C99 Enum - Need Clarification - c++11

I have reviewed this but the accepted answer doesn't make sense to me. I should be able to define an enum in C99 as
enum WeekDays
{
MON, TUES, WED, THURS, FRI, SAT, SUN
}days;
and utilize the enum as follows in main as
days = FRI;
if (days == FRI)
{
printf("Thank God it's Friday!");
}
Why the additional work in the accepted answer to utilize the enum?

Your code should work. In general though the accepted answer you point to is better programming practice. It's desirable to separate the declaration of new types from the use of those types. For example if you wrote a library for day manipulation, you might include the enum weekdays in that library. But that would be a bad place to define a variable for your program to use.
Over time programmers have found this sort of separation valuable. It generally helps code be more readable

Related

Why c++11 introduces a new std::chrono namespace, why not put things under std directly? [duplicate]

Everything else I have seen so far in the C++ standard library is in the std namespace. If I use things from std::chrono I usually exceed my 80 character per line limit - that is not a problem, just inconvienent.
So here my simple question: Why does the chrono header has its own namespace?
I was lead author on the chrono proposal. A sub-namespace was not my first choice, just because of the verbosity. I find myself writing using namespace std::chrono almost every time I use the facility.
However this was a very controversial proposal. And many people, including some of my co-authors strongly felt that a sub-namespace was appropriate. I did not strongly object to the sub-namespace because we were in a space of needing to compromise, or become just as dead-locked as the US congress. :⁠-⁠) The result of such a dead-lock would have probably been C11's timespec.
boost has experimented with sub-namespaces much more aggressively than the std has and one of the key authors on this paper is also the author of the boost date-time library upon which chrono evolved from. So that would obviously have a strong pull in the direction of using a sub-namespace.
Looking forward it is quite possible that the sub-namespace will become absolutely required. Imagine if we add calendrical services that include an abbreviation for December: dec. This would directly conflict with:
ios_base& dec(ios_base& str);
in <ios>. So all in all, I was probably wrong in not insisting on a sub-namespace from the beginning. :⁠-⁠) Going forward it will be interesting to watch where the committee does and does not create sub-namespaces.
Update (6 years later...)
The truth is always stranger than fiction...
So I did propose std::chrono::dec as an abbreviation for December, thinking that would be safe because of the nested chrono namespace. But no, the committee decided to rename std::chrono::dec to std::chrono::December during the standardization process because of potential conflicts.
So are nested namespaces worth it?
I don't know. This update is a datapoint, not an opinion.
There are other namespaces too, like std::placeholders. Ultimately, in C++03 the Committee did not go for subnamespaces, but it is now painfully obvious that the std namespace is becoming massively overloaded. As such, I expect that many library proposals for C++14 will use a subnamespace for larger organizations of components.

Is Automatic Refactoring Possible in Dynamic Languages?

Perhaps I am limited by my experience with dynamic languages (Ruby on Netbeans and Groovy on Eclipse), but it seems to me that the nature of dynamic languages makes it impossible to refactor (renaming methods, classes, pushing-up, pulling-down, etc.) automatically.
Is it possible to refactor AUTOMATICALLY in any dynamic language (with any IDE/tool)? I am especially interested in Ruby, Python and Groovy, and how the refactoring compares to the 100% automatic refactoring available in all Java IDEs.
Given that automatic refactoring was invented in a dynamic language (Smalltalk), I would have to say "Yes".
In particular, John Brant, Don Roberts and Ralph Johnson developed the Refactoring Browser which is one of the core tools in, for instance, Squeak.
My Google-fu is weak today, but you could try find this paper: Don Roberts, John Brant, and Ralph Johnson, A Refactoring Tool for Smalltalk, "The Theory and Practice of Object Systems", (3) 4, 1997.
Smalltalk does not declare any types. The Refactoring Browser has successfully performed correct refactorings in commercial code since 1995 and is incorporated in nearly all current Smalltalk IDE's. - Don Roberts
Automatic Refactoring was invented in Smalltalk, a highly dynamic language.
And it works like a charm ever since.
You can try yourself in a free Smalltalk version (for instance http://pharo-project.org)
In a dynamic language you can also script refactorings yourself or query the
system. Simple example to get the number of Test classes:
TestCase allSubclasses size
I have wondered the same thing. I'm not a compiler/interpreter writer, but I think the answer will be that it is impossible to get it perfect. However, you can get it correct in most cases.
