Related
Given an array of size n and k, how do you find the maximum for every contiguous subarray of size k?
For example
arr = 1 5 2 6 3 1 24 7
k = 3
ans = 5 6 6 6 24 24
I was thinking of having an array of size k and each step evict the last element out and add the new element and find maximum among that. It leads to a running time of O(nk). Is there a better way to do this?
You have heard about doing it in O(n) using dequeue.
Well that is a well known algorithm for this question to do in O(n).
The method i am telling is quite simple and has time complexity O(n).
Your Sample Input:
n=10 , W = 3
10 3
1 -2 5 6 0 9 8 -1 2 0
Answer = 5 6 6 9 9 9 8 2
Concept: Dynamic Programming
Algorithm:
N is number of elements in an array and W is window size. So, Window number = N-W+1
Now divide array into blocks of W starting from index 1.
Here divide into blocks of size 'W'=3.
For your sample input:
We have divided into blocks because we will calculate maximum in 2 ways A.) by traversing from left to right B.) by traversing from right to left.
but how ??
Firstly, Traversing from Left to Right. For each element ai in block we will find maximum till that element ai starting from START of Block to END of that block.
So here,
Secondly, Traversing from Right to Left. For each element 'ai' in block we will find maximum till that element 'ai' starting from END of Block to START of that block.
So Here,
Now we have to find maximum for each subarray or window of size 'W'.
So, starting from index = 1 to index = N-W+1 .
max_val[index] = max(RL[index], LR[index+w-1]);
for index=1: max_val[1] = max(RL[1],LR[3]) = max(5,5)= 5
Simliarly, for all index i, (i<=(n-k+1)), value at RL[i] and LR[i+w-1]
are compared and maximum among those two is answer for that subarray.
So Final Answer : 5 6 6 9 9 9 8 2
Time Complexity: O(n)
Implementation code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LIM 100001
using namespace std;
int arr[LIM]; // Input Array
int LR[LIM]; // maximum from Left to Right
int RL[LIM]; // maximum from Right to left
int max_val[LIM]; // number of subarrays(windows) will be n-k+1
int main(){
int n, w, i, k; // 'n' is number of elements in array
// 'w' is Window's Size
cin >> n >> w;
k = n - w + 1; // 'K' is number of Windows
for(i = 1; i <= n; i++)
cin >> arr[i];
for(i = 1; i <= n; i++){ // for maximum Left to Right
if(i % w == 1) // that means START of a block
LR[i] = arr[i];
else
LR[i] = max(LR[i - 1], arr[i]);
}
for(i = n; i >= 1; i--){ // for maximum Right to Left
if(i == n) // Maybe the last block is not of size 'W'.
RL[i] = arr[i];
else if(i % w == 0) // that means END of a block
RL[i] = arr[i];
else
RL[i] = max(RL[i+1], arr[i]);
}
for(i = 1; i <= k; i++) // maximum
max_val[i] = max(RL[i], LR[i + w - 1]);
for(i = 1; i <= k ; i++)
cout << max_val[i] << " ";
cout << endl;
return 0;
}
Running Code Link
I'll try to proof: (by #johnchen902)
If k % w != 1 (k is not the begin of a block)
Let k* = The begin of block containing k
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= max( max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k*]),
max( arr[k*], arr[k* + 1], arr[k* + 2], ..., arr[k + w - 1]) )
= max( RL[k], LR[k+w-1] )
Otherwise (k is the begin of a block)
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= RL[k] = LR[k+w-1]
= max( RL[k], LR[k+w-1] )
Dynamic programming approach is very neatly explained by Shashank Jain. I would like to explain how to do the same using dequeue.
The key is to maintain the max element at the top of the queue(for a window ) and discarding the useless elements and we also need to discard the elements that are out of index of current window.
useless elements = If Current element is greater than the last element of queue than the last element of queue is useless .
Note : We are storing the index in queue not the element itself. It will be more clear from the code itself.
1. If Current element is greater than the last element of queue than the last element of queue is useless . We need to delete that last element.
(and keep deleting until the last element of queue is smaller than current element).
