done as usual except that additon is done modulo 2
(i.e., 0+1=1+0=1 and 0+0=1+1=0). The set of codewords of this code is
then simply all vectors that can be obtained by encoding all k-bit
strings in this way. Write a program to calculate the minimum distance
for several linear error correcting codes of length at most 30 and
dimension at most 15. Each code will be given as a generator matrix.
Input You will be given several generator matrices as input. The first
line contains an integer T indicating the number of test cases. The
first line of each test case gives the parameters n and k where
1≤n≤30, 1≤k≤15 and n > k, as two integers separated by a single space.
The following n lines describe a generator matrix. Each line is a row
of the matrix and has k space separated entries that are 0 or 1.
Output For each generator matrix output a single line with the minimum
distance of the corresponding linear code.
Sample Input 1
2
7 4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1
3 2
1 1
0 0
1 1
Sample Output 1
3
0
Now my assumption is that the question is asking "Write a program that can take in the linear code in matrix form and say what the minimum distance is from an all zero codeword" I just don't understand why there is a 3 output for the first input and a 0 for the second input?
Very confused.
Any ideas?
For first example:
Input binary string: 1000
Resulting code: 1100001
Hamming distance to zero codeword 0000000: 3
For second example:
Input binary string: 11
Resulting code: 000
Hamming distance to zero codeword 000: 0
Your goal is to find valid non-zero codeword (which can be produced from some non-zero k-bit input string) with minimal Hamming distance to zero codeword (in different words - with minimal amount of ones in binary representation) and return that distance.
Hope that helps, the problem description is indeed a little bit hard to understand.
EDIT. I've made typo in first example. Actual input should be 1000 not 0001. Also it's may be not clear what exactly is input string and how the codeword is calculated. Let's look at first sample.
Input binary string: 1000
This binary string in general is not part of generator matrix. It is just one of all possible non-zero 4-bit strings. Let's multiply it by generator matrix:
(1 0 0 0) * (1 0 0 0) = 1
(0 1 0 0) * (1 0 0 0) = 0
(0 0 1 0) * (1 0 0 0) = 0
(0 0 0 1) * (1 0 0 0) = 0
(0 1 1 1) * (1 0 0 0) = 0
(1 0 1 1) * (1 0 0 0) = 1
(1 1 0 1) * (1 0 0 0) = 1
One way to find input that produces "minimal" codeword is to iterate all 2^k-1 non-zero k-bit strings and calculate codeword for each of them. This is feasible solution for k <= 15.
Another example for first test case 0011 (it's possible to have multiple inputs that produce "minimal" output):
(1 0 0 0) * (0 0 1 1) = 0
(0 1 0 0) * (0 0 1 1) = 0
(0 0 1 0) * (0 0 1 1) = 1
(0 0 0 1) * (0 0 1 1) = 1
(0 1 1 1) * (0 0 1 1) = 2 = 0 (mod 2)
(1 0 1 1) * (0 0 1 1) = 2 = 0 (mod 2)
(1 1 0 1) * (0 0 1 1) = 1
Resulting code 0011001 also has Hamming distance 3 to the zero codeword. There is no 4-bit string with code that has less that 3 ones in binary representation. That's why the answer for first test case is 3.

converting sequences to lex order

I have a function that generates binary sequences with a fixed number of 1's (the rest are 0's). I need a function that takes a sequences and returns the position of that sequence in lexicographic order. For example, the 10 sequences of length 5 with 3 1's are
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
I need a function that takes, for example 0 1 1 0 1 and returns 3 since it's the third in the list.
The only thing I can think of, which is way too inefficient, is to generate all of the sequences (easy), store them (takes too much space), then search for the given sequence in the list (too slow), and return its position. Is there a faster way to do this? Some easy trick that I don't see?
We call the set of sequences of length n with k 1's binseq(n,k). This problem can then be solved recursively, as follows:
Base case: If S has length 1, it's in position 1.
If S starts with a 0, its position is the same as the position of tail(S) (S with the first element removed) in binseq(n-1, k).
If S starts with a 1, its position is equal to the position of tail(S) in binseq(n-1, k-1) plus the number of sequences in binseq(n-1, k).
In python code:
#!/usr/bin/env python
def binom(n, k):
result = 1
for i in range(1, k+1):
result = result * (n-i+1) / i
return result
def lexpos(seq):
if len(seq) == 1:
return 1
elif seq[0] == 0:
return lexpos(seq[1:])
else:
return binom(len(seq)-1, seq.count(1)) + lexpos(seq[1:])
Or the iterative version, as suggested by Abhishek Bansal:
def lexpos_iter(seq):
pos = 1
for i in xrange(len(seq)):
if seq[i] == 1:
pos += binom(len(seq)-i-1, seq[i:].count(1))
return pos

How to Shuffle an Array with Fixed Row/Column Sum?