First, I'm going to change the name "dynamic" language to "interpreted" language which is what I think of with Ruby, Javascript, etc. Interpreted languages tend to take advantage of run-time capabilities.
For instance, most scripting languages allow the following
-- pseudo-code but you get the idea
eval("echo(a)");
I just "ran" a string! You would have to refactor that string also. And will a be a variable or does this language allow you to print the character a without quotes if there is no variable a?
I want to believe this kind of coding is probably the exception and that you will get good refactoring almost all of the time. Unfortunately it seems that when I look through libraries for scripting languages, they get into such exceptions normally and maybe even base their architecture on them.
Or to up the ante a bit:
def functionThatAssumesInputWillCreateX(input)
eval(input)
echo(x)
def functionWithUnknownParms( ... )
eval(argv[1]);
At least when you refactor Java, and change a variable from int to string, you get errors in all the places that were expecting the int still:
String wasInt;
out = 3 + wasInt;
With interpreted languages you will probably not see this until run-time.
Ditto the points about the Refactoring Browser...it is highly effective in Smalltalk. However, I imagine there are certain types of refactoring that would be impossible without type information (whether obtain by explicit type annotation in the language or through some form of type inferencing in a dynamic language is irrelevant). One example: when renaming a method in Smalltalk, it will rename all implementors and senders of that method, which most often is just fine, but is sometimes undesirable. If you had type information on variables, you could scope the rename to just the implementors in the current class hierarchy and all senders when the message is being sent to a variable declared to be of a type in that hierarchy (however, I could imagine scenarios where even with type declaration, that would break down and produce undesirable results).

Is it possible to write good and understandable code without any comments?

Can any one suggest what is the best way to write good code that is understandable without a single line of comments?
I once had a professor when I was in college tell me that any good code should never need any comments.
Her approach was a combination of very precise logic split out into small functions with very descriptive method/property/variable names. The majority of what she presented was, in fact, extremely readable with no comments. I try to do the same with everything I write...
Read Code Complete, 2nd Edition cover to cover. Perhaps twice.
To give some specifics:
Making code readable
Eliminating code repetition
Doing design/architecture before you write code
I like to 'humanise' code, so instead of:
if (starColour.red > 200 && starColour.blue > 200 && starColour.green > 200){
doSomething();
}
I'll do this:
bool starIsBright;
starIsBright = (starColour.red > 200 && starColour.blue > 200 && starColour.green > 200);
if(starIsBright){
doSomething();
}
In some cases - yes, but in many cases no. The Yes part is already answered by others - keep it simple, write it nicely, give it readable names, etc. The No part goes to when the problem you solve in code is not a code problem at all but rather domain specific problem or business logic problem. I've got no problem reading lousy code even if it doesn't have comments. It's annoying, but doable. But it's practically impossible to read some code without understanding why is it like this and what is it trying to solve. So things like :
if (starColour.red > 200 && starColour.blue > 200 && starColour.green > 200){
doSomething();
}
look nice, but could be quite meaningless in the context of what the program is actually doing. I'd rather have it like this:
// we do this according to the requirement #xxxx blah-blah..
if (starColour.red > 200 && starColour.blue > 200 && starColour.green > 200){
doSomething();
}
Well written code might eliminate the need for comments to explain what you're doing, but you'll still want comments to explain the why.
If you really want to then you would need to be very detailed in your variable names and methods names.
But in my opinion, there is no good way to do this. Comments serve a serious purpose in coding, even if you are the only one coding you still sometimes need to be reminded what part of the code you're looking at.
Yes, you can write code that doesn't need comments to describe what it does, but that may not be enough.
Just because a function is very clear in explaining what it does, does not, by itself, tell you why it is doing what it does.
As in everything, moderation is a good idea. Write code that is explanatory, and write comments that explain why it is there or what assumptions are being made.
I think that the concept of Fluent Interfaces is really a good example of this.
var bob = DB.GetCustomers().FromCountry("USA").WithName("Bob")
Clean Code by Robert C. Martin contains everything you need to write clean, understandable code.
Use descriptive variable names and descriptive method names. Use whitespace.
