I need to develop an algorithm that connects points in a non-linear way, that is, with smooth curves, as in the image below:
The problem is that I can not find the best solution, either using Bezier Curves, Polimonial Interpolation, Curve Adjustment, among others.
In short, I need a formula that interpolates the points according to the figure above, generating N intermediate points between one coordinate and another.
In the image above, the first coordinate (c1) is (x = 1, y = 220) and the second (c2) is (x = 2, y = 40).
So if I want to create for example 4 intermediate coordinates between c1 and c2 I will have to get an array (x, y) of 4 elements something like this:
[1.2, 180], [1.4, 140], [1.6, 120], [1.8, 80]
Would anyone have any ideas?
I think any Piecewise curve interpolation should do it. Here small C++ example:
//---------------------------------------------------------------------------
const int n=7; // points
const int n2=n+n;
float pnt[n2]= // points x,y ...
{
1.0, 220.0,
2.0, 40.0,
3.0,-130.0,
4.0,-170.0,
5.0,- 40.0,
6.0, 90.0,
7.0, 110.0,
};
//---------------------------------------------------------------------------
void getpnt(float *p,float t) // t = <0,n-1>
{
int i,ii;
float *p0,*p1,*p2,*p3,a0,a1,a2,a3,d1,d2,tt,ttt;
// handle t out of range
if (t<= 0.0f){ p[0]=pnt[0]; p[1]=pnt[1]; return; }
if (t>=float(n-1)){ p[0]=pnt[n2-2]; p[1]=pnt[n2-1]; return; }
// select patch
i=floor(t); // start point of patch
t-=i; // parameter <0,1>
i<<=1; tt=t*t; ttt=tt*t;
// control points
ii=i-2; if (ii<0) ii=0; if (ii>=n2) ii=n2-2; p0=pnt+ii;
ii=i ; if (ii<0) ii=0; if (ii>=n2) ii=n2-2; p1=pnt+ii;
ii=i+2; if (ii<0) ii=0; if (ii>=n2) ii=n2-2; p2=pnt+ii;
ii=i+4; if (ii<0) ii=0; if (ii>=n2) ii=n2-2; p3=pnt+ii;
// loop all dimensions
for (i=0;i<2;i++)
{
// compute polynomial coeficients
d1=0.5*(p2[i]-p0[i]);
d2=0.5*(p3[i]-p1[i]);
a0=p1[i];
a1=d1;
a2=(3.0*(p2[i]-p1[i]))-(2.0*d1)-d2;
a3=d1+d2+(2.0*(-p2[i]+p1[i]));
// compute point coordinate
p[i]=a0+(a1*t)+(a2*tt)+(a3*ttt);
}
}
//---------------------------------------------------------------------------
void gl_draw()
{
glClearColor(1.0,1.0,1.0,1.0);
glClear(GL_COLOR_BUFFER_BIT);
glDisable(GL_DEPTH_TEST);
glDisable(GL_TEXTURE_2D);
// set 2D view
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glScalef(1.0/5.0,1.0/500.0,1.0);
glTranslatef(-4.0,0.0,0.0);
// render lines
glColor3f(1.0,0.0,0.0);
glBegin(GL_LINE_STRIP);
float p[2],t;
for (t=0.0;t<=float(n-1);t+=0.1f)
{
getpnt(p,t);
glVertex2fv(p);
}
glEnd();
// render points
glPointSize(4.0);
glColor3f(0.0,0.0,1.0);
glBegin(GL_POINTS);
for (int i=0;i<n2;i+=2) glVertex2fv(pnt+i);
glEnd();
glPointSize(1.0);
glFinish();
SwapBuffers(hdc);
}
//---------------------------------------------------------------------------
Here preview:
As you can see it is simple you just need n control points pnt (I extracted from your graph) and just interpolate ... The getpnt functions will compute any point on the curve addressed by parameter t=<0,n-1>. Internally it just select which cubic patch to use and compute as single cubic curve. In gl_draw you can see how to use it to obtain the points in between.
As your control points are uniformly distributed on the x axis:
x = <1,7>
t = <0,6>
I can write:
x = t+1
t = x-1
so you can compute any point for any x too...
