How to efficiently call a program with high frequency? - performance

I have a program (with source code) which is called by another programs with high frequency. And there are lots of computation cost to initiate the program. During each initiating, the same processing will be performed. Is there any way to improve the efficiency? For example, is it possible to keep the initiation status in the memory?

Really calling the same executable and therefor starting a new process might be difficult to optimize, but since you have the source code, maybe recompiling as a library and calling it several times might be feasible?

Related

What happens when multiple GPU threads in a single warp/wave attempt to write to the same shared memory location?

I've been learning about parallel/GPU programming a lot recently, and I've encountered a situation that's stumped me. What happens when two threads in a warp/wave attempt to write to the same exact location in shared memory? Specifically, I'm confused as to how this can occur when warp threads each execute the exact same instruction at the same time (to my understanding).
For instance, say you dispatch a shader that runs 32 threads, the size of a normal non-AMD warp. Assuming no dynamic branching (which as I understand, will normally call up a second warp to execute the branched code? I could be very wrong about that), what happens if we have every single thread try to write to a single location in shared memory?
Though I believe my question applies to any kind of GPU code, here's a simple example in HLSL:
groupshared uint test_target;
#pragma kernel WarpWriteTest
[numthreads(32, 1, 1)]
void WarpWriteTest (uint thread_id: SV_GroupIndex) {
test_target = thread_id;
}
I understand this is almost certainly implementation-specific, but I'm just curious what would generally happen in a situation like this. Obviously, you'd end up with an unpredictable value stored in test_target, but what I'm really curious about is what happens on a hardware level. Does the entire warp have to wait until every write is complete, at which point it will continue executing code in lockstep (and would this result in noticeable latency)? Or is there some other mechanism to GPU shared memory/cache that I'm not understanding?
Let me clarify, I'm not asking what happens when multiple threads try to access a value in global memory/DRAM—I'd be curious to know, but my question is specifically concerned the shared memory in a threadgroup. I also apologize if this information is readily available somewhere else—as anyone reading might know, GPU terminology in general can be very nebulous and non-standardized, so I've had difficulty even knowing what I should be looking for.
Thank you so much!