Make your code read like normal conversation.
Contrast the use of Matchers in Junit:
assertThat(x, is(3));
assertThat(x, is(not(4)));
assertThat(responseString, either(containsString("color")).or(containsString("colour")));
assertThat(myList, hasItem("3"));
with the traditional style of assertEquals:
assertEquals(3, x);
When I look at the assertEquals statement, it is not clear which parameter is "expected" and which is "actual".
When I look at assertThat(x, is(3)) I can read that in English as "Assert that x is 3" which is very clear to me.
Another key to writing self-documenting code is to wrap any bit of logic that is not clear in a method call with a clear name.
if( (x < 3 || x > 17) && (y < 8 || y > 15) )
becomes
if( xAndYAreValid( x, y ) ) // or similar...
I'm not sure writing code that is so expressive that you don't need comments is necessarily a great goal. Seems to me like another form of overoptimization. If I were on your team, I'd be pleased to see clear, concise code with just enough comments.
In most cases, yes, you can write code that is clear enough that comments become unnecessary noise.
The biggest problem with comments is there is no way to check their accuracy. I tend to agree with Uncle Bob Martin in chapter 4 of his book, Clean Code:
The proper use of comments is to compensate for our failure to express ourself in
code. Note that I used the word failure. I meant it. Comments are always failures. We must
have them because we cannot always figure out how to express ourselves without them,
but their use is not a cause for celebration.
So when you find yourself in a position where you need to write a comment, think it
through and see whether there isn’t some way to turn the tables and express yourself in
code. Every time you express yourself in code, you should pat yourself on the back. Every
time you write a comment, you should grimace and feel the failure of your ability of
expression.
Most comments are either needless redundancy, outright fallacy or a crutch used to explain poorly written code. I say most because there are certain scenarios where the lack of expressiveness lies with the language rather than the programmer.
For instance the copyright and license information typically found at the beginning of a source file. As far as I'm aware no known construct exists for this in any of the popular languages. Since a simple one or two line comment suffices, its unlikely that such a construct will be added.
The original need for most comments has been replaced over time by better technology or practices. Using a change journal or commenting out code has been supplanted with source control systems. Explanatory comments in long functions can be mitigated by simply writing shorter functions. etc.
You usually can turn your comment into a function name something like:
if (starColourIsGreaterThanThreshold(){
doSomething();
}
....
private boolean starColourIsGreaterThanThreshold() {
return starColour.red > THRESHOLD &&
starColour.blue > THRESHOLD &&
starColour.green > THRESHOLD
}
I think comments should express the why, perhaps the what, but as much as possible the code should define the how (the behavior).
Someone should be able to read the code and understand what it does (the how) from the code. What may not be obvious is why you would want such behavior and what this behavior contributes to the overall requirements.
The need to comment should give you pause, though. Maybe how you are doing it is too complicated and the need to write a comment shows that.
There is a third alternative to documenting code - logging. A method that is well peppered with logging statements can do a lot to explain the why, can touch on the what and may give you a more useful artifact than well named methods and variables regarding the behavior.
If you want to code entirely without comments and still have your code be followable, then you'll have to write a larger number of shorter methods. Methods will have to have descriptive names. Variables will also have to have descriptive names. One common method of doing this is to give variables the name of nouns and to give methods the names of verbal phrases. For example:
account.updateBalance();
child.givePacifier();
int count = question.getAnswerCount();
Use enums liberally. With an enum, you can replace most booleans and integral constants. For example:
public void dumpStackPretty(boolean allThreads) {
....
}
public void someMethod() {
dumpStackPretty(true);
}
vs
public enum WhichThreads { All, NonDaemon, None; }
public void dumpStackPretty(WhichThreads whichThreads) {
....
}
public void someMethod() {
dumpStackPretty(WhichThreads.All);
}
Descriptive names is your obvious first bet.
Secondly make sure each method does one thing and only one thing. If you have a public method that needs to do many things, split it up into several private methods and call those from the public method, in a way that makes the logic obvious.
Some time ago I had to create a method that calculated the correlation of two time series.
To calculate the correlation you also need the mean and standard deviation. So I had two private methods (well actually in this case they were public as they could be used for other purposes (but assuming they couldn't then they would be private)) for calculating A) the mean, B) the standard deviation.