The shape does not match your graph perfectly because the selected control points are not the correct ones. Any local minimum/maximum should be a control point and sometimes is safer to use also inflex points too. The starting and ending shape of the curve suggest hidden starting and ending control point which is not showed on the graph. You can use any number of points you need but beware if you break the x uniform distribution then you lose the ability to compute t from x directly!
As we do not know how the graph was created we can only guess ...
I am trying to create a shape similar to this, hexagons with 12 pentagons, at an arbitrary size.
(Image Source)
The only thing is, I have absolutely no idea what kind of code would be needed to generate it!
The goal is to be able to take a point in 3D space and convert it to a position coordinate on the grid, or vice versa and take a grid position and get the relevant vertices for drawing the mesh.
I don't even know how one would store the grid positions for this. Does each "triagle section" between 3 pentagons get their own set of 2D coordinates?
I will most likely be using C# for this, but I am more interested in which algorithms to use for this and an explanation of how they would work, rather than someone just giving me a piece of code.
The shape you have is one of so called "Goldberg polyhedra", is also a geodesic polyhedra.
The (rather elegant) algorithm to generate this (and many many more) can be succinctly encoded in something called a Conway Polyhedron Notation.
The construction is easy to follow step by step, you can click the images below to get a live preview.
The polyhedron you are looking for can be generated from an icosahedron -- Initialise a mesh with an icosahedron.
We apply a "Truncate" operation (Conway notation t) to the mesh (the sperical mapping of this one is a football).
We apply the "Dual" operator (Conway notation d).
We apply a "Truncate" operation again. At this point the recipe is tdtI (read from right!). You can already see where this is going.
Apply steps 3 & 4 repeatedly until you are satisfied.
For example below is the mesh for dtdtdtdtI.
This is quite easy to implement. I would suggest using a datastructure that makes it easy to traverse the neighbourhood give a vertex, edge etc. such as winged-edge or half-edge datastructures for your mesh. You only need to implement truncate and dual operators for the shape you are looking for.
First some analysis of the image in the question: the spherical triangle spanned by neighbouring pentagon centers seems to be equilateral. When five equilateral triangles meet in one corner and cover the whole sphere, this can only be the configuration induced by a icosahedron. So there are 12 pentagons and 20 patches of a triangular cutout of a hexongal mesh mapped to the sphere.
So this is a way to construct such a hexagonal grid on the sphere:
Create triangular cutout of hexagonal grid: a fixed triangle (I chose (-0.5,0),(0.5,0),(0,sqrt(3)/2) ) gets superimposed a hexagonal grid with desired resolution n s.t. the triangle corners coincide with hexagon centers, see the examples for n = 0,1,2,20:
Compute corners of icosahedron and define the 20 triangular faces of it (see code below). The corners of the icosahedron define the centers of the pentagons, the faces of the icosahedron define the patches of the mapped hexagonal grids. (The icosahedron gives the finest regular division of the sphere surface into triangles, i.e. a division into congruent equilateral triangles. Other such divisions can be derived from a tetrahedron or an octahedron; then at the corners of the triangles one will have triangles or squares, resp. Furthermore the fewer and bigger triangles would make the inevitable distortion in any mapping of a planar mesh onto a curved surface more visible. So choosing the icosahedron as a basis for the triangular patches helps minimizing the distortion of the hexagons.)
Map triangular cutout of hexagonal grid to spherical triangles corresponding to icosaeder faces: a double-slerp based on barycentric coordinates does the trick. Below is an illustration of the mapping of a triangular cutout of a hexagonal grid with resolution n = 10 onto one spherical triangle (defined by one face of an icosaeder), and an illustration of mapping the grid onto all these spherical triangles covering the whole sphere (different colors for different mappings):
Here is Python code to generate the corners (coordinates) and triangles (point indices) of an icosahedron:
from math import sin,cos,acos,sqrt,pi
s,c = 2/sqrt(5),1/sqrt(5)
topPoints = [(0,0,1)] + [(s*cos(i*2*pi/5.), s*sin(i*2*pi/5.), c) for i in range(5)]
bottomPoints = [(-x,y,-z) for (x,y,z) in topPoints]
icoPoints = topPoints + bottomPoints
icoTriangs = [(0,i+1,(i+1)%5+1) for i in range(5)] +\
[(6,i+7,(i+1)%5+7) for i in range(5)] +\
[(i+1,(i+1)%5+1,(7-i)%5+7) for i in range(5)] +\
[(i+1,(7-i)%5+7,(8-i)%5+7) for i in range(5)]
And here is the Python code to map (points of) the fixed triangle to a spherical triangle using a double slerp:
# barycentric coords for triangle (-0.5,0),(0.5,0),(0,sqrt(3)/2)
def barycentricCoords(p):
x,y = p
# l3*sqrt(3)/2 = y
l3 = y*2./sqrt(3.)