2. If if current_index - k >= q.front() that means we are going out of window so we need to delete the element from front of queue.
vector<int> max_sub_deque(vector<int> &A,int k)
{
deque<int> q;
for(int i=0;i<k;i++)
{
while(!q.empty() && A[i] >= A[q.back()])
q.pop_back();
q.push_back(i);
}
vector<int> res;
for(int i=k;i<A.size();i++)
{
res.push_back(A[q.front()]);
while(!q.empty() && A[i] >= A[q.back()] )
q.pop_back();
while(!q.empty() && q.front() <= i-k)
q.pop_front();
q.push_back(i);
}
res.push_back(A[q.front()]);
return res;
}
Since each element is enqueued and dequeued atmost 1 time to time complexity is O(n+n) = O(2n) = O(n).
And the size of queue can not exceed the limit k . so space complexity = O(k).
An O(n) time solution is possible by combining the two classic interview questions:
Make a stack data-structure (called MaxStack) which supports push, pop and max in O(1) time.
This can be done using two stacks, the second one contains the minimum seen so far.
Model a queue with a stack.
This can done using two stacks. Enqueues go into one stack, and dequeues come from the other.
For this problem, we basically need a queue, which supports enqueue, dequeue and max in O(1) (amortized) time.
We combine the above two, by modelling a queue with two MaxStacks.
To solve the question, we queue k elements, query the max, dequeue, enqueue k+1 th element, query the max etc. This will give you the max for every k sized sub-array.
I believe there are other solutions too.
1)
I believe the queue idea can be simplified. We maintain a queue and a max for every k. We enqueue a new element, and dequeu all elements which are not greater than the new element.
2) Maintain two new arrays which maintain the running max for each block of k, one array for one direction (left to right/right to left).
3) Use a hammer: Preprocess in O(n) time for range maximum queries.
The 1) solution above might be the most optimal.
You need a fast data structure that can add, remove and query for the max element in less than O(n) time (you can just use an array if O(n) or O(nlogn) is acceptable). You can use a heap, a balanced binary search tree, a skip list, or any other sorted data structure that performs these operations in O(log(n)).
The good news is that most popular languages have a sorted data structure implemented that supports these operations for you. C++ has std::set and std::multiset (you probably need the latter) and Java has PriorityQueue and TreeSet.
Here is the java implementation
public static Integer[] maxsInEveryWindows(int[] arr, int k) {
Deque<Integer> deque = new ArrayDeque<Integer>();
/* Process first k (or first window) elements of array */
for (int i = 0; i < k; i++) {
// For very element, the previous smaller elements are useless so
// remove them from deque
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast(); // Remove from rear
}
// Add new element at rear of queue
deque.addLast(i);
}
List<Integer> result = new ArrayList<Integer>();
// Process rest of the elements, i.e., from arr[k] to arr[n-1]
for (int i = k; i < arr.length; i++) {
// The element at the front of the queue is the largest element of
// previous window, so add to result.
result.add(arr[deque.getFirst()]);
// Remove all elements smaller than the currently
// being added element (remove useless elements)
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast();
}
// Remove the elements which are out of this window
while (!deque.isEmpty() && deque.getFirst() <= i - k) {
deque.removeFirst();
}
// Add current element at the rear of deque
deque.addLast(i);
}
// Print the maximum element of last window
result.add(arr[deque.getFirst()]);
return result.toArray(new Integer[0]);
}
Here is the corresponding test case
#Test
public void maxsInWindowsOfSizeKTest() {
Integer[] result = ArrayUtils.maxsInEveryWindows(new int[]{1, 2, 3, 1, 4, 5, 2, 3, 6}, 3);
assertThat(result, equalTo(new Integer[]{3, 3, 4, 5, 5, 5, 6}));
result = ArrayUtils.maxsInEveryWindows(new int[]{8, 5, 10, 7, 9, 4, 15, 12, 90, 13}, 4);
assertThat(result, equalTo(new Integer[]{10, 10, 10, 15, 15, 90, 90}));
}
Using a heap (or tree), you should be able to do it in O(n * log(k)). I'm not sure if this would be indeed better.
