I am stuck on that. So I have this while-read loop within my code that is taking so long and I would like to run it in many processors. But, I'd like to split the input file and run 14 loops (because I have 14 threads), one for each splited file, in parallel. Thing is that I don't know how to tell the while loop which file to get and work with.
For example, in a regular while-read loop I would code:
while read line
do
<some code>
done < input file or variable...
But in this case I would like to split the above input file in 14 files and run 14 while loops in parallel, one for each splited file.
I tried :
split -n 14 input_file
find . -name "xa*" | \
parallel -j 14 | \
while read line
do
<lot of stuff>
done
also tried
split -n 14 input_file
function loop {
while read line
do
<lot of stuff>
done
}
export -f loop
parallel -j 14 ::: loop
But neither I was able to tell which file would be the input to the loop so parallel would understand "take each of those xa* files and place into individual loops in parallel"
An example of the input file (a list of strings)
AEYS01000010.10484.12283
CVJT01000011.50.2173
KF625180.1.1799
KT949922.1.1791
LOBZ01000025.54942.57580
EDIT
This is the code.
The output is a table (741100 lines) with some statistics regarding DNA sequences alignments already made.
The loop takes an input_file (no broken lines, varies from 500 to ~45000 lines, 800Kb) with DNA sequence acessions, reads it line-by-line and look for each correspondent full taxonomy for those acessions in a databank (~45000 lines). Then, it does a few sums/divisions. Output is a .tsv and looks like this (an example for sequence "KF625180.1.1799"):
Rate of taxonomies for this sequence in %: KF625180.1.1799 D_6__Bacillus_atrophaeus
Taxonomy %aligned number_ocurrences_in_the_alignment num_ocurrences_in_databank %alingment/databank
D_6__Bacillus_atrophaeus 50% 1 20 5%
D_6__Bacillus_amyloliquefaciens 50% 1 154 0.649351%
$ head input file
AEYS01000010.10484.12283
CVJT01000011.50.217
KF625180.1.1799
KT949922.1.1791
LOBZ01000025.54942.57580
Two additional files are also used inside the loop. They are not the loop input.
1) a file called alnout_file that only serves for finding how many hits (or alignments) a given sequence had against the databank. It was also previously made outside this loop. It can vary in the number of lines from hundreads to thousands. Only columns 1 and 2 matters here. Column1 is the name of the sequence and col2 is the name of all sequences it matched in the databnk. It looks like that:
$ head alnout_file
KF625180.1.1799 KF625180.1.1799 100.0 431 0 0 1 431 1 431 -1 0
KF625180.1.1799 KP143082.1.1457 99.3 431 1 2 1 431 1 429 -1 0
KP143082.1.1457 KF625180.1.1799 99.3 431 1 2 1 429 1 431 -1 0
2) a databank .tsv file containing ~45000 taxonomies correspondent to the DNA sequences. Each taxonomy is in one line:
$ head taxonomy.file.tsv
KP143082.1.1457 D_0__Bacteria;D_1__Firmicutes;D_2__Bacilli;D_3__Bacillales;D_4__Bacillaceae;D_5__Bacillus;D_6__Bacillus_amyloliquefaciens
KF625180.1.1799 D_0__Bacteria;D_1__Firmicutes;D_2__Bacilli;D_3__Bacillales;D_4__Bacillaceae;D_5__Bacillus;D_6__Bacillus_atrophaeus
So, given sequence KF625180.1.1799. I previously aligned it against a databank containing ~45000 other DNA sequences and got an output whis has all the accessions to sequences that it matched. What the loop does is that it finds the taxonomies for all those sequences and calculates the "statistics" I mentionded previously. Code does it for all the DNA-sequences-accesions I have.
TAXONOMY=path/taxonomy.file.tsv
while read line
do
#find hits
hits=$(grep $line alnout_file | cut -f 2)
completename=$(grep $line $TAXONOMY | sed 's/D_0.*D_4/D_4/g')
printf "\nRate of taxonomies for this sequence in %%:\t$completename\n"
printf "Taxonomy\t%aligned\tnumber_ocurrences_in_the_alignment\tnum_ocurrences_in_databank\t%alingment/databank\n"
#find hits and calculate the frequence (%) of the taxonomy in the alignment output
# ex.: Bacillus_subtilis 33
freqHits=$(grep "${hits[#]}" $TAXONOMY | \
cut -f 2 | \
awk '{a[$0]++} END {for (i in a) {print i, "\t", a[i]/NR*100, "\t", a[i]}}' | \
sed -e 's/D_0.*D_5/D_5/g' -e 's#\s\t\s#\t#g' | \
sort -k2 -hr)
# print frequence of each taxonomy in the databank
freqBank=$(while read line; do grep -c "$line" $TAXONOMY; done < <(echo "$freqHits" | cut -f 1))
#print cols with taxonomy and calculations
paste <(printf %s "$freqHits") <(printf %s "$freqBank") | awk '{print $1,"\t",$2"%","\t",$3,"\t",$4,"\t",$3/$4*100"%"}'
done < input_file
It is a lot of greps and parsing so it takes about ~12h running in one processor for doing it to all the 45000 DNA sequence accessions. The, I would like to split input_file and do it in all the processors I have (14) because it would the time spend in that.
