bash "$#" not working with arguments starting with '-' - bash

I am working on an option driven bash script that will use getopts. The script has cases where it can accept multiple options and specific cases where only one option is accepted. While testing a few cases out I ran into this issue which I have reduced down to pseudo-code for this question.
for arg in "$#"; do
echo ${arg}
done
echo "end"
Running below returns:
$ ./test.sh -a -b
-a
end
I am running bash 4.1.2, why isn't the -b returned on the empty line? I assume this has to do with the '-'.

I cannot reproduce your exact error, but this is the risk of using echo: if $arg is a valid option, it will be treated as such, not a string to print. Use printf instead:
printf '%s\n' "$arg"

Also check if you have applied any "shift" commands that might remove the arguments before you test then (typical in a argument collection block that might include a case statement)

Related

What shellenv command does? [duplicate]

After reading the Bash man pages and with respect to this post, I am still having trouble understanding what exactly the eval command does and which would be its typical uses.
For example, if we do:
$ set -- one two three # Sets $1 $2 $3
$ echo $1
one
$ n=1
$ echo ${$n} ## First attempt to echo $1 using brackets fails
bash: ${$n}: bad substitution
$ echo $($n) ## Second attempt to echo $1 using parentheses fails
bash: 1: command not found
$ eval echo \${$n} ## Third attempt to echo $1 using 'eval' succeeds
one
What exactly is happening here and how do the dollar sign and the backslash tie into the problem?
eval takes a string as its argument, and evaluates it as if you'd typed that string on a command line. (If you pass several arguments, they are first joined with spaces between them.)
${$n} is a syntax error in bash. Inside the braces, you can only have a variable name, with some possible prefix and suffixes, but you can't have arbitrary bash syntax and in particular you can't use variable expansion. There is a way of saying “the value of the variable whose name is in this variable”, though:
echo ${!n}
one
$(…) runs the command specified inside the parentheses in a subshell (i.e. in a separate process that inherits all settings such as variable values from the current shell), and gathers its output. So echo $($n) runs $n as a shell command, and displays its output. Since $n evaluates to 1, $($n) attempts to run the command 1, which does not exist.
eval echo \${$n} runs the parameters passed to eval. After expansion, the parameters are echo and ${1}. So eval echo \${$n} runs the command echo ${1}.
Note that most of the time, you must use double quotes around variable substitutions and command substitutions (i.e. anytime there's a $): "$foo", "$(foo)". Always put double quotes around variable and command substitutions, unless you know you need to leave them off. Without the double quotes, the shell performs field splitting (i.e. it splits value of the variable or the output from the command into separate words) and then treats each word as a wildcard pattern. For example:
$ ls
file1 file2 otherfile
$ set -- 'f* *'
$ echo "$1"
f* *
$ echo $1
file1 file2 file1 file2 otherfile
$ n=1
$ eval echo \${$n}
file1 file2 file1 file2 otherfile
$eval echo \"\${$n}\"
f* *
$ echo "${!n}"
f* *
eval is not used very often. In some shells, the most common use is to obtain the value of a variable whose name is not known until runtime. In bash, this is not necessary thanks to the ${!VAR} syntax. eval is still useful when you need to construct a longer command containing operators, reserved words, etc.
Simply think of eval as "evaluating your expression one additional time before execution"
eval echo \${$n} becomes echo $1 after the first round of evaluation. Three changes to notice:
The \$ became $ (The backslash is needed, otherwise it tries to evaluate ${$n}, which means a variable named {$n}, which is not allowed)
$n was evaluated to 1
The eval disappeared
In the second round, it is basically echo $1 which can be directly executed.
So eval <some command> will first evaluate <some command> (by evaluate here I mean substitute variables, replace escaped characters with the correct ones etc.), and then run the resultant expression once again.
eval is used when you want to dynamically create variables, or to read outputs from programs specifically designed to be read like this. See Eval command and security issues for examples. The link also contains some typical ways in which eval is used, and the risks associated with it.
In my experience, a "typical" use of eval is for running commands that generate shell commands to set environment variables.