here is the Python implementation in O(1)...Thanks to #Shahshank Jain in advance..
from sys import stdin,stdout
from operator import *
n,w=map(int , stdin.readline().strip().split())
Arr=list(map(int , stdin.readline().strip().split()))
k=n-w+1 # window size = k
leftA=[0]*n
rightA=[0]*n
result=[0]*k
for i in range(n):
if i%w==0:
leftA[i]=Arr[i]
else:
leftA[i]=max(Arr[i],leftA[i-1])
for i in range(n-1,-1,-1):
if i%w==(w-1) or i==n-1:
rightA[i]=Arr[i]
else:
rightA[i]=max(Arr[i],rightA[i+1])
for i in range(k):
result[i]=max(rightA[i],leftA[i+w-1])
print(*result,sep=' ')
Method 1: O(n) time, O(k) space
We use a deque (it is like a list but with constant-time insertion and deletion from both ends) to store the index of useful elements.
The index of the current max is kept at the leftmost element of deque. The rightmost element of deque is the smallest.
In the following, for easier explanation we say an element from the array is in the deque, while in fact the index of that element is in the deque.
Let's say {5, 3, 2} are already in the deque (again, if fact their indexes are).
If the next element we read from the array is bigger than 5 (remember, the leftmost element of deque holds the max), say 7: We delete the deque and create a new one with only 7 in it (we do this because the current elements are useless, we have found a new max).
If the next element is less than 2 (which is the smallest element of deque), say 1: We add it to the right ({5, 3, 2, 1})
If the next element is bigger than 2 but less than 5, say 4: We remove elements from right that are smaller than the element and then add the element from right ({5, 4}).
Also we keep elements of the current window only (we can do this in constant time because we are storing the indexes instead of elements).
from collections import deque
def max_subarray(array, k):
deq = deque()
for index, item in enumerate(array):
if len(deq) == 0:
deq.append(index)
elif index - deq[0] >= k: # the max element is out of the window
deq.popleft()
elif item > array[deq[0]]: # found a new max
deq = deque()
deq.append(index)
elif item < array[deq[-1]]: # the array item is smaller than all the deque elements
deq.append(index)
elif item > array[deq[-1]] and item < array[deq[0]]:
while item > array[deq[-1]]:
deq.pop()
deq.append(index)
if index >= k - 1: # start printing when the first window is filled
print(array[deq[0]])
Proof of O(n) time: The only part we need to check is the while loop. In the whole runtime of the code, the while loop can perform at most O(n) operations in total. The reason is that the while loop pops elements from the deque, and since in other parts of the code, we do at most O(n) insertions into the deque, the while loop cannot exceed O(n) operations in total. So the total runtime is O(n) + O(n) = O(n)
Method 2: O(n) time, O(n) space
This is the explanation of the method suggested by S Jain (as mentioned in the comments of his post, this method doesn't work with data streams, which most sliding window questions are designed for).
The reason that method works is explained using the following example:
array = [5, 6, 2, 3, 1, 4, 2, 3]
k = 4
[5, 6, 2, 3 1, 4, 2, 3 ]
LR: 5 6 6 6 1 4 4 4
RL: 6 6 3 3 4 4 3 3
6 6 4 4 4
To get the max for the window [2, 3, 1, 4],
we can get the max of [2, 3] and max of [1, 4], and return the bigger of the two.
Max of [2, 3] is calculated in the RL pass and max of [1, 4] is calculated in LR pass.
Using Fibonacci heap, you can do it in O(n + (n-k) log k), which is equal to O(n log k) for small k, for k close to n this becomes O(n).
The algorithm: in fact, you need:
n inserts to the heap
n-k deletions
n-k findmax's
How much these operations cost in Fibonacci heaps? Insert and findmax is O(1) amortized, deletion is O(log n) amortized. So, we have
O(n + (n-k) log k + (n-k)) = O(n + (n-k) log k)
Sorry, this should have been a comment but I am not allowed to comment for now.
