I would like to know how many times a search term appears in a given field of each document. For example, given the following document
{
"id": 123,
"my_sentence": "There are many trees in the park. The trees are large and small"
}
and the search term of trees, what kind of query would produce a result like
{
"id": 123,
"hits": 2
}
I have seen answers that are old and use a script, such as
"script_fields": {
"tf": {
"script": "_index['field_to_search']['search_term'].tf()"
}
}
However, this only seems to work when the search term is a single word, and the particular field being searched is not stemmed.
Related
I've been constructing an ElasticSearch query using Fuzzy Matching to match a user in the system. When running it against a specific group of users (ones with my name), the query appears to work perfectly, but when running it against a random selection of users, it appears to fail.
For the purposes of my testing, I'm passing in the exact values of a specific user, so I would expect at least 1 match.
In narrowing this down, I found that an exact match against a name returns the data as expected, but putting the same value into a fuzzy block causes it to return 0 results.
For Instance, this query returns a user record as expected:
{
"from": 0,
"size": 1,
"query": {
"bool": {
"must": [
{
"match": {
"firstName": {
"query": "sVxGBCkPYZ",
"boost": 30
}
}
}
],
"should": [
]
}
},
"fields": [
"id",
"firstName"
]
}
However replacing the match element with the below fails to return any records:
{
"fuzzy": {
"firstName": {
"value": "sVxGBCkPYZ",
"fuzziness": 2,
"boost": 30,
"min_similarity": 0.3
}
}
}
Why would this be happening, and is there anything I can do to remedy the situation?
For reference. This is the ES version i'm currently using:
"version": {
"number": "1.7.1",
"build_hash": "b88f43fc40b0bcd7f173a1f9ee2e97816de80b19",
"build_timestamp": "2015-07-29T09:54:16Z",
"build_snapshot": false,
"lucene_version": "4.10.4"
}
The match fails because fuzzy searches are term level queries meaning the query string would not be analysed while the data that got indexed, I assume, if of type text with standard analyzer, would be converted to svxgbckpyz in the inverted index.
You can instead, implement fuzziness with match query as below:
POST testindex/_search
{
"query":{
"match":{
"firstname":{
"query":"sVxGBCkPYZ",
"fuzziness":"AUTO"
}
}
}
}
You can change the value from AUTO to 2 or 3 depending on your use case.
The exact match you mentioned also works because query string would get analysed and converts the input string into lower case, which is available in inverted index.
As for how fuzzy query (that you've mentioned) works behind the scene, as per this LINK, is as follows:
The fuzzy query works by taking the original term and building a
Levenshtein automaton—like a big graph representing all the strings
that are within the specified edit distance of the original string.
The fuzzy query then uses the automaton to step efficiently through
all of the terms in the term dictionary to see if they match. Once it
has collected all of the matching terms that exist in the term
dictionary, it can compute the list of matching documents.
Of course, depending on the type of data stored in the index, a fuzzy
query with an edit distance of 2 can match a very large number of
terms and perform very badly.
Note this statement in particular, representing all the strings that are within the specified edit distance of the original string
For e.g. some of the words with distance of 1 for life would be aife, bife, cife, dife....lifz.
So in your case, fuzzy search's automaton would not be able to create term svxgbckpyz from input string sVxGBCkPYZ firstly because the distance between them is 7 (Remember distance is 1 between A and a) which I don't think AUTO option can create and even if you configure it to 7, it may not create the string as there would be huge list of words with distance 7
Adding one more LINK for more info. Hope it helps!
Is it possible to score my searches according to the number of matches when using operator "or"?
Currently query looks like this:
"query": {
"function_score": {
"query": {
"match": {
"tags.eng": {
"query": "apples banana juice",
"operator": "or",
"fuzziness": "AUTO"
}
}
},
"script_score": {
"script": # TODO
},
"boost_mode": "replace"
}
}
I don't want to use "and" operator, since I want documents containing "apple juice" to be found, as well as documents containing only "juice", etc. However a document containing the three words should score more than documents containing two words or a single word, and so on.
I found a possible solution here https://github.com/elastic/elasticsearch/issues/13806
which uses bool queries. However I don't know how to access the tokens (in this example: apples, banana, juice) generated by the analyzer.
Any help?
Based on the discussions above I came up with the following solution, which is a bit different that I imagined when I asked the question, but works for my case.
First of all I defined a new similarity:
"settings": {
"similarity": {
"boost_similarity": {
"type": "scripted",
"script": {
"source": "return 1;"
}
}
}
...
}
Then I had the following problem:
a query for "apple banana juice" had the same score for a doc with tags ["apple juice", "apple"] and another doc with tag ["banana", "apple juice"]. Although I would like to score the second one higher.