# l1 + l2 + l3 = 1
# 0.5*(l2 - l1) = x
l2 = x + 0.5*(1 - l3)
l1 = 1 - l2 - l3
return l1,l2,l3
from math import atan2
def scalProd(p1,p2):
return sum([p1[i]*p2[i] for i in range(len(p1))])
# uniform interpolation of arc defined by p0, p1 (around origin)
# t=0 -> p0, t=1 -> p1
def slerp(p0,p1,t):
assert abs(scalProd(p0,p0) - scalProd(p1,p1)) < 1e-7
ang0Cos = scalProd(p0,p1)/scalProd(p0,p0)
ang0Sin = sqrt(1 - ang0Cos*ang0Cos)
ang0 = atan2(ang0Sin,ang0Cos)
l0 = sin((1-t)*ang0)
l1 = sin(t *ang0)
return tuple([(l0*p0[i] + l1*p1[i])/ang0Sin for i in range(len(p0))])
# map 2D point p to spherical triangle s1,s2,s3 (3D vectors of equal length)
def mapGridpoint2Sphere(p,s1,s2,s3):
l1,l2,l3 = barycentricCoords(p)
if abs(l3-1) < 1e-10: return s3
l2s = l2/(l1+l2)
p12 = slerp(s1,s2,l2s)
return slerp(p12,s3,l3)
[Complete re-edit 18.10.2017]
the geometry storage is on you. Either you store it in some kind of Mesh or you generate it on the fly. I prefer to store it. In form of 2 tables. One holding all the vertexes (no duplicates) and the other holding 6 indexes of used points per each hex you got and some aditional info like spherical position to ease up the post processing.
Now how to generate this:
create hex triangle
the size should be radius of your sphere. do not include the corner hexess and also skip last line of the triangle (on both radial and axial so there is 1 hex gap between neighbor triangles on sphere) as that would overlap when joining out triangle segments.
convert 60deg hexagon triangle to 72deg pie
so simply convert to polar coordiantes (radius,angle), center triangle around 0 deg. Then multiply radius by cos(angle)/cos(30); which will convert triangle into Pie. And then rescale angle with ratio 72/60. That will make our triangle joinable...
copy&rotate triangle to fill 5 segments of pentagon
easy just rotate the points of first triangle and store as new one.
compute z
based on this Hexagonal tilling of hemi-sphere you can convert distance in 2D map into arc-length to limit the distortions as much a s possible.
However when I tried it (example below) the hexagons are a bit distorted so the depth and scaling needs some tweaking. Or post processing latter.
copy the half sphere to form a sphere
simply copy the points/hexes and negate z axis (or rotate by 180 deg if you want to preserve winding).
add equator and all of the missing pentagons and hexes
You should use the coordinates of the neighboring hexes so no more distortion and overlaps are added to the grid. Here preview:
Blue is starting triangle. Darker blue are its copies. Red are pole pentagons. Dark green is the equator, Lighter green are the join lines between triangles. In Yellowish are the missing equator hexagons near Dark Orange pentagons.