#leo and #Clay Goddard
You can save yourselves from re-computing the maximum by storing both maximum and 2nd maximum of the window in the beginning
(2nd maximum will be the maximum only if there are two maximums in the initial window). If the maximum slides out of the window you still have the next best candidate to compare with the new entry. So you get O(n) , otherwise if you allowed the whole re-computation again the worst case order would be O(nk), k is the window size.
class MaxFinder
{
// finds the max and its index
static int[] findMaxByIteration(int arr[], int start, int end)
{
int max, max_ndx;
max = arr[start];
max_ndx = start;
for (int i=start; i<end; i++)
{
if (arr[i] > max)
{
max = arr[i];
max_ndx = i;
}
}
int result[] = {max, max_ndx};
return result;
}
// optimized to skip iteration, when previous windows max element
// is present in current window
static void optimizedPrintKMax(int arr[], int n, int k)
{
int i, j, max, max_ndx;
// for first window - find by iteration.
int result[] = findMaxByIteration(arr, 0, k);
System.out.printf("%d ", result[0]);
max = result[0];
max_ndx = result[1];
for (j=1; j <= (n-k); j++)
{
// if previous max has fallen out of current window, iterate and find
if (max_ndx < j)
{
result = findMaxByIteration(arr, j, j+k);
max = result[0];
max_ndx = result[1];
}
// optimized path, just compare max with new_elem that has come into the window
else
{
int new_elem_ndx = j + (k-1);
if (arr[new_elem_ndx] > max)
{
max = arr[new_elem_ndx];
max_ndx = new_elem_ndx;
}
}
System.out.printf("%d ", max);
}
}
public static void main(String[] args)
{
int arr[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
//int arr[] = {1,5,2,6,3,1,24,7};
int n = arr.length;
int k = 3;
optimizedPrintKMax(arr, n, k);
}
}
package com;
public class SlidingWindow {
public static void main(String[] args) {
int[] array = { 1, 5, 2, 6, 3, 1, 24, 7 };
int slide = 3;//say
List<Integer> result = new ArrayList<Integer>();
for (int i = 0; i < array.length - (slide-1); i++) {
result.add(getMax(array, i, slide));
}
System.out.println("MaxList->>>>" + result.toString());
}
private static Integer getMax(int[] array, int i, int slide) {
List<Integer> intermediate = new ArrayList<Integer>();
System.out.println("Initial::" + intermediate.size());
while (intermediate.size() < slide) {
intermediate.add(array[i]);
i++;
}
Collections.sort(intermediate);
return intermediate.get(slide - 1);
}
}
Here is the solution in O(n) time complexity with auxiliary deque
public class TestSlidingWindow {
public static void main(String[] args) {
int[] arr = { 1, 5, 7, 2, 1, 3, 4 };
int k = 3;
printMaxInSlidingWindow(arr, k);
}
public static void printMaxInSlidingWindow(int[] arr, int k) {
Deque<Integer> queue = new ArrayDeque<Integer>();
Deque<Integer> auxQueue = new ArrayDeque<Integer>();
int[] resultArr = new int[(arr.length - k) + 1];
int maxElement = 0;
int j = 0;
for (int i = 0; i < arr.length; i++) {
queue.add(arr[i]);
if (arr[i] > maxElement) {
maxElement = arr[i];
}
/** we need to maintain the auxiliary deque to maintain max element in case max element is removed.
We add the element to deque straight away if subsequent element is less than the last element
(as there is a probability if last element is removed this element can be max element) otherwise
remove all lesser element then insert current element **/
if (auxQueue.size() > 0) {
if (arr[i] < auxQueue.peek()) {
auxQueue.push(arr[i]);
} else {
while (auxQueue.size() > 0 && (arr[i] > auxQueue.peek())) {
auxQueue.pollLast();
}
auxQueue.push(arr[i]);
}
}else {
auxQueue.push(arr[i]);
}
if (queue.size() > 3) {
int removedEl = queue.removeFirst();
if (maxElement == removedEl) {
maxElement = auxQueue.pollFirst();
}
}
if (queue.size() == 3) {
resultArr[j++] = maxElement;
}
}
for (int i = 0; i < resultArr.length; i++) {
System.out.println(resultArr[i]);
}
}
}
static void countDistinct(int arr[], int n, int k)
{
System.out.print("\nMaximum integer in the window : ");
// Traverse through every window
for (int i = 0; i <= n - k; i++) {
System.out.print(findMaximuminAllWindow(Arrays.copyOfRange(arr, i, arr.length), k)+ " ");
}
}
private static int findMaximuminAllWindow(int[] win, int k) {
// TODO Auto-generated method stub
int max= Integer.MIN_VALUE;
for(int i=0; i<k;i++) {
if(win[i]>max)
max=win[i];
}
return max;
}
arr = 1 5 2 6 3 1 24 7
We have to find the maximum of subarray, Right?