This sort of splitting up of function into the smallest part that makes sense is probably the most important thing to make a code readable.
How do you decide where to break up methods. My way is, if the name is obvious e.g. getAddressFromPage it is the right size. If you have several contenders you are probably trying to do too much, if you can't think of a name that makes sense you method may not "do" enough - although the latter is much less likely.
I don't really think comments are a good idea in most cases. Comments don't get checked by the compiler so they so often are misleading or wrong as the code changes over time. Instead, I prefer self documenting, concise methods that don't need comments. It can be done, and I have been doing it this way for years.
Writing code without comments takes practice and discipline, but I find that the discipline pays off as the code evolves.
It may not be comments, but, to help someone better understand what it going on you may need some diagrams explaining how the program should work, as, if a person knows the big picture then it is easier to understand code.
But, if you are doing something complex then you may need some comments, for example, in a very math intensive program.
The other place I find comments useful and important, is to ensure that someone doesn't replace code with something that looks like it should work, but won't. In that case I leave the bad code in, and comment it out, with an explanation as to why it shouldn't be used.
So, it is possible to write code without comments, but only if you are limited in what types of applications you are writing, unless you can explain why a decision was made, somewhere, and not call it a comment.
For example, a random generator can be written many ways. If you pick a particular implementation it may be necessary to explain why you picked that particular generator, as the period may be sufficiently long for current requirements, but later the requirements may change and your generator may not be sufficient.
I believe it's possible, if you consider the fact that not everybody likes the same style. So in order to minimize comments, knowing your "readers" is the most important thing.
In "information systems" kind-of software, try using declarative sentence, try to approximate the code line to a line in english, and avoid "mathematical programming" (with the i,j and k for index, and the one-liners-to-do-a-lot) at all costs.
I think code can be self-documenting to a large degree, and I think it's crucial, but reading even well-written code can be like looking at cells of the human body with a microscope. It sometimes takes comments to really explain the big picture of how pieces of the system fit together, especially if it solves a really complex and difficult problem.
Think about special data structures. If all that computer scientists had ever published about data structures were well-written code, few would really understand the relative benefit of one data structure over another -- because Big-O runtime of any given operation is sometimes just not obvious from reading the code. That's where the math and amortized analysis presented in articles come in.

Are booleans as method arguments unacceptable? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
A colleague of mine states that booleans as method arguments are not acceptable. They shall be replaced by enumerations. At first I did not see any benefit, but he gave me an example.
What's easier to understand?
file.writeData( data, true );
Or
enum WriteMode {
Append,
Overwrite
};
file.writeData( data, Append );
Now I got it! ;-)
This is definitely an example where an enumeration as second parameter makes the code much more readable.
So, what's your opinion on this topic?
Boolean's represent "yes/no" choices. If you want to represent a "yes/no", then use a boolean, it should be self-explanatory.
But if it's a choice between two options, neither of which is clearly yes or no, then an enum can sometimes be more readable.
Enums also allow for future modifications, where you now want a third choice (or more).
Use the one that best models your problem. In the example you give, the enum is a better choice. However, there would be other times when a boolean is better. Which makes more sense to you:
lock.setIsLocked(True);
or
enum LockState { Locked, Unlocked };
lock.setLockState(Locked);
In this case, I might choose the boolean option since I think it's quite clear and unambiguous, and I'm pretty sure my lock is not going to have more than two states. Still, the second choice is valid, but unnecessarily complicated, IMHO.
To me, neither using boolean nor enumeration is a good approach. Robert C. Martin captures this very clearly in his Clean Code Tip #12: Eliminate Boolean Arguments:
Boolean arguments loudly declare that the function does more than one thing. They are confusing and should be eliminated.
If a method does more than one thing, you should rather write two different methods, for example in your case: file.append(data) and file.overwrite(data).
Using an enumeration doesn't make things clearer. It doesn't change anything, it's still a flag argument.
Remember the question Adlai Stevenson posed to ambassador Zorin at the U.N. during the cuban missile crisis?
"You are in the courtroom of world
opinion right now, and you can answer
yes or no. You have denied that [the missiles]
exist, and I want to know whether I
have understood you correctly.... I am
prepared to wait for my answer until
hell freezes over, if that's your
decision."