Here simple C++ OpenGL example (made from the linked answer in #4):
//$$---- Form CPP ----
//---------------------------------------------------------------------------
#include <vcl.h>
#include <math.h>
#pragma hdrstop
#include "win_main.h"
#include "gl/OpenGL3D_double.cpp"
#include "PolyLine.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
TMain *Main;
OpenGLscreen scr;
bool _redraw=true;
double animx= 0.0,danimx=0.0;
double animy= 0.0,danimy=0.0;
//---------------------------------------------------------------------------
PointTab pnt; // (x,y,z)
struct _hexagon
{
int ix[6]; // index of 6 points, last point duplicate for pentagon
int a,b; // spherical coordinate
DWORD col; // color
// inline
_hexagon() {}
_hexagon(_hexagon& a) { *this=a; }
~_hexagon() {}
_hexagon* operator = (const _hexagon *a) { *this=*a; return this; }
//_hexagon* operator = (const _hexagon &a) { ...copy... return this; }
};
List<_hexagon> hex;
//---------------------------------------------------------------------------
// https://stackoverflow.com/a/46787885/2521214
//---------------------------------------------------------------------------
void hex_sphere(int N,double R)
{
const double c=cos(60.0*deg);
const double s=sin(60.0*deg);
const double sy= R/(N+N-2);
const double sz=sy/s;
const double sx=sz*c;
const double sz2=0.5*sz;
const int na=5*(N-2);
const int nb= N;
const int b0= N;
double *q,p[3],ang,len,l,l0,ll;
int i,j,n,a,b,ix;
_hexagon h,*ph;
hex.allocate(na*nb);
hex.num=0;
pnt.reset3D(N*N);
b=0; a=0; ix=0;
// generate triangle hex grid
h.col=0x00804000;
for (b=1;b<N-1;b++) // skip first line b=0
for (a=1;a<b;a++) // skip first and last line
{
p[0]=double(a )*(sx+sz);
p[1]=double(b-(a>>1))*(sy*2.0);
p[2]=0.0;
if (int(a&1)!=0) p[1]-=sy;
ix=pnt.add(p[0]+sz2+sx,p[1] ,p[2]); h.ix[0]=ix; // 2 1
ix=pnt.add(p[0]+sz2 ,p[1]+sy,p[2]); h.ix[1]=ix; // 3 0
ix=pnt.add(p[0]-sz2 ,p[1]+sy,p[2]); h.ix[2]=ix; // 4 5
ix=pnt.add(p[0]-sz2-sx,p[1] ,p[2]); h.ix[3]=ix;
ix=pnt.add(p[0]-sz2 ,p[1]-sy,p[2]); h.ix[4]=ix;
ix=pnt.add(p[0]+sz2 ,p[1]-sy,p[2]); h.ix[5]=ix;
h.a=a;
h.b=N-1-b;
hex.add(h);
} n=hex.num; // remember number of hexs for the first triangle
// distort points to match area
for (ix=0;ix<pnt.nn;ix+=3)
{
// point pointer
q=pnt.pnt.dat+ix;
// convert to polar coordinates
ang=atan2(q[1],q[0]);
len=vector_len(q);
// match area of pentagon (72deg) triangle as we got hexagon (60deg) triangle
ang-=60.0*deg; // rotate so center of generated triangle is angle 0deg
while (ang>+60.0*deg) ang-=pi2;
while (ang<-60.0*deg) ang+=pi2;
len*=cos(ang)/cos(30.0*deg); // scale radius so triangle converts to pie
ang*=72.0/60.0; // scale up angle so rotated triangles merge
// convert back to cartesian
q[0]=len*cos(ang);
q[1]=len*sin(ang);
}
// copy and rotate the triangle to cover pentagon
h.col=0x00404000;
for (ang=72.0*deg,a=1;a<5;a++,ang+=72.0*deg)
for (ph=hex.dat,i=0;i<n;i++,ph++)
{
for (j=0;j<6;j++)
{