Perhaps you have a system that uses a collection of environment variables, and you have a script or program that determines which ones should be set and their values. Whenever you run a script or program, it runs in a forked process, so anything it does directly to environment variables is lost when it exits. But that script or program can send the export commands to standard output.
Without eval, you would need to redirect standard output to a temporary file, source the temporary file, and then delete it. With eval, you can just:
eval "$(script-or-program)"
Note the quotes are important. Take this (contrived) example:
# activate.sh
echo 'I got activated!'
# test.py
print("export foo=bar/baz/womp")
print(". activate.sh")
$ eval $(python test.py)
bash: export: `.': not a valid identifier
bash: export: `activate.sh': not a valid identifier
$ eval "$(python test.py)"
I got activated!
The eval statement tells the shell to take eval’s arguments as commands and run them through the command-line. It is useful in a situation like below:
In your script if you are defining a command into a variable and later on you want to use that command then you should use eval:
a="ls | more"
$a
Output:
bash: command not found: ls | more
The above command didn't work as ls tried to list file with name pipe (|) and more. But these files are not there:
eval $a
Output:
file.txt
mailids
remote_cmd.sh
sample.txt
tmp
Update: Some people say one should -never- use eval. I disagree. I think the risk arises when corrupt input can be passed to eval. However there are many common situations where that is not a risk, and therefore it is worth knowing how to use eval in any case. This stackoverflow answer explains the risks of eval and alternatives to eval. Ultimately it is up to the user to determine if/when eval is safe and efficient to use.
The bash eval statement allows you to execute lines of code calculated or acquired, by your bash script.
Perhaps the most straightforward example would be a bash program that opens another bash script as a text file, reads each line of text, and uses eval to execute them in order. That's essentially the same behavior as the bash source statement, which is what one would use, unless it was necessary to perform some kind of transformation (e.g. filtering or substitution) on the content of the imported script.
I rarely have needed eval, but I have found it useful to read or write variables whose names were contained in strings assigned to other variables. For example, to perform actions on sets of variables, while keeping the code footprint small and avoiding redundancy.
eval is conceptually simple. However, the strict syntax of the bash language, and the bash interpreter's parsing order can be nuanced and make eval appear cryptic and difficult to use or understand. Here are the essentials:
The argument passed to eval is a string expression that is calculated at runtime. eval will execute the final parsed result of its argument as an actual line of code in your script.
Syntax and parsing order are stringent. If the result isn't an executable line of bash code, in scope of your script, the program will crash on the eval statement as it tries to execute garbage.
When testing you can replace the eval statement with echo and look at what is displayed. If it is legitimate code in the current context, running it through eval will work.
The following examples may help clarify how eval works...
Example 1:
eval statement in front of 'normal' code is a NOP
$ eval a=b
$ eval echo $a
b
In the above example, the first eval statements has no purpose and can be eliminated. eval is pointless in the first line because there is no dynamic aspect to the code, i.e. it already parsed into the final lines of bash code, thus it would be identical as a normal statement of code in the bash script. The 2nd eval is pointless too, because, although there is a parsing step converting $a to its literal string equivalent, there is no indirection (e.g. no referencing via string value of an actual bash noun or bash-held script variable), so it would behave identically as a line of code without the eval prefix.
Example 2:
Perform var assignment using var names passed as string values.
$ key="mykey"
$ val="myval"
$ eval $key=$val
$ echo $mykey
myval
If you were to echo $key=$val, the output would be:
mykey=myval
That, being the final result of string parsing, is what will be executed by eval, hence the result of the echo statement at the end...
Example 3:
Adding more indirection to Example 2
$ keyA="keyB"