If the flag you have in your method is of such a nature that you can pin it down to a binary decision, and that decision will never turn into a three-way or n-way decision, go for boolean. Indications: your flag is called isXXX.
Don't make it boolean in case of something that is a mode switch. There is always one more mode than you thought of when writing the method in the first place.
The one-more-mode dilemma has e.g. haunted Unix, where the possible permission modes a file or directory can have today result in weird double meanings of modes depending on file type, ownership etc.
There are two reasons I've run into this being a bad thing:
Because some people will write methods like:
ProcessBatch(true, false, false, true, false, false, true);
This is obviously bad because it's too easy to mix up parameters, and you have no idea by looking at it what you're specifying. Just one bool isn't too bad though.
Because controlling program flow by a simple yes/no branch might mean you have two entirely different functions that are wrapped up into one in an awkard way. For instance:
public void Write(bool toOptical);
Really, this should be two methods
public void WriteOptical();
public void WriteMagnetic();
because the code in these might be entirely different; they might have to do all sorts of different error handling and validation, or maybe even have to format the outgoing data differently. You can't tell that just by using Write() or even Write(Enum.Optical) (though of course you could have either of those methods just call internal methods WriteOptical/Mag if you want).
I guess it just depends. I wouldn't make too big of a deal about it except for #1.
I think you almost answered this yourself, I think the end aim is to make the code more readable, and in this case the enum did that, IMO its always best to look at the end aim rather than blanket rules, maybe think of it more as a guideline i.e. enums are often more readable in code than generic bools, ints etc but there will always be exceptions to the rule.
Enums are better but I wouldn't call boolean params as "unacceptable". Sometimes it's just easier to throw one little boolean in and move on (think private methods etc.)
Booleans may be OK in languages that have named parameters, like Python and Objective-C, since the name can explain what the parameter does:
file.writeData(data, overwrite=true)
or:
[file writeData:data overwrite:YES]
Enums have a definite benefit, but you should't just go replacing all your booleans with enums. There are many places where true/false is actually the best way to represent what is going on.
However, using them as method arguments is a bit suspect, simply because you can't see without digging into things what they are supposed to do, as they let you see what the true/false actually means
[Edit for the current state in 2022]
In modern C#, or other languages that support this, the nicest way to do it is with named arguments:
var worker = new BackgroundWorker(workerReportsProgress: true);
If your language doesn't allow for named arguments, then you may find properties to be a reasonable solution as well
[Original Answer from 2008 left for posterity]
Properties (especially with C#3 object initializers) or keyword arguments (a la ruby or python) are a much better way to go where you'd otherwise use a boolean argument.
C# example:
var worker = new BackgroundWorker { WorkerReportsProgress = true };
Ruby example
validates_presence_of :name, :allow_nil => true
Python example
connect_to_database( persistent=true )
The only thing I can think of where a boolean method argument is the right thing to do is in java, where you don't have either properties or keyword arguments. This is one of the reasons I hate java :-(
I would not agree that it is a good rule. Obviously, Enum makes for a better explicit or verbose code at some instances, but as a rule it seems way over reaching.
First let me take your example:
The programmers responsibility (and ability) to write good code is not really jeopardized by having a Boolean parameter. In your example the programmer could have written just as verbose code by writing:
dim append as boolean = true
file.writeData( data, append );
or I prefer more general
dim shouldAppend as boolean = true
file.writeData( data, shouldAppend );
Second:
The Enum example you gave is only "better" because you are passing a CONST. Most likely in most application at least some if not most of the time parameters that are passed to functions are VARIABLES. in which case my second example (giving variables with good names) is much better and Enum would have given you little benefits.
While it is true that in many cases enums are more readable and more extensible than booleans, an absolute rule that "booleans are not acceptable" is daft. It is inflexible and counter-productive - it does not leave room for human judgement. They're a fundamental built in type in most languages because they're useful - consider applying it to other built-in-types: saying for instance "never use an int as a parameter" would just be crazy.
This rule is just a question of style, not of potential for bugs or runtime performance. A better rule would be "prefer enums to booleans for reasons of readability".
Look at the .Net framework. Booleans are used as parameters on quite a few methods. The .Net API is not perfect, but I don't think that the use of boolean as parameters is a big problem. The tooltip always gives you the name of the parameter, and you can build this kind of guidance too - fill in your XML comments on the method parameters, they will come up in the tooltip.