Thank you all for being so patient with me =)
You are looking for --pipe. In this case you can even use the optimized --pipepart (version >20160621):
export TAXONOMY=path/taxonomy.file.tsv
doit() {
while read line
do
#find hits
hits=$(grep $line alnout_file | cut -f 2)
completename=$(grep $line $TAXONOMY | sed 's/D_0.*D_4/D_4/g')
printf "\nRate of taxonomies for this sequence in %%:\t$completename\n"
printf "Taxonomy\t%aligned\tnumber_ocurrences_in_the_alignment\tnum_ocurrences_in_databank\t%alingment/databank\n"
#find hits and calculate the frequence (%) of the taxonomy in the alignment output
# ex.: Bacillus_subtilis 33
freqHits=$(grep "${hits[#]}" $TAXONOMY | \
cut -f 2 | \
awk '{a[$0]++} END {for (i in a) {print i, "\t", a[i]/NR*100, "\t", a[i]}}' | \
sed -e 's/D_0.*D_5/D_5/g' -e 's#\s\t\s#\t#g' | \
sort -k2 -hr)
# print frequence of each taxonomy in the databank
freqBank=$(while read line; do grep -c "$line" $TAXONOMY; done < <(echo "$freqHits" | cut -f 1))
#print cols with taxonomy and calculations
paste <(printf %s "$freqHits") <(printf %s "$freqBank") | awk '{print $1,"\t",$2"%","\t",$3,"\t",$4,"\t",$3/$4*100"%"}'
done
}
export -f doit
parallel -a input_file --pipepart doit
This will chop input_file into 10*ncpu blocks (where ncpu is the number of CPU threads), pass each block to doit, run ncpu jobs in parallel.
That said I think your real problem is spawning too many programs: If you rewrite doit in Perl or Python I will expect you will see a major speedup.
As an alternative I threw together a quick test.
#! /bin/env bash
mkfifo PIPELINE # create a single queue
cat "$1" > PIPELINE & # supply it with records
{ declare -i cnt=0 max=14
while (( ++cnt <= max )) # spawn loop creates worker jobs
do printf -v fn "%02d" $cnt
while read -r line # each work loop reads common stdin...
do echo "$fn:[$line]"
sleep 1
done >$fn.log 2>&1 & # these run in background in parallel
done # this one exits
} < PIPELINE # *all* read from the same queue
wait
cat [0-9][0-9].log
Doesn't need split, but does need a mkfifo.
Obviously, change the code inside the internal loop.
This answers what you asked, namely how to process in parallel the 14 files you get from running split. However, I don't think it is the best way of doing whatever it is that you are trying to do - but we would need some answers from you for that.
So, let's make a million line file and split it into 14 parts:
seq 1000000 > 1M
split -n 14 1M part-
That gives me 14 files called part-aa through part-an. Now your question is how to process those 14 parts in parallel - (read the last line first):
#!/bin/bash
# This function will be called for each of the 14 files
DoOne(){
# Pick up parameters
job=$1
file=$2
# Count lines in specified file
lines=$(wc -l < "$file")
echo "Job No: $job, file: $file, lines: $lines"
}
# Make the function above known to processes spawned by GNU Parallel
export -f DoOne
# Run 14 parallel instances of "DoOne" passing job number and filename to each
parallel -k -j 14 DoOne {#} {} ::: part-??
Sample Output
Job No: 1, file: part-aa, lines: 83861
Job No: 2, file: part-ab, lines: 72600
Job No: 3, file: part-ac, lines: 70295
Job No: 4, file: part-ad, lines: 70295
Job No: 5, file: part-ae, lines: 70294
Job No: 6, file: part-af, lines: 70295
Job No: 7, file: part-ag, lines: 70295
Job No: 8, file: part-ah, lines: 70294
Job No: 9, file: part-ai, lines: 70295
Job No: 10, file: part-aj, lines: 70295
Job No: 11, file: part-ak, lines: 70295
Job No: 12, file: part-al, lines: 70294
Job No: 13, file: part-am, lines: 70295
Job No: 14, file: part-an, lines: 70297
You would omit the -k argument to GNU Parallel normally - I only added it so the output comes in order.