So, What is meant by subarray?
SubArray = Partial set and it should be in order and contiguous.
From the above array
{1,5,2} {6,3,1} {1,24,7} all are the subarray examples
n = 8 // Array length
k = 3 // window size
For finding the maximum, we have to iterate through the array, and find the maximum.
From the window size k,
{1,5,2} = 5 is the maximum
{5,2,6} = 6 is the maximum
{2,6,3} = 6 is the maximum
and so on..
ans = 5 6 6 6 24 24
It can be evaluated as the n-k+1
Hence, 8-3+1 = 6
And the length of an answer is 6 as we seen.
How can we solve this now?
When the data is moving from the pipe, the first thought for the data structure came in mind is the Queue
But, rather we are not discussing much here, we directly jump on the deque
Thinking Would be:
Window is fixed and data is in and out
Data is fixed and window is sliding
EX: Time series database
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
For the rest:
Print the front of queue
// purged expired element
While (queue not empty and queue.front() <= I-k) {
Queue.pop_front();
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
}
}
arr = [1, 2, 3, 1, 4, 5, 2, 3, 6]
k = 3
for i in range(len(arr)-k):
k=k+1
print (max(arr[i:k]),end=' ') #3 3 4 5 5 5 6
Two approaches.
Segment Tree O(nlog(n-k))
Build a maximum segment-tree.
Query between [i, i+k)
Something like..
public static void printMaximums(int[] a, int k) {
int n = a.length;
SegmentTree tree = new SegmentTree(a);
for (int i=0; i<=n-k; i++) System.out.print(tree.query(i, i+k));
}
Deque O(n)
If the next element is greater than the rear element, remove the rear element.
If the element in the front of the deque is out of the window, remove the front element.
public static void printMaximums(int[] a, int k) {
int n = a.length;
Deque<int[]> deck = new ArrayDeque<>();
List<Integer> result = new ArrayList<>();
for (int i=0; i<n; i++) {
while (!deck.isEmpty() && a[i] >= deck.peekLast()[0]) deck.pollLast();
deck.offer(new int[] {a[i], i});
while (!deck.isEmpty() && deck.peekFirst()[1] <= i - k) deck.pollFirst();
if (i >= k - 1) result.add(deck.peekFirst()[0]);
}
System.out.println(result);
}
Here is an optimized version of the naive (conditional) nested loop approach I came up with which is much faster and doesn't require any auxiliary storage or data structure.
As the program moves from window to window, the start index and end index moves forward by 1. In other words, two consecutive windows have adjacent start and end indices.
For the first window of size W , the inner loop finds the maximum of elements with index (0 to W-1). (Hence i == 0 in the if in 4th line of the code).
Now instead of computing for the second window which only has one new element, since we have already computed the maximum for elements of indices 0 to W-1, we only need to compare this maximum to the only new element in the new window with the index W.
But if the element at 0 was the maximum which is the only element not part of the new window, we need to compute the maximum using the inner loop from 1 to W again using the inner loop (hence the second condition maxm == arr[i-1] in the if in line 4), otherwise just compare the maximum of the previous window and the only new element in the new window.
void print_max_for_each_subarray(int arr[], int n, int k)
{
int maxm;
for(int i = 0; i < n - k + 1 ; i++)
{
if(i == 0 || maxm == arr[i-1]) {
maxm = arr[i];
for(int j = i+1; j < i+k; j++)
if(maxm < arr[j]) maxm = arr[j];
}
else {
maxm = maxm < arr[i+k-1] ? arr[i+k-1] : maxm;
}
cout << maxm << ' ';
}
cout << '\n';
}
You can use Deque data structure to implement this. Deque has an unique facility that you can insert and remove elements from both the ends of the queue unlike the traditional queue where you can only insert from one end and remove from other.