From the this other discussion I found out that this issue was caused because I had a nested field. And I created a usual text field to address it.
But I also was wanted to distinguish between a doc with tags ["apple", "banana", "juice"] and another doc with tag ["apple banana juice"] (all three words in the same tag). The final solution was therefore to keep both fields (a nested and a text field) for my tags.
Finally the query consists of bool query with two should clauses: the first should clause is performed on the text field and uses an "or" operator. The second should clause is performed on the nested field and uses and "and operator"
Despite I found a solution for this specific issue, I still face a few other problems when using ES to search for tagged documents. The examples in the documentation seem to work very well when searching for full texts. But does someone know where I can find something more specific to tagged documents?
I want to sort results, such that if one specific field (let's say 'first_name') is equal to an exact value (let's say 'Bob'), then those documents are returned first.
That would result in all documents where first_name is exactly 'Bob', would be returned first, and then all the other documents afterwards. Note that I don't intend to exclude documents where first_name is not 'Bob', merely sort them such that they're returned after all the Bobs.
I understand how numeric or alphabetical sorting works in Elasticsearch, but I can't find any part of the documentation covering this type of sorting.
Is this possible, and if so, how?
One solution is to manipulate the score of the results that contain the Bob in the first name field.
For example:
POST /test/users
{
"name": "Bob"
}
POST /test/users
{
"name": "Alice"
}
GET /test/users/_search
{
"query": {
"bool": {
"should": [
{
"match": {
"name": {
"query": "Bob",
"boost" : 2
}
}
},
{
"match_all": {}
}
]
}
}
}
Would return both Bob and Alice in that order (with approximate scores of 1 and 0.2 respectively).
From the book:
Query-time boosting is the main tool that you can use to tune
relevance. Any type of query accepts a boost parameter. Setting a
boost of 2 doesn’t simply double the final _score; the actual boost
value that is applied goes through normalization and some internal
optimization. However, it does imply that a clause with a boost of 2
is twice as important as a clause with a boost of 1.
Meaning that if you also wanted "Fred" to come ahead of Bob you could just boost it with a 3 factor in the example above.
I have an array field with a lot of keywords and i need to sort the documents on the basis on how many times a particular keyword repetation in those arrays.
For eg,if my field name is "nationality" and for document 1, it consists of the following
doc1
nationality :
["US","UK","Australia","India","US","US"]
and for doc2
nationality:
["US","UK","US","US","US","China"]
I want only those documents to be shown where the term "US" occurs more than 3 times. That would make only doc2 to be shown. How to do this?
You can use scripting for this to be implemented.
{
"query": {
"filtered": {
"filter": {
"script": {
"script": "_index['nationality']['US'].tf() > 3"
}
}
}
}
}
Here in this scripy the array "nationality" is checked for the term "US" and the count is taken by tf (term frequency). Now only the documents with term frequency greater than three are shown in the results. You can learn more about the filter operations here
Given an index of books that have a title, an author, and a description, I'd like the resulting search results to be sorted this way:
all books that match the title sorted by downloads (a numeric value)
all books that match on author sorted by downloads
all books that match on description sorted by downloads
I use the search query below, but the problem is that each entry has a different score thus making sorting by downloads irrelevant.
e.g. when the search term is 'sorting' - title: 'sorting in elastic search' will score higher than title: 'postgresql sorting is awesome' (because of the word position).
query = QueryBuilders.multiMatchQuery(queryString, "title^16", "author^8", "description^4")
elasticClient.prepareSearch(Index)
.setTypes(Book)
.setQuery(query)
.addSort(SortBuilders.scoreSort())
.addSort(SortBuilders.fieldSort("downloads").order(SortOrder.DESC))
How do I construct my query so that I could get the desired book sorting?
I use standard analysers and I need to the search query to be analysed, also I will have to handle multi-word search query strings.
Thx.
What you need here is a way to compute score based on three weighted field and a numeric field. Sort will sum the score obtained from both , due to which if either one of them is too large , it will supersede the other.
Hence a better approach would be to multiple downloads with the score obtained by the match.
So i would recommend function score query -
{
"query": {
"function_score": {
"query": {
"multi_match": {
"query": "sorting",
"fields": [
"title^16",
"author^8",
"description^4"
]
}
},
"function": [
{
"field_value_factor": {
"field": "downloads"
}
}
],
"boost_mode": "multiply"
}
}
}
This will compute the score based on all three fields. And then multiply that score with the value in download field to get the final score. The multiply boost_mode decides how the value computed by functions are clubbed together with the score computed by query.