I think that using a bunch of grep and awk commands is the wrong approach here - you would be miles better off using Perl, or awk. As you have not provided any sample files I generated some using this code:
#!/bin/bash
for a in {A..Z} {0..9} ; do
for b in {A..Z} {0..9} ; do
for c in {A..Z} {0..9} ; do
echo "${a}${b}${c}"
done
done
done > a
# Now make file "b" which has the same stuff but shuffled into a different order
gshuf < a > b
Note that there are 26 letters in the alphabet, so if I add the digits 0..9 to the letters of the alphabet, I get 36 alphanumeric digits and if I nest 3 loops of that I get 36^3 or 46,656 lines which matches your file sizes roughly. File a now looks like this:
AAA
AAB
AAC
AAD
AAE
AAF
File b looks like this:
UKM
L50
AOC
79U
K6S
6PO
12I
XEV
WJN
Now I want to loop through a finding the corresponding line in b. First, I use your approach:
time while read thing ; do grep $thing b > /dev/null ; done < a
That takes 9 mins 35 seconds.
If I now exit grep on the first match, on average I will find it in the middle, which means the time will be halved since I won't continue to needlessly read b after I find what I want.
time while read thing ; do grep -m1 $thing b > /dev/null ; done < a
That improves the time down to 4 mins 30 seconds.
If I now use awk to read the contents of b into an associative array (a.k.a. hash) and then read the elements of a and find them in b like this:
time awk 'FNR==NR{a[$1]=$1; next} {print a[$1]}' b a > /dev/null
That now runs in 0.07 seconds. Hopefully you get the idea of what I am driving at. I expect Perl would do this in the same time and also provide more expressive facilities for the maths in the middle of your loop too.
I hope this small script helps you out:
function process {
while read line; do
echo "$line"
done < $1
}
function loop {
file=$1
chunks=$2
dir=`mktemp -d`
cd $dir
split -n l/$chunks $file
for i in *; do
process "$i" &
done
rm -rf $dir
}
loop /tmp/foo 14
It runs the process loop on the specified file with the specified number of chunks (without splitting lines) in parallel (using & to put each invocation in the background). I hope it gets you started.
This can do the job for You, I am not familiar with parallel instead using native bash spawning processes &:
function loop () {
while IFS= read -r -d $'\n'
do
# YOUR BIG STUFF
done < "${1}"
}
arr_files=(./xa*)
for i in "${arr_files[#]}"
do loop "${i}" &
done
wait
I have a reference file with device names in them. For example WABEL8499IPM101. I'm using this script to set the base name (without the last 3 digits) to look at the reference file and see what is already used. If 101 is used it will create a file for me with 102, 103 if I request 2 total. I'm looking to use an input file to run it multiple times. I'm also trying to figure out how to start at 101 if there isn't a name found when searching the reference file
I would like to loop this using an input file instead of manually entering bash test.sh WABEL8499IPM 2 each time. I would like to be able to build an input file of all the names that need compared and then output. It would also be nice that if there isn't a match that it starts creating names at WABEL8499IPM101 instead of just WABEL8499IPM1.
Input file example:
ColumnA (BASE NAME) ColumnB (QUANTITY)
WABEL8499IPM 2
Script:
SRCFILE="~/Desktop/deviceinfo.csv"
LOGDIR="~/Desktop/"
LOGFILE="$LOGDIR/DeviceNames.csv"
# base name, such as "WABEL8499IPM"
device_name=$1
# quantity, such as "2"
quantityNum=$2
# the largest in sequence, such as "WABEL8499IPM108"
max_sequence_name=$(cat $SRCFILE | grep -o -e "$device_name[0-9]*" | sort --reverse | head -n 1)
# extract the last 3digit number (such as "108") from max_sequence_name
max_sequence_num=$(echo $max_sequence_name | rev | cut -c 1-3 | rev)
# create new sequence_name
# such as ["WABEL8499IPM109", "WABEL8499IPM110"]
array_new_sequence_name=()
for i in $(seq 1 $quantityNum);
do
cnum=$((max_sequence_num + i))
array_new_sequence_name+=($(echo $device_name$cnum))
done
#CODE FOR CREATING OUTPUT FILE HERE
#for fn in ${array_new_sequence_name[#]}; do touch $fn; done;
# write log
for sqn in ${array_new_sequence_name[#]};
do
echo $sqn >> $LOGFILE
done
Usage:
bash test.sh WABEL8499IPM 2
Result in the log file:
WABEL8499IPM109
WABEL8499IPM110
Just wrap a loop around your code instead of assuming the args come in on the command line.