$ valA="valB"
$ keyB="that"
$ valB="amazing"
$ eval eval \$$keyA=\$$valA
$ echo $that
amazing
The above is a bit more complicated than the previous example, relying more heavily on the parsing-order and peculiarities of bash. The eval line would roughly get parsed internally in the following order (note the following statements are pseudocode, not real code, just to attempt to show how the statement would get broken down into steps internally to arrive at the final result).
eval eval \$$keyA=\$$valA # substitution of $keyA and $valA by interpreter
eval eval \$keyB=\$valB # convert '$' + name-strings to real vars by eval
eval $keyB=$valB # substitution of $keyB and $valB by interpreter
eval that=amazing # execute string literal 'that=amazing' by eval
If the assumed parsing order doesn't explain what eval is doing enough, the third example may describe the parsing in more detail to help clarify what is going on.
Example 4:
Discover whether vars, whose names are contained in strings, themselves contain string values.
a="User-provided"
b="Another user-provided optional value"
c=""
myvarname_a="a"
myvarname_b="b"
myvarname_c="c"
for varname in "myvarname_a" "myvarname_b" "myvarname_c"; do
eval varval=\$$varname
if [ -z "$varval" ]; then
read -p "$varname? " $varname
fi
done
In the first iteration:
varname="myvarname_a"
Bash parses the argument to eval, and eval sees literally this at runtime:
eval varval=\$$myvarname_a
The following pseudocode attempts to illustrate how bash interprets the above line of real code, to arrive at the final value executed by eval. (the following lines descriptive, not exact bash code):
1. eval varval="\$" + "$varname" # This substitution resolved in eval statement
2. .................. "$myvarname_a" # $myvarname_a previously resolved by for-loop
3. .................. "a" # ... to this value
4. eval "varval=$a" # This requires one more parsing step
5. eval varval="User-provided" # Final result of parsing (eval executes this)
Once all the parsing is done, the result is what is executed, and its effect is obvious, demonstrating there is nothing particularly mysterious about eval itself, and the complexity is in the parsing of its argument.
varval="User-provided"
The remaining code in the example above simply tests to see if the value assigned to $varval is null, and, if so, prompts the user to provide a value.
I originally intentionally never learned how to use eval, because most people will recommend to stay away from it like the plague. However I recently discovered a use case that made me facepalm for not recognizing it sooner.
If you have cron jobs that you want to run interactively to test, you might view the contents of the file with cat, and copy and paste the cron job to run it. Unfortunately, this involves touching the mouse, which is a sin in my book.
Lets say you have a cron job at /etc/cron.d/repeatme with the contents:
*/10 * * * * root program arg1 arg2
You cant execute this as a script with all the junk in front of it, but we can use cut to get rid of all the junk, wrap it in a subshell, and execute the string with eval
eval $( cut -d ' ' -f 6- /etc/cron.d/repeatme)
The cut command only prints out the 6th field of the file, delimited by spaces. Eval then executes that command.
I used a cron job here as an example, but the concept is to format text from stdout, and then evaluate that text.
The use of eval in this case is not insecure, because we know exactly what we will be evaluating before hand.
I've recently had to use eval to force multiple brace expansions to be evaluated in the order I needed. Bash does multiple brace expansions from left to right, so
xargs -I_ cat _/{11..15}/{8..5}.jpg
expands to
xargs -I_ cat _/11/8.jpg _/11/7.jpg _/11/6.jpg _/11/5.jpg _/12/8.jpg _/12/7.jpg _/12/6.jpg _/12/5.jpg _/13/8.jpg _/13/7.jpg _/13/6.jpg _/13/5.jpg _/14/8.jpg _/14/7.jpg _/14/6.jpg _/14/5.jpg _/15/8.jpg _/15/7.jpg _/15/6.jpg _/15/5.jpg
but I needed the second brace expansion done first, yielding
xargs -I_ cat _/11/8.jpg _/12/8.jpg _/13/8.jpg _/14/8.jpg _/15/8.jpg _/11/7.jpg _/12/7.jpg _/13/7.jpg _/14/7.jpg _/15/7.jpg _/11/6.jpg _/12/6.jpg _/13/6.jpg _/14/6.jpg _/15/6.jpg _/11/5.jpg _/12/5.jpg _/13/5.jpg _/14/5.jpg _/15/5.jpg
The best I could come up with to do that was
xargs -I_ cat $(eval echo _/'{11..15}'/{8..5}.jpg)
This works because the single quotes protect the first set of braces from expansion during the parsing of the eval command line, leaving them to be expanded by the subshell invoked by eval.
There may be some cunning scheme involving nested brace expansions that allows this to happen in one step, but if there is I'm too old and stupid to see it.