I should also add that there is a case when you should clearly refactor booleans to an enumeration - when you have two or more booleans on your class, or in your method params, and not all states are valid (e.g. it's not valid to have them both set true).
For instance, if your class has properties like
public bool IsFoo
public bool IsBar
And it's an error to have both of them true at the same time, what you've actually got is three valid states, better expressed as something like:
enum FooBarType { IsFoo, IsBar, IsNeither };
Some rules that your colleague might be better adhering to are:
Don't be dogmatic with your design.
Choose what fits most appropriately for the users of your code.
Don't try to bash star-shaped pegs into every hole just because you like the shape this month!
A Boolean would only be acceptable if you do not intend to extend the functionality of the framework. The Enum is preferred because you can extend the enum and not break previous implementations of the function call.
The other advantage of the Enum is that is easier to read.
If the method asks a question such as:
KeepWritingData (DataAvailable());
where
bool DataAvailable()
{
return true; //data is ALWAYS available!
}
void KeepWritingData (bool keepGoing)
{
if (keepGoing)
{
...
}
}
boolean method arguments seem to make absolutely perfect sense.
It depends on the method. If the method does something that is very obviously a true/false thing then it is fine, e.g. below [though not I am not saying this is the best design for this method, it's just an example of where the usage is obvious].
CommentService.SetApprovalStatus(commentId, false);
However in most cases, such as the example you mention, it is better to use an enumeration. There are many examples in the .NET Framework itself where this convention is not followed, but that is because they introduced this design guideline fairly late on in the cycle.
It does make things a bit more explicit, but does start to massively extend the complexity of your interfaces - in a sheer boolean choice such as appending/overwriting it seems like overkill. If you need to add a further option (which I can't think of in this case), you can always perform a refactor (depending on the language)
Enums can certainly make the code more readable. There are still a few things to watch out for (in .net at least)
Because the underlying storage of an enum is an int, the default value will be zero, so you should make sure that 0 is a sensible default. (E.g. structs have all fields set to zero when created, so there's no way to specify a default other than 0. If you don't have a 0 value, you can't even test the enum without casting to int, which would be bad style.)
If your enum's are private to your code (never exposed publicly) then you can stop reading here.
If your enums are published in any way to external code and/or are saved outside of the program, consider numbering them explicitly. The compiler automatically numbers them from 0, but if you rearrange your enums without giving them values you can end up with defects.
I can legally write
WriteMode illegalButWorks = (WriteMode)1000000;
file.Write( data, illegalButWorks );
To combat this, any code that consumes an enum that you can't be certain of (e.g. public API) needs to check if the enum is valid. You do this via
if (!Enum.IsDefined(typeof(WriteMode), userValue))
throw new ArgumentException("userValue");
The only caveat of Enum.IsDefined is that it uses reflection and is slower. It also suffers a versioning issue. If you need to check the enum value often, you would be better off the following:
public static bool CheckWriteModeEnumValue(WriteMode writeMode)
{
switch( writeMode )
{
case WriteMode.Append:
case WriteMode.OverWrite:
break;
default:
Debug.Assert(false, "The WriteMode '" + writeMode + "' is not valid.");
return false;
}
return true;
}
The versioning issue is that old code may only know how to handle the 2 enums you have. If you add a third value, Enum.IsDefined will be true, but the old code can't necessarily handle it. Whoops.
There's even more fun you can do with [Flags] enums, and the validation code for that is slightly different.
I'll also note that for portability, you should use call ToString() on the enum, and use Enum.Parse() when reading them back in. Both ToString() and Enum.Parse() can handle [Flags] enum's as well, so there's no reason not to use them. Mind you, it's yet another pitfall, because now you can't even change the name of the enum without possibly breaking code.
So, sometimes you need to weigh all of the above in when you ask yourself Can I get away with just an bool?
IMHO it seems like an enum would be the obvious choice for any situation where more than two options are possible. But there definitely ARE situations where a boolean is all you need. In that case I would say that using an enum where a bool would work would be an example of using 7 words when 4 will do.