I need to assign random papers to students of a class, but I have the constraints that:
Each student should have two papers assigned.
Each paper should be assigned to (approximately) the same number of students.
Is there an elegant way to generate a matrix that has this property? i.e. it is shuffled but the row and column sums are constant? As an illustration:
Student A 1 0 0 1 1 0 | 3
Student B 1 0 1 0 0 1 | 3
Student C 0 1 1 0 1 0 | 3
Student D 0 1 0 1 0 1 | 3
----------------
2 2 2 2 2 2
I thought of first building an "initial matrix" with the right row/column sum, then randomly permuting first the rows, then the colums, but how do I generate this initial matrix? The problem here is that I'd be choosing between (e.g.) the following alternatives, and the fact that there are two students with the same pair of papers assigned (in the left setup) won't change through row/column shuffling:
INITIAL (MA): OR (MB):
A 1 1 1 0 0 0 || 1 1 1 0 0 0
B 1 1 1 0 0 0 || 0 1 1 1 0 0
C 0 0 0 1 1 1 || 0 0 0 1 1 1
D 0 0 0 1 1 1 || 1 0 0 0 1 1
I know I could come up with something quick/dirty and just tweak where necessary but it seemed like a fun exercise.
If you want to make permutations, what about:
Chose randomly a student, say student 1
For this student, chose a random paper he has, say paper A
Chose randomly another student
For this student, chose a random paper he has, say paper B (different from A)
Give paper B to student 1 and paper A to student 2.
That way, you preserve both the number of different papers and the number of papers per student. Indeed, both students give one paper and receive one back. Moreover, no paper is created nor deleted.
In term of table, it means finding two pairs of indices(i1,i2) and (j1,j2) such that A(i1,j1) = 1, A(i2,j2)=1, A(i1,j2)=0 and A(i2,j1)=0 and changing the 0s for 1s and the 1s for 0s => The sums of the rows and columns do not change.
Remark 1: If you do not want to proceed by permutations, you can simply put in a vector all the paper (put 2 times paper A, 2 times paper B,...). Then, random shuffle the vector and attribute the k first to the first student, the k next ones to student 2, ... However, you can end with a student having several times the same paper. In this case, make some permutations starting with the surnumerary papers.
You can generate the initial matrix as follows (pseudo-Python syntax):
column_sum = [0] * n_students
for i in range(n_students):
if column_sum[i] < max_allowed:
for j in range(i + 1, n_students):
if column_sum[j] < max_allowed:
generate_row_with_ones_at(i, j)
column_sum[i] += 1
column_sum[j] += 1
if n_rows == n_wanted:
return
This is a straightforward iteration over all n choose 2 distinct rows, but with the constraint on column sums enforced as early as possible.

permutation matrix

Is it possible to decompose a matrix A having n rows and n columns to sum of m [n x n] permutation matrices. where m is the number of 1's in each row and each column in matrix A?
UPDATE:
yes, this is possible. I came across such an exmaple which is shown below - but How can we generalize the answer?
What you want is called a 1-factorization. One algorithm is repeatedly to find a perfect matching and remove it; probably there are others.
For the first permutation matrix, take the first 1 in the first row. For the second row, take the first 1 that is in a column you don't already have. For the third row, take the first 1 that is in a column you don't already have. And so on. Do this for all rows.
You now have one permutation matrix.
Next subtract your first permutation matrix from the original. This new matrix now has m-1 ones in each row and column. So repeat the process m-1 more times, and you'll have your m permutation matrices.
You can skip the last step, because a matrix with one 1 in each row and column already is a permutation matrix. There's no need to do any calculations.
This is a greedy algorithm that doesn't always work. We can make it work by changing the selection rule slightly. See below:
For your example:
1 0 1 1
A = 1 1 0 1
1 1 1 0
0 1 1 1
In the first step, we pick (1,1) for the first row, (2,2) for the second row, (3,3) for the thrid row and (4,4) for the 4th row. We then have:
1 0 0 0 0 0 1 1
A = 0 1 0 0 + 1 0 0 1
0 0 1 0 1 1 0 0
0 0 0 1 0 1 1 0
The first matrix is a permutation matrix. The second matrix has exactly two 1's in each row and column. So we pick, in order: (1,3), (2,1), (3,2) and... we're in trouble: the rows that contain a 1 in column 4 have already been used.
So how do we fix this? Well, we can keep track of the number of 1's remaining in each column. Instead of picking the first column that is unused, we pick the column with the lowest number of 1's remaining. For the second matrix above:
0 0 1 1 0 0 X 0 0 0 X 0 0 0 X 0
B = 1 0 0 1 --> 1 0 0 1 --> 0 0 0 X --> 0 0 0 X
1 1 0 0 1 1 0 0 1 1 0 0 X 0 0 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
------- ------- ------- -------
2 2 2 2 2 2 X 1 1 2 X X X 1 X X
So we would pick column 4 in the second step, column 1 in the 3rd step, and column 2 in the 4th step.
There can always be only one column with one remaining 1. The other 1's must have been taken away in m-1 previous rows. If you had two such columns, one of them would have had to have been picked as the minimum column before.
This can be done easily using a recursive (backtracking OR depth-first traversal) algorithm. Here is the pseudo-code for its solution:
void printPermutationMatrices(const int OrigMat[][], int permutMat[], int curRow, const int n){
//curPermutMatrix is 1-D array where value of ith element contains the value of column where 1 is placed in ith row
if(curRow == n){//Base case
//do stuff with permutMat[]
printPermutMat(permutMat);
return;
}
for(int col=0; col<n; col++){//try to place 1 in cur_row in each col if possible and go further to next row in recursion
if(origM[cur_row][col] == 1){
permutMat[cur_row] = col;//choose this col for cur_row
if there is no conflict to place a 1 in [cur_row, col] in permutMat[]
perform(origM, curPermutMat, curRow+1, n);
}
}
}
Here is how to call from your main function:
int[] permutMat = new int[n];
printPermutationMatrices(originalMatrix, permutMat, 0, n);