Following is the code for the above problem.
public int[] maxSlidingWindow(int[] nums, int k) {
int n = nums.length;
int[] maxInWindow = new int[n - k + 1];
Deque<Integer> dq = new LinkedList<Integer>();
int i = 0;
for(; i<k; i++){
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
for(; i <n; i++){
maxInWindow[i - k] = nums[dq.peekFirst()];
while(!dq.isEmpty() && dq.peekFirst() <= i - k){
dq.removeFirst();
}
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
maxInWindow[i - k] = nums[dq.peekFirst()];
return maxInWindow;
}
the resultant array will have n - k + 1 elements where n is length of the given array, k is the given window size.
We can solve it using the Python , applying the slicing.
def sliding_window(a,k,n):
max_val =[]
val =[]
val1=[]
for i in range(n-k-1):
if i==0:
val = a[0:k+1]
print("The value in val variable",val)
val1 = max(val)
max_val.append(val1)
else:
val = a[i:i*k+1]
val1 =max(val)
max_val.append(val1)
return max_val
Driver Code
a = [15,2,3,4,5,6,2,4,9,1,5]
n = len(a)
k = 3
sl=s liding_window(a,k,n)
print(sl)
Create a TreeMap of size k. Put first k elements as keys in it and assign any value like 1(doesn't matter). TreeMap has the property to sort the elements based on key so now, first element in map will be min and last element will be max element. Then remove 1 element from the map whose index in the arr is i-k. Here, I have considered that Input elements are taken in array arr and from that array we are filling the map of size k. Since, we can't do anything with sorting happening inside TreeMap, therefore this approach will also take O(n) time.
100% working Tested (Swift)
func maxOfSubArray(arr:[Int],n:Int,k:Int)->[Int]{
var lenght = arr.count
var resultArray = [Int]()
for i in 0..<arr.count{
if lenght+1 > k{
let tempArray = Array(arr[i..<k+i])
resultArray.append(tempArray.max()!)
}
lenght = lenght - 1
}
print(resultArray)
return resultArray
}
This way we can use:
maxOfSubArray(arr: [1,2,3,1,4,5,2,3,6], n: 9, k: 3)
Result:
[3, 3, 4, 5, 5, 5, 6]
Just notice that you only have to find in the new window if:
* The new element in the window is smaller than the previous one (if it's bigger, it's for sure this one).
OR
* The element that just popped out of the window was the current bigger.
In this case, re-scan the window.
for how big k? for reasonable-sized k. you can create k k-sized buffers and just iterate over the array keeping track of max element pointers in the buffers - needs no data structures and is O(n) k^2 pre-allocation.
A complete working solution in Amortised Constant O(1) Complexity.
https://github.com/varoonverma/code-challenge.git
Compare the first k elements and find the max, this is your first number
then compare the next element to the previous max. If the next element is bigger, that is your max of the next subarray, if its equal or smaller, the max for that sub array is the same
then move on to the next number
max(1 5 2) = 5
max(5 6) = 6
max(6 6) = 6
... and so on
max(3 24) = 24
max(24 7) = 24
It's only slightly better than your answer
Given integers n and k, find the lexicographically k-th smallest integer in the range from 1 to n.
Note: 1 ≤ k ≤ n ≤ 109.
Example:
Input:
n: 13 k: 2
Output:
10
Explanation:
The lexicographical order is [1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9], so the second smallest number is 10.
I have written a code which works fine but when I give very high input it takes a lot of time to execute and hence time out. Could some one please suggest me how i can make it more efficient.