Booleans make sense when you have an obvious toggle which can only be one of two things (i.e. the state of a light bulb, on or off). Other than that, it's good to write it in such a way that it's obvious what you're passing - e.g. disk writes - unbuffered, line-buffered, or synchronous - should be passed as such. Even if you don't want to allow synchronous writes now (and so you're limited to two options), it's worth considering making them more verbose for the purposes of knowing what they do at first glance.
That said, you can also use False and True (boolean 0 and 1) and then if you need more values later, expand the function out to support user-defined values (say, 2 and 3), and your old 0/1 values will port over nicely, so your code ought not to break.
Sometimes it's just simpler to model different behaviour with overloads. To continue from your example would be:
file.appendData( data );
file.overwriteData( data );
This approach degrades if you have multiple parameters, each allowing a fixed set of options. For example, a method that opens a file might have several permutations of file mode (open/create), file access (read/write), sharing mode (none/read/write). The total number of configurations is equal to the Cartesian products of the individual options. Naturally in such cases multiple overloads are not appropriate.
Enums can, in some cases make code more readable, although validating the exact enum value in some languages (C# for example) can be difficult.
Often a boolean parameter is appended to the list of parameters as a new overload. One example in .NET is:
Enum.Parse(str);
Enum.Parse(str, true); // ignore case
The latter overload became available in a later version of the .NET framework than the first.
If you know that there will only ever be two choices, a boolean might be fine. Enums are extensible in a way that won't break old code, although old libraries might not support new enum values so versioning cannot be completely disregarded.
EDIT
In newer versions of C# it's possible to use named arguments which, IMO, can make calling code clearer in the same way that enums can. Using the same example as above:
Enum.Parse(str, ignoreCase: true);
Where I do agree that Enums are good way to go, in methods where you have 2 options (and just two options you can have readability without enum.)
e.g.
public void writeData(Stream data, boolean is_overwrite)
Love the Enums, but boolean is useful too.
This is a late entry on an old post, and it's so far down the page that nobody will ever read it, but since nobody has said it already....
An inline comment goes a long way to solving the unexpected bool problem. The original example is particularly heinous: imagine trying to name the variable in the function declearation! It'd be something like
void writeData( DataObject data, bool use_append_mode );
But, for the sake of example, let's say that's the declaration. Then, for an otherwise unexplained boolean argument, I put the variable name in an inline comment. Compare
file.writeData( data, true );
with
file.writeData( data, true /* use_append_mode */);
It really depends on the exact nature of the argument. If it is not a yes/no or true/false then a enum makes it more readable. But with an enum you need to check the argument or have acceptable default behaviour since undefined values of the underlying type can be passed.
The use of enums instead of booleans in your example does help make the method call more readable. However, this is a substitute for my favorite wish item in C#, named arguments in method calls. This syntax:
var v = CallMethod(pData = data, pFileMode = WriteMode, pIsDirty = true);
would be perfectly readable, and you could then do what a programmer should do, which is choose the most appropriate type for each parameter in the method without regard to how it looks in the IDE.
C# 3.0 allows named arguments in constructors. I don't know why they can't do this with methods as well.
Booleans values true/false only. So it is not clear what it represent. Enum can have meaningful name, e.g OVERWRITE, APPEND, etc. So enums are better.

Why are all-caps constant considered bad coding style? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Closed 5 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Jeff finished his post talking about this, but I don't catch the idea.
So, why do you think this is a bad coding style?
EDIT:
I, as a lot of you, don't think that it is a bad coding style. But Jeff is far better programmer than me, and his point of view turned on lights on my head to get answering if I was wrong. I was a Delphi developer for some few years and am becoming a C# developer now, and in Delphi it was a common practice.
All caps is the traditional C designation of a preprocessor macro constant. It's very useful to have these in a different namespace from anything else, since the preprocessor will substitute wherever it finds the name, regardless of things like scope.
A constant in the sense that Jeff was using is, semantically, a variable that can't be changed. It obeys all scoping principles and everything, and is semantically identical to a non-const variable with the same value.
To put this another way,
#define max_length 5
is a problem because somebody might use max_length as a variable in a different context, where it would normally be safe, while
const int max_length = 5;
is simply a variable declaration. Therefore, there's an advantage in using
#define MAX_LENGTH 5
because the convention is that only preprocessor constants are all-caps, so it will not interfere with any other use.