You asked about typical uses.
One common complaint about shell scripting is that you (allegedly) can't pass by reference to get values back out of functions.
But actually, via "eval", you can pass by reference. The callee can pass back a list of variable assignments to be evaluated by the caller. It is pass by reference because the caller can allowed to specify the name(s) of the result variable(s) - see example below. Error results can be passed back standard names like errno and errstr.
Here is an example of passing by reference in bash:
#!/bin/bash
isint()
{
re='^[-]?[0-9]+$'
[[ $1 =~ $re ]]
}
#args 1: name of result variable, 2: first addend, 3: second addend
iadd()
{
if isint ${2} && isint ${3} ; then
echo "$1=$((${2}+${3}));errno=0"
return 0
else
echo "errstr=\"Error: non-integer argument to iadd $*\" ; errno=329"
return 1
fi
}
var=1
echo "[1] var=$var"
eval $(iadd var A B)
if [[ $errno -ne 0 ]]; then
echo "errstr=$errstr"
echo "errno=$errno"
fi
echo "[2] var=$var (unchanged after error)"
eval $(iadd var $var 1)
if [[ $errno -ne 0 ]]; then
echo "errstr=$errstr"
echo "errno=$errno"
fi
echo "[3] var=$var (successfully changed)"
The output looks like this:
[1] var=1
errstr=Error: non-integer argument to iadd var A B
errno=329
[2] var=1 (unchanged after error)
[3] var=2 (successfully changed)
There is almost unlimited band width in that text output! And there are more possibilities if the multiple output lines are used: e.g., the first line could be used for variable assignments, the second for continuous 'stream of thought', but that's beyond the scope of this post.
In the question:
who | grep $(tty | sed s:/dev/::)
outputs errors claiming that files a and tty do not exist. I understood this to mean that tty is not being interpreted before execution of grep, but instead that bash passed tty as a parameter to grep, which interpreted it as a file name.
There is also a situation of nested redirection, which should be handled by matched parentheses which should specify a child process, but bash is primitively a word separator, creating parameters to be sent to a program, therefore parentheses are not matched first, but interpreted as seen.
I got specific with grep, and specified the file as a parameter instead of using a pipe. I also simplified the base command, passing output from a command as a file, so that i/o piping would not be nested:
grep $(tty | sed s:/dev/::) <(who)
works well.
who | grep $(echo pts/3)
is not really desired, but eliminates the nested pipe and also works well.
In conclusion, bash does not seem to like nested pipping. It is important to understand that bash is not a new-wave program written in a recursive manner. Instead, bash is an old 1,2,3 program, which has been appended with features. For purposes of assuring backward compatibility, the initial manner of interpretation has never been modified. If bash was rewritten to first match parentheses, how many bugs would be introduced into how many bash programs? Many programmers love to be cryptic.
As clearlight has said, "(p)erhaps the most straightforward example would be a bash program that opens another bash script as a text file, reads each line of text, and uses eval to execute them in order". I'm no expert, but the textbook I'm currently reading (Shell-Programmierung by Jürgen Wolf) points to one particular use of this that I think would be a valuable addition to the set of potential use cases collected here.
For debugging purposes, you may want to go through your script line by line (pressing Enter for each step). You could use eval to execute every line by trapping the DEBUG signal (which I think is sent after every line):
trap 'printf "$LINENO :-> " ; read line ; eval $line' DEBUG
I like the "evaluating your expression one additional time before execution" answer, and would like to clarify with another example.
var="\"par1 par2\""
echo $var # prints nicely "par1 par2"
function cntpars() {
echo " > Count: $#"
echo " > Pars : $*"
echo " > par1 : $1"
echo " > par2 : $2"
if [[ $# = 1 && $1 = "par1 par2" ]]; then
echo " > PASS"
else
echo " > FAIL"
return 1
fi
}
# Option 1: Will Pass
echo "eval \"cntpars \$var\""
eval "cntpars $var"
# Option 2: Will Fail, with curious results
echo "cntpars \$var"
cntpars $var
The curious results in option 2 are that we would have passed two parameters as follows:
First parameter: "par1
Second parameter: par2"
How is that for counter intuitive? The additional eval will fix that.
It was adapted from another answer on How can I reference a file for variables using Bash?

