I defined my knowledge base as:
edge(mammal,isa,animal).
edge(human,isa,mammal).
edge(simba,isa,human).
edge(animal,swim,bybirth).
edge(human,swim,mustlearn).
path(X,Y) :- edge(X,isa,Y).
path(X,Y) :- edge(X,isa,Z), path(Z,Y).
swim(X,Y) :- edge(X,swim,Y).
swim(X,Y) :- path(X,Z), swim(Z,Y).
Now, to use the above knowledge base, I use the following:
?- swim(simba,bybirth).
?- swim(simba,mustlearn).
And for both the queries, Prolog returns true. I want Prolog to check for the property swim locally first, then look at the direct parent, and so on in a hierarchical fashion. And it should stop searching as soon as we know that Simba "mustlearn" to swim, and shouldn't look any further. Thus, it should return false for the first query and true for the second.
I know it has to be done by limiting backtracking. I tried using the cut and not operators, but couldn't succeed. Is there a way to achieve this?
I tried it and ran into a problem too. I thought this might work:
swim(X,Y) :- once((edge(X,swim,Y); path(X,Z), swim(Z,Y))).
It doesn't work, because if Y is already instantiated on the way in, the first step will fail to unify and it will try the second route going through the human intermediate. So even though the query only produces one result, it can be fooled into producing swim(simba, bybirth). The solution is to force Prolog to commit to a binding on another variable and then check that binding after the commitment:
swim(X,Y) :-
once((edge(X,swim,Method); path(X,Z), swim(Z,Method))),
Method = Y.
This tells Prolog, there is only one way to get to this method, so find that method, and then it must be Y. If you find the wrong method, it won't go on a search, it will just fail. Try it!
Related
Apologies if this is a silly question, but I haven't been able to find an answer.
Suppose I have some predicate, proven_true(X), where X is some sort of factual statement like person(bob). Is there any way to tell Prolog that if proven_true(X) is true, then X itself is also true? Say I define proven_true(X) as
proven_true(X) :- condition_1(X), condition_2(X) ... condition_n(X).
and in my facts, all of the above conditions are true for X = person(bob). Then I not only want proven_true(person(bob)) to be true, but also person(bob) to be true.
Obviously for a specific X this would be doable, but I couldn't get it to work for variable X. My first try was something along the lines of
X :- f(x).
but that didn't work because I was treating the head of the rule itself as a variable.
Thanks in advance for any assistance!
Edit:
To clear up some confusion, suppose my code was:
proven_true(X) :- condition_1(X), condition_2(X).
condition_1(dog(fido)).
condition_2(dog(fido)).
Then I could query proven_true(dog(X)) and get fido, but if I queried dog(X), I wouldn't get a result. So if I then wanted to use the fact that fido is a dog as a condition for another rule, I'd have to wrap it in the proven_true() predicate, e.g.:
barks(X) :- proven_true(dog(X)).
What I would like is some way to have X always be true if proven_true(X) is also true. That way, I could write the above rule as
barks(X) :- dog(X).
For a specific term like dog(X), I could achieve this using
dog(X) :- proven_true(dog(X)).
but I'd like to be able to achieve it for all terms. Something like
X :- proven_true(X).
(although this doesn't work). Hopefully that clears up confusion.
You want asserta/1 or assertz/1. It will modify the Prolog database during run-time.
proven_true(X) :- condition_1(X), condition_2(X), assertz(X).
condition_1(dog(fido)).
condition_2(dog(fido)).
assertz adds the assertion at the end of the database.
I have this prolog program.
red(rose).
red(anthurium).
white(rose).
white(gardenia).
white(jasmine).
like(Y,X) :-
red(X),!,
fail
;
white(X).
And below is how it responds to different queries.
?- like(rose,gardenia).
true.
?- like(rose,P).
false.
?- like(Val,anthurium).
false.
?- like(rose,X).
false
The problem I now have is this:
When querying with a variable within the query (Eg: ?- like(rose,X).), Prolog usually responds by returning a value, (something like X=some_val). Why I don't get any value for those variables, but either true or false?
All helpful answers are highly appreciated. Thanks in advance.
Think about what Prolog is doing here:
like(rose,P) succeeds if red(P), so it grabs a possible substitution for P, namely rose or anthurium. Then it traverses the cut and then it fails. But "failing" means that the proof search down that path didn't bring any solution, there are no successful bindings to report (the only fail to get information out of a failing branch is to side-effect to a log file and read check it later). In fact, all bindings will be undone on backtracking. The second branch is white(X), but rose is not white, so we fail here, too.
You can also write:
like(_,X) :- \+ red(X).
like(_,X) :- white(X).
which is a bit more readable. One notices that when calling like(_,X), the goal enclosed by the negation-as-failure operator \+ is nonground. This is bad, and causes a floundering query (in other words, don't do that). I have written this little page on "floundering".
I am trying to implement a predicate replace(+OldFact,+NewFact)
which succeed only if the OldFact existed. If this succeeds then the
NewFact must be added to the set of clauses and the OldFact must be
deleted.
How do I do this?
I am not able to figure out clearly that how to achieve this
replacement using facts as well as how to use those assert and retract
database manipulation commands.
Thanks.
If I take the request at face value, you only need to use the predicates I mentioned in my comment. Your predicate would look something like this:
replace_existing_fact(OldFact, NewFact) :-
( call(OldFact)
-> retract(OldFact),
assertz(NewFact)
; true
).