vector_copy(p,pnt.pnt.dat+ph->ix[j]);
rotate2d(-ang,p[0],p[1]);
h.ix[j]=pnt.add(p[0],p[1],p[2]);
}
h.a=ph->a+(a*(N-2));
h.b=ph->b;
hex.add(h);
}
// compute z
for (q=pnt.pnt.dat,ix=0;ix<pnt.nn;ix+=pnt.dn,q+=pnt.dn)
{
q[2]=0.0;
ang=vector_len(q)*0.5*pi/R;
q[2]=R*cos(ang);
ll=fabs(R*sin(ang)/sqrt((q[0]*q[0])+(q[1]*q[1])));
q[0]*=ll;
q[1]*=ll;
}
// copy and mirror the other half-sphere
n=hex.num;
for (ph=hex.dat,i=0;i<n;i++,ph++)
{
for (j=0;j<6;j++)
{
vector_copy(p,pnt.pnt.dat+ph->ix[j]);
p[2]=-p[2];
h.ix[j]=pnt.add(p[0],p[1],p[2]);
}
h.a= ph->a;
h.b=-ph->b;
hex.add(h);
}
// create index search table
int i0,i1,j0,j1,a0,a1,ii[5];
int **ab=new int*[na];
for (a=0;a<na;a++)
{
ab[a]=new int[nb+nb+1];
for (b=-nb;b<=nb;b++) ab[a][b0+b]=-1;
}
n=hex.num;
for (ph=hex.dat,i=0;i<n;i++,ph++) ab[ph->a][b0+ph->b]=i;
// add join ring
h.col=0x00408000;
for (a=0;a<na;a++)
{
h.a=a;
h.b=0;
a0=a;
a1=a+1; if (a1>=na) a1-=na;
i0=ab[a0][b0+1];
i1=ab[a1][b0+1];
j0=ab[a0][b0-1];
j1=ab[a1][b0-1];
if ((i0>=0)&&(i1>=0))
if ((j0>=0)&&(j1>=0))
{
h.ix[0]=hex[i1].ix[1];
h.ix[1]=hex[i0].ix[0];
h.ix[2]=hex[i0].ix[1];
h.ix[3]=hex[j0].ix[1];
h.ix[4]=hex[j0].ix[0];
h.ix[5]=hex[j1].ix[1];
hex.add(h);
ab[h.a][b0+h.b]=hex.num-1;
}
}
// add 2x5 join lines
h.col=0x00008040;
for (a=0;a<na;a+=N-2)
for (b=1;b<N-3;b++)
{
// +b hemisphere
h.a= a;
h.b=+b;
a0=a-b; if (a0< 0) a0+=na; i0=ab[a0][b0+b+0];
a0--; if (a0< 0) a0+=na; i1=ab[a0][b0+b+1];
a1=a+1; if (a1>=na) a1-=na; j0=ab[a1][b0+b+0];
j1=ab[a1][b0+b+1];
if ((i0>=0)&&(i1>=0))
if ((j0>=0)&&(j1>=0))
{
h.ix[0]=hex[i0].ix[5];
h.ix[1]=hex[i0].ix[4];
h.ix[2]=hex[i1].ix[5];
h.ix[3]=hex[j1].ix[3];
h.ix[4]=hex[j0].ix[4];
h.ix[5]=hex[j0].ix[3];
hex.add(h);
}
// -b hemisphere
h.a= a;
h.b=-b;
a0=a-b; if (a0< 0) a0+=na; i0=ab[a0][b0-b+0];
a0--; if (a0< 0) a0+=na; i1=ab[a0][b0-b-1];
a1=a+1; if (a1>=na) a1-=na; j0=ab[a1][b0-b+0];
j1=ab[a1][b0-b-1];
if ((i0>=0)&&(i1>=0))
if ((j0>=0)&&(j1>=0))
{
h.ix[0]=hex[i0].ix[5];
h.ix[1]=hex[i0].ix[4];
h.ix[2]=hex[i1].ix[5];
h.ix[3]=hex[j1].ix[3];
h.ix[4]=hex[j0].ix[4];
h.ix[5]=hex[j0].ix[3];
hex.add(h);
}
}
// add pentagons at poles
_hexagon h0,h1;
h0.col=0x00000080;
h0.a=0; h0.b=N-1; h1=h0; h1.b=-h1.b;
p[2]=sqrt((R*R)-(sz*sz));
for (ang=0.0,a=0;a<5;a++,ang+=72.0*deg)
{
p[0]=2.0*sz*cos(ang);
p[1]=2.0*sz*sin(ang);
h0.ix[a]=pnt.add(p[0],p[1],+p[2]);
h1.ix[a]=pnt.add(p[0],p[1],-p[2]);
}
h0.ix[5]=h0.ix[4]; hex.add(h0);
h1.ix[5]=h1.ix[4]; hex.add(h1);
// add 5 missing hexagons at poles
h.col=0x00600060;
for (ph=&h0,b=N-3,h.b=N-2,i=0;i<2;i++,b=-b,ph=&h1,h.b=-h.b)
{
a = 1; if (a>=na) a-=na; ii[0]=ab[a][b0+b];
a+=N-2; if (a>=na) a-=na; ii[1]=ab[a][b0+b];
a+=N-2; if (a>=na) a-=na; ii[2]=ab[a][b0+b];
a+=N-2; if (a>=na) a-=na; ii[3]=ab[a][b0+b];
a+=N-2; if (a>=na) a-=na; ii[4]=ab[a][b0+b];
for (j=0;j<5;j++)
{
h.a=((4+j)%5)*(N-2)+1;
h.ix[0]=ph->ix[ (5-j)%5 ];
h.ix[1]=ph->ix[ (6-j)%5 ];
h.ix[2]=hex[ii[(j+4)%5]].ix[4];
h.ix[3]=hex[ii[(j+4)%5]].ix[5];
h.ix[4]=hex[ii[ j ]].ix[3];