Dynamically executing large volumes of execute-once, straight-line x86 code

Dynamically generating code is pretty well-known technique, for example to speed up interpreted languages, domain-specific languages and so on. Whether you want to work low-level (close to 1:1 with assembly), or high-level you can find libraries you help you out.
Note the distinction between self-modifying code and dynamically-generated code. The former means that some code that has executed will be modified in part and then executed again. The latter means that some code, that doesn't exist statically in the process binary on disk, is written to memory and then executed (but will not necessarily ever be modified). The distinction might be important below or simply because people treat self-modifying code as a smell, but dynamically generated code as a great performance trick.
The usual use-case is that the generated code will be executed many times. This means the focus is usually on the efficiency of the generated code, and to a lesser extent the compilation time, and least of all the mechanics of actually writing the code, making it executable and starting execution.
Imagine however, that your use case was generating code that will execute exactly once and that this is straight-line code without loops. The "compilation" process that generates the code is very fast (close to memcpy speed). In this case, the actual mechanics of writing to the code to memory and executing it once become important for performance.
For example, the total amount of code executed may be 10s of GBs or more. Clearly you don't want to just write all out to a giant buffer without any re-use: this would imply writing 10GB to memory and perhaps also reading 10GB (depending on how generation and execution was interleaved). Instead you'd probably want to use some reasonably sized buffer (say to fit in the L1 or L2 cache): write out a buffer's worth of code, execute it, then overwrite the buffer with the next chunk of code and so on.
The problem is that this seems to raise the spectre of self-modifying code. Although the "overwrite" is complete, you are still overwriting memory that was at one point already executed as instructions. The newly written code has to somehow make its way from the L1D to the L1I, and the associated performance hit is not clear. In particular, there have been reports that simply writing to the code area that has already been executed may suffer penalties of 100s of cycles and that the number of writes may be important.
What's the best way of generating a large about of dynamically generated straight-line code on x86 and executing it?
I think you're worried unnecessarily. Your case is more like when a process exits and its pages are reused for another process (with different code loaded into them), which shouldn't cause self-modifying code penalties. It's not the same as when a process writes into its own code pages.
The self-modifying code penalties are significant when the overwritten instructions have been prefetched or decoded to the trace cache. I think it is highly unlikely that any of the generated code will still be in the prefetch queue or trace cache by the time the code generator starts overwriting it with the next bit (unless the code generator is trivial).
Here's my suggestion: Allocate pages up to some fraction of L2 (as suggested by Peter), fill them with code, and execute them. Then map the same pages at the next higher virtual address and fill them with the next part of the code. You'll get the benefit of cache hits for the reads and the writes but I don't think you'll get any self-modifying code penalty. You'll use 10s of GB of virtual address space, but keep using the same physical pages.
Use a serializing operation such as CPUID before each time you start executing the modified instructions, as described in sections 8.1.3 and 11.6 of the Intel SDM.
I'm not sure you'll stand to gain much performance by using a gigantic amount of straight-line code instead of much smaller code with loops, since there's significant overhead in continually thrashing the instruction cache for so long, and the overhead of conditional jumps has gotten much better over the past several years. I was dubious when Intel made claims along those lines, and some of their statements were rather hyperbolic, but it has improved a lot in common cases. You can still always avoid call instructions if you need to for simplicity, even for tree recursive functions, by effectively simulating "the stack" with "a stack" (possibly itself on "the stack"), in the worst case.
That leaves two reasons I can think of that you'd want to stick with straight-line code that's only executed once on a modern computer: 1) it's too complicated to figure out how to express what needs to be computed with less code using jumps, or 2) it's an extremely heterogeneous problem being solved that actually needs so much code. #2 is quite uncommon in practice, though possible in a computer theoretical sense; I've just never encountered such a problem. If it's #1 and the issue is just how to efficiently encode the jumps as either short or near jumps, there are ways. (I've also just recently gotten back into x86-64 machine code generation in a side project, after years of not touching my assembler/linker, but it's not ready for use yet.)
Anyway, it's a bit hard to know what the stumbling block is, but I suspect that you'll get much better performance if you can figure out a way to avoid generating gigabytes of code, even if it may seem suboptimal on paper. Either way, it's usually best to try several options and see what works best experimentally if it's unclear. I've sometimes found surprising results that way. Best of luck!

Would threading be beneficial for this situation?