SRCFILE="~/Desktop/deviceinfo.csv"
LOGDIR="~/Desktop/"
LOGFILE="$LOGDIR/DeviceNames.csv"
while read device_name quantityNum
do max_sequence_name=$( grep -o -e "$device_name[0-9]*" $SRCFILE |
sort --reverse | head -n 1)
max_sequence_num=${max_sequence_name: -3}
array_new_sequence_name=()
for i in $(seq 1 $quantityNum)
do cnum=$((max_sequence_num + i))
array_new_sequence_name+=("$device_name$cnum")
done
for sqn in ${array_new_sequence_name[#]};
do echo $sqn >> $LOGFILE
done
done < input.file
I'd maybe pass the input file as the parameter now.
I have a text file (bigfile.txt) with thousands of rows. I want to make a smaller text file with 1 % of the rows which are randomly chosen. I tried the following
output=$(wc -l bigfile.txt)
ds1=$(0.01*output)
sort -r bigfile.txt|shuf|head -n ds1
It give the following error:
head: invalid number of lines: ‘ds1’
I don't know what is wrong.
Even after you fix your issues with your bash script, it cannot do floating point arithmetic. You need external tools like Awk which I would use as
randomCount=$(awk 'END{print int((NR==0)?0:(NR/100))}' bigfile.txt)
(( randomCount )) && sort -r file | shuf | head -n "$randomCount"
E.g. Writing a file with with 221 lines using the below loop and trying to get random lines,
tmpfile=$(mktemp /tmp/abc-script.XXXXXX)
for i in {1..221}; do echo $i; done >> "$tmpfile"
randomCount=$(awk 'END{print int((NR==0)?0:(NR/100))}' "$tmpfile")
If I print the count, it would return me a integer number 2 and using that on the next command,
sort -r "$tmpfile" | shuf | head -n "$randomCount"
86
126
Roll a die (with rand()) for each line of the file and get a number between 0 and 1. Print the line if the die shows less than 0.01:
awk 'rand()<0.01' bigFile
Quick test - generate 100,000,000 lines and count how many get through:
seq 1 100000000 | awk 'rand()<0.01' | wc -l
999308
Pretty close to 1%.
If you want the order random as well as the selection, you can pass this through shuf afterwards:
seq 1 100000000 | awk 'rand()<0.01' | shuf
On the subject of efficiency which came up in the comments, this solution takes 24s on my iMac with 100,000,000 lines:
time { seq 1 100000000 | awk 'rand()<0.01' > /dev/null; }
real 0m23.738s
user 0m31.787s
sys 0m0.490s
The only other solution that works here, heavily based on OP's original code, takes 13 minutes 19s.
I'm uncertain as to how I can use the until loop inside a while loop.
I have an input file of 500,000 lines that look like this:
9 1 1 0.6132E+02
9 2 1 0.6314E+02
10 3 1 0.5874E+02
10 4 1 0.5266E+02
10 5 1 0.5571E+02
1 6 1 0.5004E+02
1 7 1 0.5450E+02
2 8 1 0.5696E+02
11 9 1 0.6369E+02
.....
And what I'm hoping to achieve is to sort the numbers in the first column in numerical order such that I can pull all the similar lines (eg. lines that start with the same number) into new text files "cluster${i}.txt". From there I want to sort the fourth column of ("cluster${i}.txt") files in numerical order. After sorting I would like to write the first row of each sorted "cluster${i}.txt" file into a single output file. A sample output of "cluster1.txt" would like this:
1 6 1 0.5004E+02
1 7 1 0.5450E+02
1 11 1 0.6777E+02
....
as well as an output.txt file that would look like this:
1 6 1 0.5004E+02
2 487 1 0.3495E+02
3 34 1 0.0344E+02
....