h.ix[5]=hex[ii[ j ]].ix[4];
hex.add(h);
}
}
// add 2*5 pentagons and 2*5 missing hexagons at equator
h0.a=0; h0.b=N-1; h1=h0; h1.b=-h1.b;
for (ang=36.0*deg,a=0;a<na;a+=N-2,ang-=72.0*deg)
{
p[0]=R*cos(ang);
p[1]=R*sin(ang);
p[2]=sz;
i0=pnt.add(p[0],p[1],+p[2]);
i1=pnt.add(p[0],p[1],-p[2]);
a0=a-1;if (a0< 0) a0+=na;
a1=a+1;if (a1>=na) a1-=na;
ii[0]=ab[a0][b0-1]; ii[2]=ab[a1][b0-1];
ii[1]=ab[a0][b0+1]; ii[3]=ab[a1][b0+1];
// hexagons
h.col=0x00008080;
h.a=a; h.b=0;
h.ix[0]=hex[ii[0]].ix[0];
h.ix[1]=hex[ii[0]].ix[1];
h.ix[2]=hex[ii[1]].ix[1];
h.ix[3]=hex[ii[1]].ix[0];
h.ix[4]=i0;
h.ix[5]=i1;
hex.add(h);
h.a=a; h.b=0;
h.ix[0]=hex[ii[2]].ix[2];
h.ix[1]=hex[ii[2]].ix[1];
h.ix[2]=hex[ii[3]].ix[1];
h.ix[3]=hex[ii[3]].ix[2];
h.ix[4]=i0;
h.ix[5]=i1;
hex.add(h);
// pentagons
h.col=0x000040A0;
h.a=a; h.b=0;
h.ix[0]=hex[ii[0]].ix[0];
h.ix[1]=hex[ii[0]].ix[5];
h.ix[2]=hex[ii[2]].ix[3];
h.ix[3]=hex[ii[2]].ix[2];
h.ix[4]=i1;
h.ix[5]=i1;
hex.add(h);
h.a=a; h.b=0;
h.ix[0]=hex[ii[1]].ix[0];
h.ix[1]=hex[ii[1]].ix[5];
h.ix[2]=hex[ii[3]].ix[3];
h.ix[3]=hex[ii[3]].ix[2];
h.ix[4]=i0;
h.ix[5]=i0;
hex.add(h);
}
// release index search table
for (a=0;a<na;a++) delete[] ab[a];
delete[] ab;
}
//---------------------------------------------------------------------------
void hex_draw(GLuint style) // draw hex
{
int i,j;
_hexagon *h;
for (h=hex.dat,i=0;i<hex.num;i++,h++)
{
if (style==GL_POLYGON) glColor4ubv((BYTE*)&h->col);
glBegin(style);
for (j=0;j<6;j++) glVertex3dv(pnt.pnt.dat+h->ix[j]);
glEnd();
}
if (0)
if (style==GL_POLYGON)
{
scr.text_init_pixel(0.1,-0.2);
glColor3f(1.0,1.0,1.0);
for (h=hex.dat,i=0;i<hex.num;i++,h++)
if (abs(h->b)<2)
{
double p[3];
vector_ld(p,0.0,0.0,0.0);
for (j=0;j<6;j++)
vector_add(p,p,pnt.pnt.dat+h->ix[j]);
vector_mul(p,p,1.0/6.0);
scr.text(p[0],p[1],p[2],AnsiString().sprintf("%i,%i",h->a,h->b));
}
scr.text_exit_pixel();
}
}
//---------------------------------------------------------------------------
void TMain::draw()
{
scr.cls();
int x,y;
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0,0.0,-5.0);
glRotated(animx,1.0,0.0,0.0);
glRotated(animy,0.0,1.0,0.0);
hex_draw(GL_POLYGON);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0,0.0,-5.0+0.01);
glRotated(animx,1.0,0.0,0.0);
glRotated(animy,0.0,1.0,0.0);
glColor3f(1.0,1.0,1.0);
glLineWidth(2);
hex_draw(GL_LINE_LOOP);
glCirclexy(0.0,0.0,0.0,1.5);
glLineWidth(1);
scr.exe();
scr.rfs();
}
//---------------------------------------------------------------------------
__fastcall TMain::TMain(TComponent* Owner) : TForm(Owner)
{
scr.init(this);
hex_sphere(10,1.5);
_redraw=true;
}
//---------------------------------------------------------------------------
void __fastcall TMain::FormDestroy(TObject *Sender)
{
scr.exit();
}
//---------------------------------------------------------------------------
void __fastcall TMain::FormPaint(TObject *Sender)
{
_redraw=true;
}
//---------------------------------------------------------------------------