Sorting a binary 2D matrix?

I'm looking for some pointers here as I don't quite know where to start researching this one.
I have a 2D matrix with 0 or 1 in each cell, such as:
1 2 3 4
A 0 1 1 0
B 1 1 1 0
C 0 1 0 0
D 1 1 0 0
And I'd like to sort it so it is as "upper triangular" as possible, like so:
4 3 1 2
B 0 1 1 1
A 0 1 0 1
D 0 0 1 1
C 0 0 0 1
The rows and columns must remain intact, i.e. elements can't be moved individually and can only be swapped "whole".
I understand that there'll probably be pathological cases where a matrix has multiple possible sorted results (i.e. same shape, but differ in the identity of the "original" rows/columns.)
So, can anyone suggest where I might find some starting points for this? An existing library/algorithm would be great, but I'll settle for knowing the name of the problem I'm trying to solve!
I doubt it's a linear algebra problem as such, and maybe there's some kind of image processing technique that's applicable.
Any other ideas aside, my initial guess is just to write a simple insertion sort on the rows, then the columns and iterate that until it stabilises (and hope that detecting the pathological cases isn't too hard.)
More details: Some more information on what I'm trying to do may help clarify. Each row represents a competitor, each column represents a challenge. Each 1 or 0 represents "success" for the competitor on a particular challenge.
By sorting the matrix so all 1s are in the top-right, I hope to then provide a ranking of the intrinsic difficulty of each challenge and a ranking of the competitors (which will take into account the difficulty of the challenges they succeeded at, not just the number of successes.)
Note on accepted answer: I've accepted Simulated Annealing as "the answer" with the caveat that this question doesn't have a right answer. It seems like a good approach, though I haven't actually managed to come up with a scoring function that works for my problem.
An Algorithm based upon simulated annealing can handle this sort of thing without too much trouble. Not great if you have small matrices which most likely hae a fixed solution, but great if your matrices get to be larger and the problem becomes more difficult.
(However, it also fails your desire that insertions can be done incrementally.)
Preliminaries
Devise a performance function that "scores" a matrix - matrices that are closer to your triangleness should get a better score than those that are less triangle-y.
Devise a set of operations that are allowed on the matrix. Your description was a little ambiguous, but if you can swap rows then one op would be SwapRows(a, b). Another could be SwapCols(a, b).
The Annealing loop
I won't give a full exposition here, but the idea is simple. You perform random transformations on the matrix using your operations. You measure how much "better" the matrix is after the operation (using the performance function before and after the operation). Then you decide whether to commit that transformation. You repeat this process a lot.
Deciding whether to commit the transform is the fun part: you need to decide whether to perform that operation or not. Toward the end of the annealing process, you only accept transformations that improved the score of the matrix. But earlier on, in a more chaotic time, you allow transformations that don't improve the score. In the beginning, the algorithm is "hot" and anything goes. Eventually, the algorithm cools and only good transforms are allowed. If you linearly cool the algorithm, then the choice of whether to accept a transformation is:
public bool ShouldAccept(double cost, double temperature, Random random) {
return Math.Exp(-cost / temperature) > random.NextDouble();
}
You should read the excellent information contained in Numerical Recipes for more information on this algorithm.
Long story short, you should learn some of these general purpose algorithms. Doing so will allow you to solve large classes of problems that are hard to solve analytically.