You'll find that a lot of Jeff's statements are controversial first, with accuracy being a secondary concern. His blog wouldn't be that popular if he weren't occasionally inflammatory. (Consider the last line of Death to the Space Infidels, "That said, only a moron would use tabs to format their code.") It's honestly subjective. Don't take everything he says as True and Good -- it's not meant to be. If you disagree, go kick his ass in the comments, and see if he writes back. :)
I think ALL_CAPS_CONSTANTS are perfect: they're instantly recognizable and familiar. Part of my workplace's style guidelines (and we don't have that many) is to write all static constants in caps. Don't sweat it; just use whatever the rest of your team uses. Deciding on StudlyCaps vs. camelCase vs SCREAMING_CAPS is worth maybe 90 seconds discussion.
Screaming is fine. In the case of the constant it tells the reader
DONT THINK ABOUT CHANGING ME LATER IN
CODE
But I understand if soft programmers get offended.
Frankly, I don't think it is bad coding style. Indeed, even the official Java code style makes constants all capitals (http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html), as do other language conventions.
In theory, it's harder to read - we humans like to use the variable height of letters to increase reading speed (we can infer a lot of information from just rough word shape and the first/last letters). However, I don't have a problem with short, all capital phrases. It's hardly "shouting" (you compiler doesn't exactly care how rude you are), and clearly shows the names are potentially mutable, and those that are not.
I don't think it's bad coding style. Maybe old-fashioned, but not bad. It does make constants stand out from other variables.
The only compelling reason to me is consistency in style. For non-.NET languages like Java / C++, all-caps constants are certainly acceptable.
For C#, the standard is to use PascalCase, as noted here: C# naming convention for constants?
ALL CAPS IS LIKE SHOUTING AT SOMEONE.
IT ALSO MAKES THE CODE HARDER TO READ
Jeff has some additional things to say on this in the comments:
However on the other side and the reason I do still use the all caps and
underscore
Less code? That's a worthwhile cause
deserving of serious discussion.
But whether you call something "foo",
"Foo", "_foo", or "FOO"? Meh.
Naming conventions are highly
controversial and religious.
Developers should pick something they
like, something that's hopefully not
too much at odds with the "local
conventions", and just go with it. A
lot of discussion and hand-wringing
over naming isn't worthwhile.
That said, I think ALL CAPS IS REALLY
HARD TO READ!
I also use this for constants, but I also can understand why some people don't like it. It's a bit like writing everything in lowercase in german or other languages.
Well, there's the old readability issue. Normally-cased test is just easier to read.
There are exceptions, though. Languages like SQL are usually all upper-case (although case-insensitive).
Also, there are other uses, like to distinguish between "constants" and regular variables, which you'll see in a lot of languages like PHP, Python, etc., even though Jeff for some reason doesn't like that, and it is apparently against the C# code style guidelines.
So generally, I don't think it's wrong anywhere, but I do think that one should always try and follow the general best practises. When in Rome, do as the Romans – when coding Python, follow PEP 8 :)
FLIP THE QUESTION, WHY USE ALL CAPS?
I don't think that it is wrong. Mostly, it's a personal choice.
For your personal coding, do what you want.
For you professional coding, follow company policy.
Just like writing everything in bold is not a good idea
I remapped my capslock to a ctrl key (woo emacs!). So I think its bad style when I have to type 30-character names while holding down shift
Some people consider ALL CAPS to be "old school". Consider the difference between:
const string ErrorMessage = "Some error message.";
and
const string ERROR_MESSAGE = "Some error message.";
Both are completely usable, but the ALL CAPS version is less used by newer developers, such as the ones that started out with .NET.
I consider it a bad coding style if your team is using a different style. Other than that, I don't really care. At least when I see ALL CAPS in some shared code, I can guess that it's a constant.
#ck,
BECAUSE IT'S CONVENTION.
I use ALL_CAPS for macros and preprocessor symbols. So my pre-C99 C constants are ALL_CAPS, but not in any other language I know of.
Constants and CONSTANTS might differ. Use all-caps only when dealing with preprocessor, that being said for example in C++ it's recommended to avoid that and use const variable or constexpr which would be named just like any other variables (maybe with some prefix or something to make it clear that it's a constant but...).

Resources