void __fastcall TMain::FormResize(TObject *Sender)
{
scr.resize();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60,float(scr.xs)/float(scr.ys),0.1,100.0);
_redraw=true;
}
//-----------------------------------------------------------------------
void __fastcall TMain::Timer1Timer(TObject *Sender)
{
animx+=danimx; if (animx>=360.0) animx-=360.0; _redraw=true;
animy+=danimy; if (animy>=360.0) animy-=360.0; _redraw=true;
if (_redraw) { draw(); _redraw=false; }
}
//---------------------------------------------------------------------------
void __fastcall TMain::FormKeyDown(TObject *Sender, WORD &Key, TShiftState Shift)
{
Caption=Key;
if (Key==40){ animx+=2.0; _redraw=true; }
if (Key==38){ animx-=2.0; _redraw=true; }
if (Key==39){ animy+=2.0; _redraw=true; }
if (Key==37){ animy-=2.0; _redraw=true; }
}
//---------------------------------------------------------------------------
I know it is a bit of a index mess and also winding rule is not guaranteed as I was too lazy to made uniform indexing. Beware the a indexes of each hex are not linear and if you want to use them to map to 2D map you would need to recompute it using atan2 on x,y of its center point position.
Here previews:
Still some distortions are present. They are caused by fact that we using 5 triangles to connect at equator (so connection is guaranteed). That means the circumference is 5*R instead of 6.28*R. How ever this can be still improved by a field simulation. Just take all the points and add retractive forces based on their distance and bound to sphere surface. Run simulation and when the oscillations lower below threshold you got your sphere grid ...
Another option would be find out some equation to remap the grid points (similarly what I done for triangle to pie conversion) that would have better results.
I am using this simple function to draw quad in 3D space that is facing camera. Now, I want to use fragment shader to draw illusion of a sphere inside. But, the problem is I'm new to OpenGL ES, so I don't know how?
void draw_sphere(view_t view) {
set_gl_options(COURSE);
glPushMatrix();
{
glTranslatef(view.plyr_pos.x, view.plyr_pos.y, view.plyr_pos.z - 1.9);
#ifdef __APPLE__
#undef glEnableClientState
#undef glDisableClientState
#undef glVertexPointer
#undef glTexCoordPointer
#undef glDrawArrays
static const GLfloat vertices []=
{
0, 0, 0,
1, 0, 0,
1, 1, 0,
0, 1, 0,
0, 0, 0,
1, 1, 0
};
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, vertices);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 6);
glDisableClientState(GL_VERTEX_ARRAY);
#else
#endif
}
glPopMatrix();
}
More exactly, I want to achieve this:
There might be quite a few thing you need to to achieve this... The sphere that is drawn on the last image you posted is a result in using lighting and shine and color. In general you need a shader that can process all that and can normally work for any shape.