I have a CSV file with over 1 million rows. I also have a database that contains such data in a formatted way.
I want to check and verify the data in the CSV file and the data in the database.
Is it beneficial/reduces time to thread reading from the CSV file and use a connection pool to the database?
How well does Ruby handle threading?
I am using MongoDB, also.
It's hard to say without knowing some more details about the specifics of what you want the app to feel like when someone initiates this comparison. So, to answer, some general advice that should apply fairly well regardless of the problem you might want to thread.
Threading does NOT make something computationally less costly
Threading doesn't make things less costly in terms of computation time. It just lets two things happen in parallel. So, beware that you're not falling into the common misconception that, "Threading makes my app faster because the user doesn't wait for things." - this isn't true, and threading actually adds quite a bit of complexity.
So, if you kick off this DB vs. CSV comparison task, threading isn't going to make that comparison take any less time. What it might do is allow you to tell the user, "Ok, I'm going to check that for you," right away, while doing the comparison in a separate thread of execution. You still have to figure out how to get back to the user when the comparison is done.
Think about WHY you want to thread, rather than simply approaching it as whether threading is a good solution for long tasks
Like I said above, threading doesn't make things faster. At best, it uses computing resources in a way that is either more efficient, or gives a better user experience, or both.
If the user of the app (maybe it's just you) doesn't mind waiting for the comparison to run, then don't add threading because you're just going to add complexity and it won't be any faster. If this comparison takes a long time and you'd rather "do it in the background" then threading might be an answer for you. Just be aware that if you do this you're then adding another concern, which is, how do you update the user when the background job is done?
Threading involves extra overhead and app complexity, which you will then have to manage within your app - tread lightly
There are other concerns as well, such as, how do I schedule that worker thread to make sure it doesn't hog the computing resources? Are the setting of thread priorities an option in my environment, and if so, how will adjusting them affect the use of computing resources?
Threading and the extra overhead involved will almost definitely make your comparison take LONGER (in terms of absolute time it takes to do the comparison). The real advantage is if you don't care about completion time (the time between when the comparison starts and when it is done) but instead the responsiveness of the app to the user, and/or the total throughput that can be achieved (e.g. the number of simultaneous comparisons you can be running, and as a result the total number of comparisons you can complete within a given time span).
Threading doesn't guarantee that your available CPU cores are used efficiently
See Green Threads vs. native threads - some languages (depending on their threading implementation) can schedule threads across CPUs.
Threading doesn't necessarily mean your threads wind up getting run in multiple physical CPU cores - in fact in many cases they definitely won't. If all your app's threads run on the same physical core, then they aren't truly running in parallel - they are just splitting CPU time in a way that may make them look like they are running in parallel.
For these reasons, depending on the structure of your app, it's often less complicated to send background tasks to a separate worker process (process, not thread), which can easily be scheduled onto available CPU cores at the OS level. Separate processes (as opposed to separate threads) also remove a lot of the scheduling concerns within your app, because you essentially offload the decision about how to schedule things onto the OS itself.
This last point is pretty important. OS schedulers are extremely likely to be smarter and more efficiently designed than whatever algorithm you might come up with in your app.

What to avoid for performance reasons in multithreaded code?

