Find the maximum depth of a set of intervals - algorithm

Given a set of intervals I, each element of the form [a_i, b_i], find an end point b_i of maximum depth in O(n*logn) time. Define depth of x as the number of intervals the point "stabs" (or intersects). If two end point have the same depth, return the smaller one.
Attempt:
I have no idea how to find it in O(n * logn) time. I understand the greedy algorithm for finding the stabbing set of a set of intervals, but finding an end point with strictly O(n * log n) time seems very different.
I can try and first sort the intervals and brute force a maximum depth end point but that does not guarantee O(n * log n) time.

You can try the following:
sort your points a_i and b_i (together in one array)
traversing the sorted array increase a counter (depth) when you encounter an "a" point (starting an interval) and decreases it for "b" point (end of an interval) - here you can find your "b" point with maximum depth

Related

Greedy Attempt for covering all the numbers with the given intervals

Let S be a set of intervals (containing n number of intervals) of the natural numbers that might overlap and N be a list of numbers (containing n number of numbers).
I want to find the smallest subset (let's call P) of S such that for each number
in our list N, there exists at least one interval in P that contains it. The intervals in P are allowed to overlap.
Trivial example:
S = {[1..4], [2..7], [3..5], [8..15], [9..13]}
N = [1, 4, 5]
// so P = {[1..4], [2..7]}
I think a dynamic algorithm might not work always, so if anybody knows of a solution to this problem (or a similar one that can be converted into), that would be great. I am trying to make a O(n^2 solution)
Here is one greedy approach
P = {}
for each q in N: // O(n)
if q in P // O(n)
continue
for each i in S // O(n)
if q in I: // O(n)
P.add(i)
break
But that is O(n^4).. Any help with creating a greedy approach that is O(n^2) would be great!
Thanks!
* Update: * I've been slamming at this problem and I think I have an O(n^2) solution!!
Let me know if you think I'm right!!!
N = MergeSort (N)
upper, lower = infinity, -1
P = empty set
for each q in N do
if (q>=lower and q<=upper)=False
max_interval = [-infinity, infinity]
for each r in S do
if q in r then
if r.rightEndPoint > max_interval.rightEndPoint
max_interval = r
P.append(max_interval)
lower = max_interval.leftEndPoint
upper = max_interval.rightEndPoint
S.remove(max_interval)
I think this should work!! I'm trying to find a counter solution; but yeah!!
This problem is similar to set cover problem, which is NP-complete (i.e., arguably has no solution faster than exponential). What makes it different is that intervals always cover adjacent elements (not arbitrary subset of N), which opens ways for faster solutions.
http://en.wikipedia.org/wiki/Set_cover_problem
I think that the solution proposed by Mike is good enough. But I think I have quite straightforward O(N^2) greedy algo. It starts like the Mike's one (moreover, I believe Mike's solution can also be improved in similar way):
You sort your N numbers and place them sorted into array ELEM; COMPLEXITY O(N*lg N);
Using binary search, for each interval S[i] you identify starting and ending index of elements in ELEM that are covered by S[i]. Say, you place this pair of numbers into array COVER, the difference between the two indices tells you how many elements you cover, for simplicity, let us place it array COVER_COUNT; COMPLEXITY O(N*lg N);
You introduce index pointer p, that shows till which element in ELEM, your N is already covered. you set p = 0, meaning that all elements up to 0-th (excluded) are initially covered (i.e., no elements); Complexity O(1). Moreover you introduce boolean array IS_INCLUDED, that reflects if interval S[i] is already included in your coverage set. Complexity O(N)
Then you start from the 0-th element in ELEM and see what is the interval that contains ELEM[0] and has greater coverage COVER_COUNT[i]. Imagine that it is i-th interval. We then mark it as included by setting IS_INCLUDED[i] to true. Then you set p to end[i] + 1 where end[i] is the ending index in COVER[i] pair (indeed now all elements til end[i] are covered). Then, knowing p you update all elements in COVER_COUNT so that they reflect how many elements of not yet covered elements each interval covers (this can be easily done in O(N) time). Then you perform the same step for ELEM[p] and continues till p >= ELEM.length. It can be observed that the overall complexity is O(N^2).
You finish in O(n^2) and in IS_INCLUDED has true for intervals of S included in optimal cover set
Let me know if this solution seems reasonable to you and if I calculated everything well.
P.S. Just wanted to add that the optimality of ythe solution found by algo can be proved by induction and contradiction. By contradiction, it is easy to show that at least one optimal solution includes the longest interval of those covering element ELEM[0]. If so, by induction we can show that for each next element in algo, we can keep on following the strategy of selelcting the interval that is the longest with respect to the number of remaining elements covered and that covers the leftmost yet uncovered element.
I am not sure, but mb some think like this.
1) For each interval create a list with elements from N witch contain in interval, it will take O(n^2) lets call it Q[i] for S[i]
2) Then sort our S by length of Q[i], O(n*lg(n))
3) Go throw this array excluding Q[i] from N O(n) and from Q[i+1]...Q[n] = O(n^2)
4) Repeat 2 while N is not empty.
It's not O(n^2), it's O(n^3) but if you can use hashmap, i think you can improve this.