Here is what I've written:
#!/bin/bash
input='input.txt'
i=1
sort -nk 1 $input > 'temp.txt'
while read line; do
awk -v var="$i" '$1 == var' temp.txt > "cluster${i}.txt"
until [[$i -lt 20]]; do
i=$((i+1))
done
done
for f in *.txt; do
sort -nk 4 > temp2.txt
head -1 temp2.txt
rm temp2.txt
done > output.txt
This only takes one line, if your sort -n knows how to handle exponential notation:
sort -nk 1,4 <in.txt | awk '{ of="cluster" $1 ".txt"; print $0 >>of }'
...or, to also write the first line for each index to output.txt:
sort -nk 1,4 <in.txt | awk '
{
if($1 != last) {
print $0 >"output.txt"
last=$1
}
of="cluster" $1 ".txt";
print $0 >of
}'
Consider using an awk implementation -- such as GNU awk -- which will cache file descriptors, rather than reopening each output file for every append; this will greatly improve performance.
By the way, let's look at what was wrong with the original script:
It was slow. Really, really slow.
Starting a new instance of awk 20 times for every line of input (because the whole point of while read is to iterate over individual lines, so putting an awk inside a while read is going to run awk at least once per line) is going to have a very appreciable impact on performance. Not that it was actually doing this, because...
The while read line outer loop was reading from stdin, not temp.txt or input.txt.
Thus, the script was hanging if stdin didn't have anything written on it, or wasn't executing the contents of the loop at all if stdin pointed to a source with no content like /dev/null.
The inner loop wasn't actually processing the line read by the outer loop. line was being read, but all of temp.txt was being operated on.
The awk wasn't actually inside the inner loop, but rather was inside the outer loop, just before the inner loop. Consequently, it wasn't being run 20 times with different values for i, but run only once per line read, with whichever value for i was left over from previously executed code.
Whitespace is important to how commands are parsed. [[foo]] is wrong; it needs to be [[ foo ]].
To "fix" the inner loop, to do what I imagine you meant to write, might look like this:
# this is slow and awful, but at least it'll work.
while IFS= read -r line; do
i=0
until [[ $i -ge 20 ]]; do
awk -v var="$i" '$1 == var' <<<"$line" >>"cluster${i}.txt"
i=$((i+1))
done
done <temp.txt
...or, somewhat better (but still not as good as the solution suggested at the top):
# this is a somewhat less awful.
for (( i=0; i<=20; i++ )); do
awk -v var="$i" '$1 == var' <temp.txt >"cluster${i}.txt"
head -n 1 "cluster${i}.txt"
done >output.txt
Note how the redirection to output.txt is done just once, for the whole loop -- this means we're only opening the file once.
I'm trying to write a bash script that calculates the average of numbers by rows and columns. An example of a text file that I'm reading in is:
1 2 3 4 5
4 6 7 8 0
There is an unknown number of rows and unknown number of columns. Currently, I'm just trying to sum each row with a while loop. The desired output is:
1 2 3 4 5 Sum = 15
4 6 7 8 0 Sum = 25
And so on and so forth with each row. Currently this is the code I have:
while read i
do
echo "num: $i"
(( sum=$sum+$i ))
echo "sum: $sum"
done < $2
To call the program it's stats -r test_file. "-r" indicates rows--I haven't started columns quite yet. My current code actually just takes the first number of each column and adds them together and then the rest of the numbers error out as a syntax error. It says the error comes from like 16, which is the (( sum=$sum+$i )) line but I honestly can't figure out what the problem is. I should tell you I'm extremely new to bash scripting and I have googled and searched high and low for the answer for this and can't find it. Any help is greatly appreciated.
You are reading the file line by line, and summing line is not an arithmetic operation. Try this:
while read i
do
sum=0
for num in $i
do
sum=$(($sum + $num))
done
echo "$i Sum: $sum"
done < $2
just split each number from every line using for loop. I hope this helps.
Another non bash way (con: OP asked for bash, pro: does not depend on bashisms, works with floats).
awk '{c=0;for(i=1;i<=NF;++i){c+=$i};print $0, "Sum:", c}'
Another way (not a pure bash):
while read line
do
sum=$(sed 's/[ ]\+/+/g' <<< "$line" | bc -q)
echo "$line Sum = $sum"
done < filename
Using the numsum -r util covers the row addition, but the output format needs a little glue, by inefficiently paste-ing a few utils:
paste "$2" \
<(yes "Sum =" | head -$(wc -l < "$2") ) \
<(numsum -r "$2")
Output:
1 2 3 4 5 Sum = 15
4 6 7 8 0 Sum = 25
Note -- to run the above line on a given file foo, first initialize $2 like so:
set -- "" foo
paste "$2" <(yes "Sum =" | head -$(wc -l < "$2") ) <(numsum -r "$2")