I'm currently reviewing/refactoring a multithreaded application which is supposed to be multithreaded in order to be able to use all the available cores and theoretically deliver a better / superior performance (superior is the commercial term for better :P)
What are the things I should be aware when programming multithreaded applications?
I mean things that will greatly impact performance, maybe even to the point where you don't gain anything with multithreading at all but lose a lot by design complexity. What are the big red flags for multithreading applications?
Should I start questioning the locks and looking to a lock-free strategy or are there other points more important that should light a warning light?
Edit: The kind of answers I'd like are similar to the answer by Janusz, I want red warnings to look up in code, I know the application doesn't perform as well as it should, I need to know where to start looking, what should worry me and where should I put my efforts. I know it's kind of a general question but I can't post the entire program and if I could choose one section of code then I wouldn't be needing to ask in the first place.
I'm using Delphi 7, although the application will be ported / remake in .NET (c#) for the next year so I'd rather hear comments that are applicable as a general practice, and if they must be specific to either one of those languages
One thing to definitely avoid is lots of write access to the same cache lines from threads.
For example: If you use a counter variable to count the number of items processed by all threads, this will really hurt performance because the CPU cache lines have to synchronize whenever the other CPU writes to the variable.
One thing that decreases performance is having two threads with much hard drive access. The hard drive would jump from providing data for one thread to the other and both threads would wait for the disk all the time.
Something to keep in mind when locking: lock for as short a time as possible. For example, instead of this:
lock(syncObject)
{
bool value = askSomeSharedResourceForSomeValue();
if (value)
DoSomethingIfTrue();
else
DoSomtehingIfFalse();
}
Do this (if possible):
bool value = false;
lock(syncObject)
{
value = askSomeSharedResourceForSomeValue();
}
if (value)
DoSomethingIfTrue();
else
DoSomtehingIfFalse();
Of course, this example only works if DoSomethingIfTrue() and DoSomethingIfFalse() don't require synchronization, but it illustrates this point: locking for as short a time as possible, while maybe not always improving your performance, will improve the safety of your code in that it reduces surface area for synchronization problems.
And in certain cases, it will improve performance. Staying locked for long lengths of time means that other threads waiting for access to some resource are going to be waiting longer.
More threads then there are cores, typically means that the program is not performing optimally.
So a program which spawns loads of threads usually is not designed in the best fashion. A good example of this practice are the classic Socket examples where every incoming connection got it's own thread to handle of the connection. It is a very non scalable way to do things. The more threads there are, the more time the OS will have to use for context switching between threads.
You should first be familiar with Amdahl's law.
If you are using Java, I recommend the book Java Concurrency in Practice; however, most of its help is specific to the Java language (Java 5 or later).
In general, reducing the amount of shared memory increases the amount of parallelism possible, and for performance that should be a major consideration.
Threading with GUI's is another thing to be aware of, but it looks like it is not relevant for this particular problem.
What kills performance is when two or more threads share the same resources. This could be an object that both use, or a file that both use, a network both use or a processor that both use. You cannot avoid these dependencies on shared resources but if possible, try to avoid sharing resources.
Run-time profilers may not work well with a multi-threaded application. Still, anything that makes a single-threaded application slow will also make a multi-threaded application slow. It may be an idea to run your application as a single-threaded application, and use a profiler, to find out where its performance hotspots (bottlenecks) are.
When it's running as a multi-threaded aplication, you can use the system's performance-monitoring tool to see whether locks are a problem. Assuming that your threads would lock instead of busy-wait, then having 100% CPU for several threads is a sign that locking isn't a problem. Conversely, something that looks like 50% total CPU utilitization on a dual-processor machine is a sign that only one thread is running, and so maybe your locking is a problem that's preventing more than one concurrent thread (when counting the number of CPUs in your machine, beware multi-core and hyperthreading).
Locks aren't only in your code but also in the APIs you use: e.g. the heap manager (whenever you allocate and delete memory), maybe in your logger implementation, maybe in some of the O/S APIs, etc.
Should I start questioning the locks and looking to a lock-free strategy
I always question the locks, but have never used a lock-free strategy; instead my ambition is to use locks where necessary, so that it's always threadsafe but will never deadlock, and to ensure that locks are acquired for a tiny amount of time (e.g. for no more than the amount of time it takes to push or pop a pointer on a thread-safe queue), so that the maximum amount of time that a thread may be blocked is insignificant compared to the time it spends doing useful work.
You don't mention the language you're using, so I'll make a general statement on locking. Locking is fairly expensive, especially the naive locking that is native to many languages. In many cases you are reading a shared variable (as opposed to writing). Reading is threadsafe as long as it is not taking place simultaneously with a write. However, you still have to lock it down. The most naive form of this locking is to treat the read and the write as the same type of operation, restricting access to the shared variable from other reads as well as writes. A read/writer lock can dramatically improve performance. One writer, infinite readers. On an app I've worked on, I saw a 35% performance improvement when switching to this construct. If you are working in .NET, the correct lock is the ReaderWriterLockSlim.
I recommend looking into running multiple processes rather than multiple threads within the same process, if it is a server application.
The benefit of dividing the work between several processes on one machine is that it is easy to increase the number of servers when more performance is needed than a single server can deliver.
You also reduce the risks involved with complex multithreaded applications where deadlocks, bottlenecks etc reduce the total performance.
There are commercial frameworks that simplifies server software development when it comes to load balancing and distributed queue processing, but developing your own load sharing infrastructure is not that complicated compared with what you will encounter in general in a multi-threaded application.
I'm using Delphi 7
You might be using COM objects, then, explicitly or implicitly; if you are, COM objects have their own complications and restrictions on threading: Processes, Threads, and Apartments.
You should first get a tool to monitor threads specific to your language, framework and IDE. Your own logger might do fine too (Resume Time, Sleep Time + Duration). From there you can check for bad performing threads that don't execute much or are waiting too long for something to happen, you might want to make the event they are waiting for to occur as early as possible.
As you want to use both cores you should check the usage of the cores with a tool that can graph the processor usage on both cores for your application only, or just make sure your computer is as idle as possible.
Besides that you should profile your application just to make sure that the things performed within the threads are efficient, but watch out for premature optimization. No sense to optimize your multiprocessing if the threads themselves are performing bad.
Looking for a lock-free strategy can help a lot, but it is not always possible to get your application to perform in a lock-free way.
Threads don't equal performance, always.
Things are a lot better in certain operating systems as opposed to others, but if you can have something sleep or relinquish its time until it's signaled...or not start a new process for virtually everything, you're saving yourself from bogging the application down in context switching.