Maximum non-overlapping intervals in a interval tree

Given a list of intervals of time, I need to find the set of maximum non-overlapping intervals.
For example,
if we have the following intervals:
[0600, 0830], [0800, 0900], [0900, 1100], [0900, 1130],
[1030, 1400], [1230, 1400]
Also it is given that time have to be in the range [0000, 2400].
The maximum non-overlapping set of intervals is [0600, 0830], [0900, 1130], [1230, 1400].
I understand that maximum set packing is NP-Complete. I want to confirm if my problem (with intervals containing only start and end time) is also NP-Complete.
And if so, is there a way to find an optimal solution in exponential time, but with smarter preprocessing and pruning data. Or if there is a relatively easy to implement fixed parameter tractable algorithm. I don't want to go for an approximation algorithm.
This is not a NP-Complete problem. I can think of an O(n * log(n)) algorithm using dynamic programming to solve this problem.
Suppose we have n intervals. Suppose the given range is S (in your case, S = [0000, 2400]). Either suppose all intervals are within S, or eliminate all intervals not within S in linear time.
Pre-process:
Sort all intervals by their begin points. Suppose we get an array A[n] of n intervals.
This step takes O(n * log(n)) time
For all end points of intervals, find the index of the smallest begin point that follows after it. Suppose we get an array Next[n] of n integers.
If such begin point does not exist for the end point of interval i, we may assign n to Next[i].
We can do this in O(n * log(n)) time by enumerating n end points of all intervals, and use a binary search to find the answer. Maybe there exists linear approach to solve this, but it doesn't matter, because the previous step already take O(n * log(n)) time.
DP:
Suppose the maximum non-overlapping intervals in range [A[i].begin, S.end] is f[i]. Then f[0] is the answer we want.
Also suppose f[n] = 0;
State transition equation:
f[i] = max{f[i+1], 1 + f[Next[i]]}
It is quite obvious that the DP step take linear time.
The above solution is the one I come up with at the first glance of the problem. After that, I also think out a greedy approach which is simpler (but not faster in the sense of big O notation):
(With the same notation and assumptions as the DP approach above)
Pre-process: Sort all intervals by their end points. Suppose we get an array B[n] of n intervals.
Greedy:
int ans = 0, cursor = S.begin;
for(int i = 0; i < n; i++){
if(B[i].begin >= cursor){
ans++;
cursor = B[i].end;
}
}
The above two solutions come out from my mind, but your problem is also referred as the activity selection problem, which can be found on Wikipedia http://en.wikipedia.org/wiki/Activity_selection_problem.
Also, Introduction to Algorithms discusses this problem in depth in 16.1.

A divide-and-conquer algorithm for counting dominating points?