What is the meaning of "${psql[#]}" in this script?

I came across a script that is supposed to set up postgis in a docker container, but it references this "${psql[#]}" command in several places:
#!/bin/sh
# Perform all actions as $POSTGRES_USER
export PGUSER="$POSTGRES_USER"
# Create the 'template_postgis' template db
"${psql[#]}" <<- 'EOSQL'
CREATE DATABASE template_postgis;
UPDATE pg_database SET datistemplate = TRUE WHERE datname = 'template_postgis';
EOSQL
I'm guessing it's supposed to use the psql command, but the command is always empty so it gives an error. Replacing it with psql makes the script run as expected. Is my guess correct?
Edit: In case it's important, the command is being run in a container based on postgres:11-alpine.
$psql is supposed to be an array containing the psql command and its arguments.
The script is apparently expected to be run from here, which does
psql=( psql -v ON_ERROR_STOP=1 --username "$POSTGRES_USER" --no-password )
and later sources the script in this loop:
for f in /docker-entrypoint-initdb.d/*; do
case "$f" in
*.sh)
# https://github.com/docker-library/postgres/issues/450#issuecomment-393167936
# https://github.com/docker-library/postgres/pull/452
if [ -x "$f" ]; then
echo "$0: running $f"
"$f"
else
echo "$0: sourcing $f"
. "$f"
fi
;;
*.sql) echo "$0: running $f"; "${psql[#]}" -f "$f"; echo ;;
*.sql.gz) echo "$0: running $f"; gunzip -c "$f" | "${psql[#]}"; echo ;;
*) echo "$0: ignoring $f" ;;
esac
echo
done
See Setting an argument with bash for the reason to use an array rather than a string.
The #!/bin/sh and the [#] are incongruous. This is a bash-ism, where the psql variable is an array. This literal quote dollarsign psql bracket at bracket quote is expanded into "psql" "array" "values" "each" "listed" "and" "quoted" "separately." It's the safer way, e.g., to accumulate arguments to a command where any of them might have spaces in them.
psql=(/foo/psql arg arg arg) is the best way to define the array you need there.
It might look obscure, but it would work like so...
Let's say we have a bash array wc, which contains a command wc, and an argument -w, and we feed that a here document with some words:
wc=(wc -w)
"${wc[#]}" <<- words
one
two three
four
words
Since there are four words in the here document, the output is:
4
In the quoted code, there needs to be some prior point, (perhaps a calling script), that does something like:
psql=(psql -option1 -option2 arg1 arg2 ... )
As to why the programmer chose to invoke a command with an array, rather than just invoke the command, I can only guess... Maybe it's a crude sort of operator overloading to compensate for different *nix distros, (i.e. BSD vs. Linux), where the local variants of some necessary command might have different names from the same option, or even use different commands. So one might check for BSD or Linux or a given version, and reset psql accordingly.
The answer from #Barmar is correct.
The script was intended to be "sourced" and not "executed".
I faced the same problem and came to the same answer after I read that it had been reported here and fixed by "chmod".
https://github.com/postgis/docker-postgis/issues/119
Therefore, the fix is to change the permissions.
This can be done either in your git repository:
chmod -x initdb-postgis.sh
or add a line to your docker file.
RUN chmod -x /docker-entrypoint-initdb.d/10_postgis.sh
I like to do both so that it is clear to others.
Note: if you are using git on windows then permission can be lost. Therefore, "chmod" in the docker file is needed.