I'm assuming that if the OldFact is not found, then you want the predicate simply to succeed. If failure of the predicate is acceptable if the old fact doesn't exist, this would be written simply:
replace_existing_fact(OldFact, NewFact) :-
call(OldFact),
retract(OldFact),
assertz(NewFact).
Note that if you have more than one same OldFact in the database, this predicate will backtrack for each one, replacing one occurrence on each backtrack. If you only want to replace one of them, you could use a cut:
replace_existing_fact(OldFact, NewFact) :-
call(OldFact), !, % Don't backtrack to find multiple instances of old fact
retract(OldFact),
assertz(NewFact).
Alternatively, if you want to replace each one without being prompted for backtracking:
replace_each_existing_fact(OldFact, NewFact) :-
forall(replace_existing_fact(OldFact, NewFact), true).
I am trying to get a predicate to relate from 1 fact to another fact and to keep going until a specified stopping point.
For example,
let's say I am doing a logistics record where I want to know who got a package from who, and where did they get it from until the end.
Prolog Code
mailRoom(m).
gotFrom(annie,brock).
gotFrom(brock,cara).
gotFrom(cara,daniel).
gotFrom(daniel,m).
gotFrom(X,Y) :- gotFrom(Y,_).
So what I am trying to do with the predicate gotFrom is for it to recursively go down the list from what ever point you start (ex: gotFrom(brock,Who)) and get to the end which is specified by m, which is the mail room.
Unfortunately when I run this predicate, it reads out,
Who = annie.
Who = brock.
Who = cara.
etc.etc....
I tried stepping through the whole thing but Im not sure where it goes from brock to annie, to cara and all the way down till it cycles through trues for infinity. I have a feeling that it has something to do with the wildcard in the function (_), but Im not sure how else I could express that part of the function in order for the predicate to search for the next fact in the program instead of skipping to the end.
I tried using a backcut (!) in my program but it gives me the same error.
Any help is greatly appreciated. I don't want code I just want to know what I am doing wrong so I can learn how to do it right.
Thanks.
I'm afraid this rule is meaningless:
gotFrom(X,Y) :- gotFrom(Y,_).
There is nothing here to constrain X or Y to any particular values. Also, the presence of singleton variable X and the anonymous variable _ means that basically anything will work. Try it:
?- gotFrom([1,2,3], dogbert).
true ;
true ;
What I think you're trying to establish here is some kind of transitive property. In that case, what you want is probably more like this:
gotFrom(X,Z) :- gotFrom(X, Y), gotFrom(Y, Z).
This produces an interesting result:
?- gotFrom(brock, Who).
Who = cara ;
Who = daniel ;
Who = m ;
ERROR: Out of local stack
The reason for the problem may not be immediately obvious. It's that there is unchecked recursion happening twice in that rule. We recursively unify gotFrom/2 and then we recursively unify it again. It would be better to break this into two predicates so that one of them can be used non-recursively.
got_directly_from(annie,brock).
got_directly_from(brock,cara).
got_directly_from(cara,daniel).
got_directly_from(daniel,m).
gotFrom(X,Y) :- got_directly_from(X, Y).
gotFrom(X,Z) :- got_directly_from(X, Y), gotFrom(Y, Z).
This gives us the desired behavior:
?- gotFrom(brock, Who).
Who = cara ;
Who = daniel ;
Who = m ;
false.
Notice this one is resilient to my attack of meaningless data:
?- gotFrom([1,2,3], dogbert).
false.
Some general advice:
Never ignore singleton variable warnings. They are almost always a bug.
Never introduce a cut when you don't understand what's going on. The cut should be used only where you understand the behavior first and you understand how the cut will affect it. Ideally, you should try to restrict yourself to green cuts—cuts that only affect performance and have no observable effects. If you don't understand what Prolog is up to, adding a red cut is just going to make your problems more complex.
I have a predicate "lookupOptions" which returns one by one some lists (Menus).
I'm trying to get it to satisfy the case of multiple inputs. I can return a single set of options as follows, by reading the head of the "list_places" list.
find_options(Restaurant,Town,Menu) :- lookupOptions(Restaurant,H,Menu), list_places(Town,[H|T])
But, I'm not able to get it to iterate.
I have tried a lot of things, these were my best efforts so far.
a) standard enough iteration, but it wont resolve ...
doStuff(X,[],_).
doStuff(Restaurant,[H|T],_):- lookupOptions(Resturant,H,_), doStuff(Restaurant,T,_).
find_options(Restaurant,Town,Menu) :- doStuff(Restaurant,[H|T],Menu), list_places(Town,[H|T]).
b) expanding the goal predicate ...
find_options(_,Town,[H|T],_)
find_options(Restaurant,Town,Menu) :- find_options(Restaurant,Town,[],Menu).
find_options(Restaurant,Town,X,Menu) :- list_places(Town,X).
find_options(Restaurant,Town,[H|T],Menu) :- lookupOptions(Restaurant,[H],Menu), find_options(Restaurant,Town,T,Menu).
Would either of these work ? if the pattern was written correctly. Or if there was an appropriate cut put in place?
Any help most appreciated ...
It's no clear on what you want iterate. Prolog uses backtracking to examine all alternatives, then you should start backtracking if you are after some alternative, or use the all solutions family.
Now I think you want simply declare there could be more find_options(Restaurant,Town,Menu). Then try replacing the head match [H|T] with this:
find_options(Restaurant,Town,Menu) :-
lookupOptions(Restaurant,H,Menu),
list_places(Town, Places),
member(H, Places).
BTW T is a singleton in your original rule. This could be a hint for the need of generalize it.