Let's say that a point at coordinate (x1,y1) dominates another point (x2,y2) if x1 ≤ x2 and y1 ≤ y2;
I have a set of points (x1,y1) , ....(xn,yn) and I want to find the total number of dominating pairs. I can do this using brute force by comparing all points against one another, but this takes time O(n2). Instead, I'd like to use a divide-and-conquer approach to solve this in time O(n log n).
Right now, I have the following algorithm:
Draw a vertical line dividing the set of points points into two equal subsets of Pleft and Pright. As a base case, if there are just two points left, I can compare them directly.
Recursively count the number of dominating pairs in Pleft and Pright
Some conquer step?
The problem is that I can't see what the "conquer" step should be here. I want to count how many dominating pairs there are that cross from Pleft into Pright, but I don't know how to do that without comparing all the points in both parts, which would take time O(n2).
Can anyone give me a hint about how to do the conquer step?
so the 2 halves of y coordinates are : {1,3,4,5,5} and {5,8,9,10,12}
i draw the division line.
Suppose you sort the points in both halves separately in ascending order by their y coordinates. Now, look at the lowest y-valued point in both halves. If the lowest point on the left has a lower y value than the lowest point on the right, then that point is dominated by all points on the right. Otherwise, the bottom point on the right doesn't dominate anything on the left.
In either case, you can remove one point from one of the two halves and repeat the process with the remaining sorted lists. This does O(1) work per point, so if there are n total points, this does O(n) work (after sorting) to count the number of dominating pairs across the two halves. If you've seen it before, this is similar to the algorithm for counting inversions in an array).
Factoring in the time required to sort the points (O(n log n)), this conquer step takes O(n log n) time, giving the recurrence
T(n) = 2T(n / 2) + O(n log n)
This solves to O(n log2 n) according to the Master Theorem.
However, you can speed this up. Suppose that before you start the divide amd conquer step that you presort the points by their y coordinates, doing one pass of O(n log n) work. Using tricks similar to the closest pair of points problem, you can then get the points in each half sorted in O(n) time on each subproblem of size n (see the discussion at this bottom of this page) for details). That changes the recurrence to
T(n) = 2T(n / 2) + O(n)
Which solves to O(n log n), as required.
Hope this helps!
Well in this way you have O(n^2) just for division to subsets...
My approach would be different
sort points by X ... O(n.log(n))
now check for Y
but check only points with bigger X (if you sort them ascending then with larger index)
so now you have O(n.log(n)+(n.n/2))
You can also further speed things up by doing separate X and Y test and after that combine the result, that would leads O(n + 3.n.log(n))
add index attribute to your points
where index = 0xYYYYXXXXh is unsigned integer type
YYYY is index of point in Y-sorted array
XXXX is index of point in X-sorted array
if you have more than 2^16 points use bigger then 32-bit data-type.
sort points by ascending X and set XXXX part of their index O1(n.log(n))
sort points by ascending Y and set YYYY part of their index O2(n.log(n))
sort points by ascending index O3(n.log(n))
now point i dominates any point j if (i < j)
but if you need to create actually all the pairs for any point
that would take O4(n.n/2) so this approach will save not a bit of time
if you need just single pair for any point then simple loop will suffice O4(n-1)
so in this case O(n-1+3.n.log(n)) -> ~O(n+3.n.log(n))
hope it helped,... of course if you are stuck with that subdivision approach than i have no better solution for you.
PS. for this you do not need any additional recursion just 3x sorting and only one uint for any point so the memory requirements are not that big and even should be faster than recursive call to subdivision recursion in general
This algorithm runs in O(N*log(N)) where N is the size of the list of points and it uses O(1) extra space.
Perform the following steps:
Sort the list of points by y-coordinate (ascending order), break ties by
x-coordinate (ascending order).
Go through the sorted list in reverse order to count the dominating points:
if the current x-coordinate >= max x-coordinate value encountered so far
then increment the result and update the max.
This works since you know for sure that if all pairs with a greater y-coordinates have a smaller x-coordinate than the current point you have found a dominating points. The sorting step makes it really efficient.
Here's the Python code:
def my_cmp(p1, p2):
delta_y = p1[1] - p2[1]
if delta_y != 0:
return delta_y
return p1[0] - p2[0]
def count_dom_points(points):
points.sort(cmp = my_cmp)
maxi = float('-inf')
count = 0
for x, y in reversed(points):
if x >= maxi:
count += 1
maxi = x
return count