This specific case (also some others that can be mathematically presented) can be drawn with a single quad without even needing to push normal coordinates to the program. What you need to do is create a normal in a fragment shader: If you receive vectors sphereCenter, fragmentPosition and float sphereRadius, then sphereNormal is a vector such as
sphereNormal = (fragmentPosition-sphereCenter)/radius; //taking into account all have .z = .0
sphereNormal.z = -sqrt(1.0 - length(sphereNormal)); //only if(length(spherePosition) < sphereRadius)
and real sphere position:
spherePosition = sphereCenter + sphereNormal*sphereRadius;
Now all you need to do is add your lighting.. Static or not it is most common to use some ambient factor, linear and square distance factors, shine factor:
color = ambient*materialColor; //apply ambient
vector fragmentToLight = lightPosition-spherePosition;
float lightDistance = length(fragmentToLight);
fragmentToLight = normalize(fragmentToLight); //can also just divide with light distance
float dotFactor = dot(sphereNormal, fragmentToLight); //dot factor is used to take int account the angle between light and surface normal
if(dotFactor > .0) {
color += (materialColor*dotFactor)/(1.0 + lightDistance*linearFactor + lightDistance*lightDistance*squareFactor); //apply dot factor and distance factors (in many cases the distance factors are 0)
}
vector shineVector = (sphereNormal*(2.0*dotFactor)) - fragmentToLight; //this is a vector that is mirrored through the normal, it is a reflection vector
float shineFactor = dot(shineVector, normalize(cameraPosition-spherePosition)); //factor represents how strong is the light reflection towards the viewer
if(shineFactor > .0) {
color += materialColor*(shineFactor*shineFactor * shine); //or some other power then 2 (shineFactor*shineFactor)
}
This pattern to create lights in fragment shader is one of very many. If you don't like it or you cant make it work I suggest you find another one on the web, otherwise I hope you will understand it and be able to play around with it.
What do 2 & 3 mean in this and how can I change them?
CvMat* rot = cvCreateMat(2,3,CV_32FC1)
When I change these two values I get an openCV GUI error handler.
size of input arguments do not match()
in function cvConvertScale.\cxconvert.cpp(1601)
I want to understand what that means
Update:
The code is:
#include <cv.h>
#include <highgui.h>
int main()
{
CvMat* rot = cvCreateMat(2,3,CV_32FC1);
IplImage *src, *dst;
src=cvLoadImage("doda.jpg");
// make acopy of gray image(src)
dst = cvCloneImage( src );
dst->origin = src->origin;
// make dstof zeros
cvZero( dst );
// Compute rotation matrix
double x=0.0;
// loop to get rotation from 0 to 360 by 4 press on anykey
for(int i=1;i<=5;i++)
{
CvPoint2D32f center = cvPoint2D32f(src->width/2,src->height/2);
double angle = 0+x;
double scale = 0.6;
cv2DRotationMatrix( center, angle, scale, rot );
// Do the transformation
cvWarpAffine( src, dst, rot);
cvNamedWindow( "Affine_Transform", 1 );
cvShowImage( "Affine_Transform", dst );
if (i<=4)
x=x+90.0;
else
x=0.0;
cvWaitKey();
}
cvReleaseImage( &dst );
cvReleaseMat( &rot );
return 0;
}
2 and 3 are the row and column counts of the matrix you're creating.
From Introduction to programming with OpenCV:
Allocate a matrix:
CvMat* cvCreateMat(int rows, int cols, int type);
type: Type of the matrix elements. Specified in form
CV_<bit_depth>(S|U|F)C<number_of_channels>. E.g.: CV_8UC1 means an
8-bit unsigned single-channel matrix, CV_32SC2 means a 32-bit signed
matrix with two channels.
Example:
CvMat* M = cvCreateMat(4,4,CV_32FC1);
Changing them is as simple as substituting different values. But I guess you should already know that.
2 = number of rows and 3 = number of columns in your matrix, rot.
Can you post the entire code? Or maybe tell us what you want to achieve? Are you trying to rotate an image?
Also, I'd recommend upgrading to OpenCV 2.0 which has a C++ interface. With the new version, you can extensively use the Mat class which handles everything (matrices,images,etc.) and makes things much simpler.
You get an error using any other shape than 2x3 because it is then meaningless for opencv when you use rot for rotation.
Take a look at Jacob's answer.
He describes the rotation matrix components in details.