Store a command in a variable; implement without `eval`

This is almost the exact same question as in this post, except that I do not want to use eval.
Quick question short, I want to execute the command echo aaa | grep a by first storing it in a string variable Command='echo aaa | grep a', and then running it without using eval.
In the post above, the selected answer used eval. That works for me too. What concerns me a lot is that there are plenty of warnings about eval below, followed by some attempts to circumvent it. However, none of them are able to solve my problem (essentially the OP's). I have commented below their attempts, but since it has been there for a long time, I suppose it is better to post the question again with the restriction of not using eval.
Concrete Example
What I want is a shell script that runs my command when I am happy:
#!/bin/bash
# This script run-this-if.sh runs the commands when I am happy
# Warning: the following script does not work (on nose)
if [ "$1" == "I-am-happy" ]; then
"$2"
fi
$ run-if.sh I-am-happy [insert-any-command]
Your sample usage can't ever work with an assignment, because assignments are scoped to the current process and its children. Because there's no reason to try to support assignments, things get suddenly far easier:
#!/bin/sh
if [ "$1" = "I-am-happy" ]; then
shift; "$#"
fi
This then can later use all the usual techniques to run shell pipelines, such as:
run-if-happy "$happiness" \
sh -c 'echo "$1" | grep "$2"' _ "$untrustedStringOne" "$untrustedStringTwo"
Note that we're passing the execve() syscall an argv with six elements:
sh (the shell to run; change to bash etc if preferred)
-c (telling the shell that the following argument is the code for it to run)
echo "$1" | grep "$2" (the code for sh to parse)
_ (a constant which becomes $0)
...whatever the shell variable untrustedStringOne contains... (which becomes $1)
...whatever the shell variable untrustedStringTwo contains... (which becomes $2)
Note here that echo "$1" | grep "$2" is a constant string -- in single-quotes, with no parameter expansions or command substitutions -- and that untrusted values are passed into the slots that fill in $1 and $2, out-of-band from the code being evaluated; this is essential to have any kind of increase in security over what eval would give you.

How to iterate over double-quoted strings in POSIX shell?

I am trying to check if all the non POSIX commands that my script depends on are present before my script proceeds with its main job. This will help me to ensure that my script does not generate errors later due to missing commands.
I want to keep the list of all such non POSIX commands in a variable called DEPS so that as the script evolves and depends on more commands, I can edit this variable.
I want the script to support commands with spaces in them, e.g. my program.
This is my script.
#!/bin/sh
DEPS='ssh scp "my program" sftp'
for i in $DEPS
do
echo "Checking $i ..."
if ! command -v "$i"
then
echo "Error: $i not found"
else
echo "Success: $i found"
fi
echo
done
However, this doesn't work, because "my program" is split into two words while the for loop iterates: "my and program" as you can see in the output below.
# sh foo.sh
Checking ssh ...
/usr/bin/ssh
Success: ssh found
Checking scp ...
/usr/bin/scp
Success: scp found
Checking "my ...
Error: "my not found
Checking program" ...
Error: program" not found
Checking sftp ...
/usr/bin/sftp
Success: sftp found
The output I expected is:
# sh foo.sh
Checking ssh ...
/usr/bin/ssh
Success: ssh found
Checking scp ...
/usr/bin/scp
Success: scp found
Checking my program ...
Error: my program not found
Checking sftp ...
/usr/bin/sftp
Success: sftp found
How can I solve this problem while keeping the script POSIX compliant?
I'll repeat the answer I gave to your previous question: use a while loop with a here document rather than a for loop. You can embed newlines in a string, which is all you need to separate command names in a string if those command names might contain whitespace. (If your command names contain newlines, strongly consider renaming them.)
For maximum POSIX compatibility, use printf, since the POSIX specification of echo is remarkably lax due to differences in how echo was implemented in various shells prior to the definition of the standard.
deps="ssh
scp
my program
sftp
"
while read -r cmd; do
printf "Checking $cmd ...\n"
if ! command -v "$cmd"; then
printf "Error: $i not found\n"
else
printf "Success: $cmd found\n"
fi
printf "\n"
done <<EOF
$deps
EOF
This happens because the steps after parameter expansion are string-splitting and glob-expansion -- not syntax-level parsing (such as handling quoting). To go all the way back to the beginning of the parsing process, you need to use eval.
Frankly, the best approaches are to either:
Target a shell that supports arrays (ksh, bash, zsh, etc) rather than trying to support POSIX
Don't try to retrieve the value from a variable.
...there's a reason proper array support is ubiquitous in modern shells; writing unambiguously correct code, particularly when handling untrusted data, is much harder without it.
That said, you have the option of using $# to store your contents, which can be set, albeit dangerously, using eval:
deps='goodbye "cruel world"'
eval "set -- $deps"
for program; do
echo "processing $program"
done
If you do this inside of a function, you'll override only the function's argument list, leaving the global list unmodified.
Alternately, eval "yourfunction $deps" will have the same effect, setting the argument list within the function to the results of running all the usual parsing and expansion phases on the contents of $deps.
Because the script is in your controll, you can use the eval with reasonable safety, so #Charles Duffy's answer is an simple and good solution. Use it. :)
Also, consider to use the autoconf for generating the usual configure script what is doing good job for what you need - e.g. checking commands and much more... At least, check some configure scripts for ideas how to solvle common problems...
If you want play with your own implementation:
divide the dependecies into two groups
core_deps - unix tools, what are commonly needed for the script itself, like sed, cat cp and such. Those programs doesn't contains spaces in their names, nor in the $PATH.
runtime_deps - programs, what are needed for your application, but not for the script itself.
do the checks in two steps (or more, for example if you need check e.g. libraries)
never use the for loop for space delimited elements unless you getting them as the function arguments - so you can use the "$#"
As starting script could be something like the following:
_check_core_deps() {
for _cmd
do
_cpath=$(command -v "$_cmd")
case "$_cpath" in
/*) continue;;
*) echo "Missing install dependency [$_cmd] - can't continue" ; exit 1 ;;
esac
done
return 0
}
core_deps="grep sed hooloovoo cp" #list of "core" commands - they doesn't contains spaces
_check_core_deps $core_deps || exit 1
The above will blow up on non-existent "hooloovoo" command. :)
Now you can safely continue, all core commands needed for the install script are available. In the next step, you can check other strange dependencies.
Some ideas:
# function what returns your dependecies as lines from HEREDOC
# (e.g. could contain any character except "\n")
# you can decorate the dependecies with comments...
# because we have sed (checked in the 1st step, can use it)
# if want, you can add "fields" too, for some extended functinality with an specified delimiter
list_deps() {
_sptab=$(printf " \t") # the $' \t' is approved by POSIX for the next version only
#the "sed" removes comments and empty lines
#the UUOC (useless use of cat) is intentional here
#for example if you want add "tr" before the "sed"
#of course, you can remove it...
cat - <<DEPS |sed "s/[$_sptab]*#.*//;/^[$_sptab]*$/d"
########## DEPENDECIES ############
#some comment
ssh
scp
sftp
#comment
#bla bla
my program #some comment
/Applications/Some Long And Spaced OSX Apllication.app
DEPS
########## END of DEPENDECIES #####
}
_check_deps() {
#in the "while" loop you can use IFS=: or such and adding anouter variable to read
#for getting more fields for some extended functionality
list_deps | while read -r line
do
#do any checks with the line
#implement additional functionalities as functions
#etc...
#remember - your in an subshell here
printf "command:%s\n" "$line"
done
}
_check_deps
One more thing :), (or two)
if you doubt about the content of some variables, don't use the echo. The POSIX isn't defines how it should act when contains escaped characters (e.g. echo "some\nwed"). Use:
printf '%s' "$variable"
never use uppercase only variables like "DEPS"... they're only for environment variables...