Algorithm to find 100 closest stars to the origin

First let me phrase the proper question:
Q: There is a file containing more than a million points (x,y) each of which represents a star. There is a planet earth at (a,b). Now, the task is to build an algorithm that would return the 100 closest stars to earth. What would be the time and space complexities of your algorithm.
This question has been asked many times in various interviews. I tried looking up the answers but could not find a satisfactory one.
One way to do it which I thought might be using a max heap of size 100. Calculate distances for each star and check if the distance is lesser than the root of the max heap. If yes, replace it with the root and call heapify.
Any other better/faster answers?
P.S: This is not a homework question.
You can actually do this in time O(n) and space O(k), where k is the number of closest points that you want, by using a very clever trick.
The selection problem is as follows: Given an array of elements and some index i, rearrange the elements of the array such that the ith element is in the right place, all elements smaller than the ith element are to the left, and all elements greater than the ith element are to the right. For example, given the array
40 10 00 30 20
If I tried to select based on index 2 (zero-indexed), one result might be
10 00 20 40 30
Since the element at index 2 (20) is in the right place, the elements to the left are smaller than 20, and the elements to the right are greater than 20.
It turns out that since this is a less strict requirement than actually sorting the array, it's possible to do this in time O(n), where n is the number of elements of the array. Doing so requires some complex algorithms like the median-of-medians algorithm, but is indeed O(n) time.
So how do you use this here? One option is to load all n elements from the file into an array, then use the selection algorithm to select the top k in O(n) time and O(n) space (here, k = 100).
But you can actually do better than this! For any constant k that you'd like, maintain a buffer of 2k elements. Load 2k elements from the file into the array, then use the selection algorithm to rearrange it so that the smallest k elements are in the left half of the array and the largest are in the right, then discard the largest k elements (they can't be any of the k closest points). Now, load k more elements from the file into the buffer and do this selection again, and repeat this until you've processed every line of the file. Each time you do a selection you discard the largest k elements in the buffer and retain the k closest points you've seen so far. Consequently, at the very end, you can select the top k elements one last time and find the top k.
What's the complexity of the new approach? Well, you're using O(k) memory for the buffer and the selection algorithm. You end up calling select on a buffer of size O(k) a total of O(n / k) times, since you call select after reading k new elements. Since select on a buffer of size O(k) takes time O(k), the total runtime here is O(n + k). If k = O(n) (a reasonable assumption), this takes time O(n), space O(k).
Hope this helps!
To elaborate on the MaxHeap solution you would build a max-heap with the first k elements from the file ( k = 100 in this case ).
The key for the max-heap would be its distance from Earth (a,b). Distance between 2 points on a 2d plane can be calculated using:
dist = (x1,y1) to (x2,y2) = square_root((x2 - x1)^2 + (y2 - y1)^2);
This would take O(k) time to construct. For every subsequent element from k to n. ie (n - k) elements you need to fetch its distance from earth and compare it with the top of max-heap. If the new element to be inserted is closer to earth than the top of the max-heap, replace the top of the max-heap and call heapify on the new root of the heap.
This would take O((n-k)logk) time to complete.
Finally we would be left with just the k elements in the max-heap. You can call heapify k times to return all these k elements. This is another O(klogk).
Overall time complexity would be O(k + (n-k)logk + klogk).
It's a famous question and there has been lot's of solution for that:
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
if you did not find it useful, there are some other resources such as Rurk's computational geometry book.
Your algorithm is correct. Just remember that time complexity of your program is O(n . log 100 ) = O(n), unless number of closest points to find can vary.
import sys,os,csv
iFile=open('./file_copd.out','rU')
earth = [0,0]
##getDistance return distance given two stars
def getDistance(star1,star2):
return sqrt((star1[0]-star2[0])**2 +(star1[1]-star2[1])**2 )
##diction dict_galaxy looks like this {key,distance} key is the seq assign to each star, value is a list [distance,its cordinance]
##{1,[distance1,[x,y]];2,[distance2,[x,y]]}
dict_galaxy={}
#list_galaxy=[]
count = 0
sour=iFile.readlines()
for line in sour:
star=line.split(',') ##Star is a list [x,y]
dict_galaxy[count]=[getDistance(earth,star),star]
count++
###Now sort this dictionary based on their distance, and return you a list of keys.
list_sorted_key = sorted(dict_galaxy,key=lambda x:dict_galaxy[x][0])
print 'is this what you want %s'%(list_sorted_key[:100].to_s)
iFile.close()

How to find k nearest neighbors to the median of n distinct numbers in O(n) time?