Power Efficient Software Coding

In a typical handheld/portable embedded system device Battery life is a major concern in design of H/W, S/W and the features the device can support. From the Software programming perspective, one is aware of MIPS, Memory(Data and Program) optimized code.
I am aware of the H/W Deep sleep mode, Standby mode that are used to clock the hardware at lower Cycles or turn of the clock entirel to some unused circutis to save power, but i am looking for some ideas from that point of view:
Wherein my code is running and it needs to keep executing, given this how can I write the code "power" efficiently so as to consume minimum watts?
Are there any special programming constructs, data structures, control structures which i should look at to achieve minimum power consumption for a given functionality.
Are there any s/w high level design considerations which one should keep in mind at time of code structure design, or during low level design to make the code as power efficient(Least power consuming) as possible?
Like 1800 INFORMATION said, avoid polling; subscribe to events and wait for them to happen
Update window content only when necessary - let the system decide when to redraw it
When updating window content, ensure your code recreates as little of the invalid region as possible
With quick code the CPU goes back to deep sleep mode faster and there's a better chance that such code stays in L1 cache
Operate on small data at one time so data stays in caches as well
Ensure that your application doesn't do any unnecessary action when in background
Make your software not only power efficient, but also power aware - update graphics less often when on battery, disable animations, less hard drive thrashing
And read some other guidelines. ;)
Recently a series of posts called "Optimizing Software Applications for Power", started appearing on Intel Software Blogs. May be of some use for x86 developers.
Zeroith, use a fully static machine that can stop when idle. You can't beat zero Hz.
First up, switch to a tickless operating system scheduler. Waking up every millisecend or so wastes power. If you can't, consider slowing the scheduler interrupt instead.
Secondly, ensure your idle thread is a power save, wait for next interrupt instruction.
You can do this in the sort of under-regulated "userland" most small devices have.
Thirdly, if you have to poll or perform user confidence activities like updating the UI,
sleep, do it, and get back to sleep.
Don't trust GUI frameworks that you haven't checked for "sleep and spin" kind of code.
Especially the event timer you may be tempted to use for #2.
Block a thread on read instead of polling with select()/epoll()/ WaitForMultipleObjects().
Puts stress on the thread scheuler ( and your brain) but the devices generally do okay.
This ends up changing your high-level design a bit; it gets tidier!.
A main loop that polls all the things you Might do ends up slow and wasteful on CPU, but does guarantee performance. ( Guaranteed to be slow)
Cache results, lazily create things. Users expect the device to be slow so don't disappoint them. Less running is better. Run as little as you can get away with.
Separate threads can be killed off when you stop needing them.
Try to get more memory than you need, then you can insert into more than one hashtable and save ever searching. This is a direct tradeoff if the memory is DRAM.
Look at a realtime-ier system than you think you might need. It saves time (sic) later.
They cope better with threading too.
Do not poll. Use events and other OS primitives to wait for notifiable occurrences. Polling ensures that the CPU will stay active and use more battery life.
From my work using smart phones, the best way I have found of preserving battery life is to ensure that everything you do not need for your program to function at that specific point is disabled.
For example, only switch Bluetooth on when you need it, similarly the phone capabilities, turn the screen brightness down when it isn't needed, turn the volume down, etc.
The power used by these functions will generally far outweigh the power used by your code.
To avoid polling is a good suggestion.
A microprocessor's power consumption is roughly proportional to its clock frequency, and to the square of its supply voltage. If you have the possibility to adjust these from software, that could save some power. Also, turning off the parts of the processor that you don't need (e.g. floating-point unit) may help, but this very much depends on your platform. In any case, you need a way to measure the actual power consumption of your processor, so that you can find out what works and what not. Just like speed optimizations, power optimizations need to be carefully profiled.
Consider using the network interfaces the least you can. You might want to gather information and send it out in bursts instead of constantly send it.
Look at what your compiler generates, particularly for hot areas of code.