Scoring algorithm
This is probably the trickiest part. You will want to devise a scorer that guides the annealing process toward your goal. The scorer should be a continuous function that results in larger numbers as the matrix approaches the ideal solution.
How do you measure the "ideal solution" - triangleness? Here is a naive and easy scorer: For every point, you know whether it should be 1 or 0. Add +1 to the score if the matrix is right, -1 if it's wrong. Here's some code so I can be explicit (not tested! please review!)
int Score(Matrix m) {
var score = 0;
for (var r = 0; r < m.NumRows; r++) {
for (var c = 0; c < m.NumCols; c++) {
var val = m.At(r, c);
var shouldBe = (c >= r) ? 1 : 0;
if (val == shouldBe) {
score++;
}
else {
score--;
}
}
}
return score;
}
With this scoring algorithm, a random field of 1s and 0s will give a score of 0. An "opposite" triangle will give the most negative score, and the correct solution will give the most positive score. Diffing two scores will give you the cost.
If this scorer doesn't work for you, then you will need to "tune" it until it produces the matrices you want.
This algorithm is based on the premise that tuning this scorer is much simpler than devising the optimal algorithm for sorting the matrix.
I came up with the below algorithm, and it seems to work correctly.
Phase 1: move rows with most 1s up and columns with most 1s right.
First the rows. Sort the rows by counting their 1s. We don't care
if 2 rows have the same number of 1s.
Now the columns. Sort the cols by
counting their 1s. We don't care
if 2 cols have the same number of
1s.
Phase 2: repeat phase 1 but with extra criterions, so that we satisfy the triangular matrix morph.
Criterion for rows: if 2 rows have the same number of 1s, we move up the row that begin with fewer 0s.
Criterion for cols: if 2 cols have the same number of 1s, we move right the col that has fewer 0s at the bottom.
Example:
Phase 1
1 2 3 4 1 2 3 4 4 1 3 2
A 0 1 1 0 B 1 1 1 0 B 0 1 1 1
B 1 1 1 0 - sort rows-> A 0 1 1 0 - sort cols-> A 0 0 1 1
C 0 1 0 0 D 1 1 0 0 D 0 1 0 1
D 1 1 0 0 C 0 1 0 0 C 0 0 0 1
Phase 2
4 1 3 2 4 1 3 2
B 0 1 1 1 B 0 1 1 1
A 0 0 1 1 - sort rows-> D 0 1 0 1 - sort cols-> "completed"
D 0 1 0 1 A 0 0 1 1
C 0 0 0 1 C 0 0 0 1
Edit: it turns out that my algorithm doesn't give proper triangular matrices always.
For example:
Phase 1
1 2 3 4 1 2 3 4
A 1 0 0 0 B 0 1 1 1
B 0 1 1 1 - sort rows-> C 0 0 1 1 - sort cols-> "completed"
C 0 0 1 1 A 1 0 0 0
D 0 0 0 1 D 0 0 0 1
Phase 2
1 2 3 4 1 2 3 4 2 1 3 4
B 0 1 1 1 B 0 1 1 1 B 1 0 1 1
C 0 0 1 1 - sort rows-> C 0 0 1 1 - sort cols-> C 0 0 1 1
A 1 0 0 0 A 1 0 0 0 A 0 1 0 0
D 0 0 0 1 D 0 0 0 1 D 0 0 0 1
(no change)
(*) Perhaps a phase 3 will increase the good results. In that phase we place the rows that start with fewer 0s in the top.
Look for a 1987 paper by Anna Lubiw on "Doubly Lexical Orderings of Matrices".
There is a citation below. The ordering is not identical to what you are looking for, but is pretty close. If nothing else, you should be able to get a pretty good idea from there.
http://dl.acm.org/citation.cfm?id=33385
Here's a starting point:
Convert each row from binary bits into a number
Sort the numbers in descending order.
Then convert each row back to binary.
Basic algorithm:
Determine the row sums and store
values. Determine the column sums
and store values.
Sort the row sums in ascending order. Sort the column
sums in ascending order.
Hopefully, you should have a matrix with as close to an upper-right triangular region as possible.
Treat rows as binary numbers, with the leftmost column as the most significant bit, and sort them in descending order, top to bottom
Treat the columns as binary numbers with the bottommost row as the most significant bit and sort them in ascending order, left to right.
Repeat until you reach a fixed point. Proof that the algorithm terminates left as an excercise for the reader.

Resources