I can use the median of medians selection algorithm to find the median in O(n). Also, I know that after the algorithm is done, all the elements to the left of the median are less that the median and all the elements to the right are greater than the median. But how do I find the k nearest neighbors to the median in O(n) time?
If the median is n, the numbers to the left are less than n and the numbers to the right are greater than n.
However, the array is not sorted in the left or the right sides. The numbers are any set of distinct numbers given by the user.
The problem is from Introduction to Algorithms by Cormen, problem 9.3-7
No one seems to quite have this. Here's how to do it. First, find the median as described above. This is O(n). Now park the median at the end of the array, and subtract the median from every other element. Now find element k of the array (not including the last element), using the quick select algorithm again. This not only finds element k (in order), it also leaves the array so that the lowest k numbers are at the beginning of the array. These are the k closest to the median, once you add the median back in.
The median-of-medians probably doesn't help much in finding the nearest neighbours, at least for large n. True, you have each column of 5 partitioned around it's median, but this isn't enough ordering information to solve the problem.
I'd just treat the median as an intermediate result, and treat the nearest neighbours as a priority queue problem...
Once you have the median from the median-of-medians, keep a note of it's value.
Run the heapify algorithm on all your data - see Wikipedia - Binary Heap. In comparisons, base the result on the difference relative to that saved median value. The highest priority items are those with the lowest ABS(value - median). This takes O(n).
The first item in the array is now the median (or a duplicate of it), and the array has heap structure. Use the heap extract algorithm to pull out as many nearest-neighbours as you need. This is O(k log n) for k nearest neighbours.
So long as k is a constant, you get O(n) median of medians, O(n) heapify and O(log n) extracting, giving O(n) overall.
med=Select(A,1,n,n/2) //finds the median
for i=1 to n
B[i]=mod(A[i]-med)
q=Select(B,1,n,k) //get the kth smallest difference
j=0
for i=1 to n
if B[i]<=q
C[j]=A[i] //A[i], the real value should be assigned instead of B[i] which is only the difference between A[i] and median.
j++
return C
You can solve your problem like that:
You can find the median in O(n), w.g. using the O(n) nth_element algorithm.
You loop through all elements substutiting each with a pair:
the absolute difference to the median, element's value.
Once more you do nth_element with n = k. after applying this algorithm you are guaranteed to have the k smallest elements in absolute difference first in the new array. You take their indices and DONE!
Four Steps:
Use Median of medians to locate the median of the array - O(n)
Determine the absolute difference between the median and each element in the array and store them in a new array - O(n)
Use Quickselect or Introselect to pick k smallest elements out of the new array - O(k*n)
Retrieve the k nearest neighbours by indexing the original array - O(k)
When k is small enough, the overall time complexity becomes O(n).
Find the median in O(n). 2. create a new array, each element is the absolute value of the original value subtract the median 3. Find the kth smallest number in O(n) 4. The desired values are the elements whose absolute difference with the median is less than or equal to the kth smallest number in the new array.
You could use a non-comparison sort, such as a radix sort, on the list of numbers L, then find the k closest neighbors by considering windows of k elements and examining the window endpoints. Another way of stating "find the window" is find i that minimizes abs(L[(n-k)/2+i] - L[n/2]) + abs(L[(n+k)/2+i] - L[n/2]) (if k is odd) or abs(L[(n-k)/2+i] - L[n/2]) + abs(L[(n+k)/2+i+1] - L[n/2]) (if k is even). Combining the cases, abs(L[(n-k)/2+i] - L[n/2]) + abs(L[(n+k)/2+i+!(k&1)] - L[n/2]). A simple, O(k) way of finding the minimum is to start with i=0, then slide to the left or right, but you should be able to find the minimum in O(log(k)).
The expression you minimize comes from transforming L into another list, M, by taking the difference of each element from the median.
m=L[n/2]
M=abs(L-m)
i minimizes M[n/2-k/2+i] + M[n/2+k/2+i].
You already know how to find the median in O(n)
if the order does not matter, selection of k smallest can be done in O(n)
apply for k smallest to the rhs of the median and k largest to the lhs of the median
from wikipedia
function findFirstK(list, left, right, k)
if right > left
select pivotIndex between left and right
pivotNewIndex := partition(list, left, right, pivotIndex)
if pivotNewIndex > k // new condition
findFirstK(list, left, pivotNewIndex-1, k)
if pivotNewIndex < k
findFirstK(list, pivotNewIndex+1, right, k)
don't forget the special case where k==n return the original list
Actually, the answer is pretty simple. All we need to do is to select k elements with the smallest absolute differences from the median moving from m-1 to 0 and m+1 to n-1 when the median is at index m. We select the elements using the same idea we use in merging 2 sorted arrays.
If you know the index of the median, which should just be ceil(array.length/2) maybe, then it just should be a process of listing out n(x-k), n(x-k+1), ... , n(x), n(x+1), n(x+2), ... n(x+k)
where n is the array, x is the index of the median, and k is the number of neighbours you need.(maybe k/2, if you want total k, not k each side)
First select the median in O(n) time, using a standard algorithm of that complexity.
Then run through the list again, selecting the elements that are nearest to the median (by storing the best known candidates and comparing new values against these candidates, just like one would search for a maximum element).
In each step of this additional run through the list O(k) steps are needed, and since k is constant this is O(1). So the total for time needed for the additional run is O(n), as is the total runtime of the full algorithm.
Since all the elements are distinct, there can be atmost 2 elements with the same difference from the mean. I think it is easier for me to have 2 arrays A[k] and B[k] the index representing the absolute value of the difference from the mean. Now the task is to just fill up the arrays and choose k elements by reading the first k non empty values of the arrays reading A[i] and B[i] before A[i+1] and B[i+1]. This can be done in O(n) time.
All the answers suggesting to subtract the median from the array would produce incorrect results. This method will find the elements closest in value, not closest in position.
For example, if the array is 1,2,3,4,5,10,20,30,40. For k=2, the value returned would be (3,4); which is incorrect. The correct output should be (4,10) as they are the nearest neighbor.
The correct way to find the result would be using the selection algorithm to find upper and lower bound elements. Then by direct comparison find the remaining elements from the list.

Resources