How to build bash command from variable?

I have a bash variable:
A="test; ls"
I want to use it as part of a call:
echo $A
I'm expecting it to be expanded into:
echo test; ls
However, it is expanded:
echo "test;" "ls"
How is it possible to achieve what I want? The only solution I can think of is this:
bash -c "echo $A"
Maybe there is something more elegant?
If you're building compound commands, running redirections, etc., then you need to use eval:
A="test; ls"
eval "$A"
However, it's far better not to do this. A typical use case that follows good practices follows:
my_cmd=( something --some-arg "another argument with spaces" )
if [[ $foo ]]; then
my_cmd+=( --foo="$foo" )
fi
"${my_cmd[#]}"
Unlike the eval version, this can only run a single command line, and will run it exactly as-given -- meaning that even if foo='$(rm -rf /)' you won't get your hard drive wiped. :)
If you absolutely must use eval, or are forming a shell command to be used in a context where it will necessarily be shell-evaluated (for instance, passed on a ssh command line), you can achieve a hybrid approach using printf %q to form command lines safe for eval:
printf -v cmd_str 'ls -l %q; exit 1' "some potentially malicious string"
eval "$cmd_str"
See BashFAQ #48 for more details on the eval command and why it should be used only with great care, or BashFAQ #50 for a general discussion of pitfalls and best practices around programmatically constructing commands. (Note that bash -c "$cmd_str" is equivalent to eval in terms of security impact, and requires the same precautions to use safely).
dont use echo, just have the var
A="echo test; ls"
$A

Resources