If you have low priority intermittent operations, don't use specific timers to wake up to deal with them, but deal with when processing other events.
Use logic to avoid stupid scenarios where your app might go to sleep for 10 ms and then have to wake up again for the next event. For the kind of platform mentioned it shouldn't matter if both events are processed at the same time.
Having your own timer & callback mechanism might be appropriate for this kind of decision making. The trade off is in code complexity and maintenance vs. likely power savings.
Simply put, do as little as possible.
Well, to the extent that your code can execute entirely in the processor cache, you'll have less bus activity and save power. To the extent that your program is small enough to fit code+data entirely in the cache, you get that benefit "for free". OTOH, if your program is too big, and you can divide your programs into modules that are more or less independent of the other, you might get some power saving by dividing it into separate programs. (I suppose it's also possible to make a toolchain that spreas out related bundles of code and data into cache-sized chunks...)
I suppose that, theoretically, you can save some amount of unnecessary work by reducing the number of pointer dereferencing, and by refactoring your jumps so that the most likely jumps are taken first -- but that's not realistic to do as a programmer.
Transmeta had the idea of letting the machine do some instruction optimization on-the-fly to save power... But that didn't seem to help enough... And look where that got them.
Set unused memory or flash to 0xFF not 0x00. This is certainly true for flash and eeprom, not sure about s or d ram. For the proms there is an inversion so a 0 is stored as a 1 and takes more energy, a 1 is stored as a zero and takes less. This is why you read 0xFFs after erasing a block.
Rather timely this, article on Hackaday today about measuring power consumption of various commands:
Hackaday: the-effect-of-code-on-power-consumption
Aside from that:
- Interrupts are your friends
- Polling / wait() aren't your friends
- Do as little as possible
- make your code as small/efficient as possible
- Turn off as many modules, pins, peripherals as possible in the micro
- Run as slowly as possible
- If the micro has settings for pin drive strengh, slew rate, etc. check them & configure them, the defaults are often full power / max speed.
- returning to the article above, go back and measure the power & see if you can drop it by altering things.
also something that is not trivial to do is reduce precision of the mathematical operations, go for the smallest dataset available and if available by your development environment pack data and aggregate operations.
knuth books could give you all the variant of specific algorithms you need to save memory or cpu, or going with reduced precision minimizing the rounding errors
also, spent some time checking for all the embedded device api - for example most symbian phones could do audio encoding via a specialized hardware
Do your work as quickly as possible, and then go to some idle state waiting for interrupts (or events) to happen. Try to make the code run out of cache with as little external memory traffic as possible.
On Linux, install powertop to see how often which piece of software wakes up the CPU. And follow the various tips that the powertop site links to, some of which are probably applicable to non-Linux, too.
http://www.lesswatts.org/projects/powertop/
Choose efficient algorithms that are quick and have small basic blocks and minimal memory accesses.
Understand the cache size and functional units of your processor.
Don't access memory. Don't use objects or garbage collection or any other high level constructs if they expands your working code or data set outside the available cache. If you know the cache size and associativity, lay out the entire working data set you will need in low power mode and fit it all into the dcache (forget some of the "proper" coding practices that scatter the data around in separate objects or data structures if that causes cache trashing). Same with all the subroutines. Put your working code set all in one module if necessary to stripe it all in the icache. If the processor has multiple levels of cache, try to fit in the lowest level of instruction or data cache possible. Don't use floating point unit or any other instructions that may power up any other optional functional units unless you can make a good case that use of these instructions significantly shortens the time that the CPU is out of sleep mode.
etc.
Don't poll, sleep
Avoid using power hungry areas of the chip when possible. For example multipliers are power hungry, if you can shift and add you can save some Joules (as long as you don't do so much shifting and adding that actually the multiplier is a win!)
If you are really serious,l get a power-aware debugger, which can correlate power usage with your source code. Like this

Resources