Thanks!!
public class Solution {
class MyComp implements Comparator<Integer>{
#Override
public int compare(Integer n1, Integer n2) {
return String.valueOf(n1).compareTo(String.valueOf(n2));
}
}
public int findKthNumber(int n, int k) {
if(n==0 || k ==0 || k > n) return 0;
int[] tracker = new int[9];
Arrays.fill(tracker,0);
Map<Integer,TreeSet<Integer>> map = new HashMap<Integer,TreeSet<Integer>>();
for(int i =1;i<=n;i++){
String prefix = String.valueOf(i);
int currIndex = Integer.parseInt(prefix.substring(0,1));
//Update count
tracker[currIndex-1] = tracker[currIndex-1] + 1;
if(map.containsKey(currIndex)){
TreeSet<Integer> set = map.get(currIndex);
set.add(i);
map.put(currIndex,set);
}else{
TreeSet<Integer> set = new TreeSet<Integer>(new MyComp());
set.add(i);
map.put(currIndex,set);
}
}
// counter to check the if we reach near by K
int count =1;
for(int i=0;i<9 ;i++ ){
int lookUp = i+1;
int val = tracker[i];
if( count + map.get(lookUp).size() > k){
for(int res : map.get(lookUp)){
if(count == k) return res;
count++;
}
}
count = count + map.get(lookUp).size();
}
return 0;
}
}
You can use QuickSort for finding location. That will give you nlogn but will be much quicker n simpler.
Psudo code
-> pick random number of out list.
-> put all element lesser than that one side,higher than that number other side.
->if the number of lesser elements are k-1, you got the answer.
->if lesser elements are less than k-1, apply same algo on right side.
-> if lesser numbers of elements are greater than k, apply same algo on left side.
You can do this inplace
Best time complexity is o (1)
Worst time complexity is o (n*n)
But it gives very stable performance for multiple iteration
Random nature works on all sort of data
Let me know if any of the steps are not clear :)
For such small numbers you could generate all Strings in an array, sort it and return the k-th entry:
String[] arr = new String[n];
for (int i = 0; i < n; i++)
arr[i] = String.valueOf(n + 1);
Arrays.sort(arr);
return Integer.parseInt(arr[k - 1]);
It seems to be much easier than counting to the k-th entry. You don't need to sort the whole array, because you only need to find the k-th smallest entry, anyway for those small numbers it doesn't matter.
Or even better use an integer array and the comparator you already created:
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++)
arr[i] = i + 1;
Arrays.sort(arr, MyComp);
return arr[k - 1].intValue();
This question already has answers here:
Maximum sum sublist?
(13 answers)
Closed 8 years ago.
I had an interview question a while back that I never got a solution for. Apparently there is a "very efficient" algorithm to solve it.
The question: Given an array of random positive and negative numbers, find the continuous subset that has the greatest sum.
Example:
[1, -7, 4, 5, -1, 5]
The best subset here is {4, 5, -1, 5}
I can think of no solution but the brute-force method. What is the efficient method?
Iterate through the list, keeping track of the local sum of the list elements so far.
If the local sum is the highest sum so far, then keep a record of it.
If the local sum reaches 0 or below, then reset it and restart from the next element.
Theory
If the current subset sum is greater than zero it will contribute to future subset sums, so we keep it. On the other hand if the current subset sum is zero or below it will not contribute to future subset sums. So we throw it away and start fresh with a new subset sum. Then it's just a matter of keeping track of when the current subset sum is greater then any previous encountered.
Pseudocode
In-parameter is an array list of length N. The result is stored in best_start and best_end.
best_sum = -MAX
best_start = best_end = -1
local_start = local_sum = 0
for i from 0 to N-1 {
local_sum = local_sum + list[i]
if local_sum > best_sum {
best_sum = local_sum
best_start = local_start
best_end = i
}
if local_sum <= 0 {
local_sum = 0
local_start = i+1
}
}
Convert the list into a list of cumulative sums, [1,-7,4,5,-1,5] to [1, -6, -2, -3, 2]. Then walk through the list of cumulative sums, saving the smallest value so far and the maximum difference between what you see as the current value and what is currently the smallest value.
Got it from here
You can answer this question from CLRS, which includes a tip:
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem.
Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far.
Knowing a maximum sub array of A[1..j], extend the answer to find a maximum subarray ending at index j+1 by using the following observation:
a maximum sub array of A[1..j+1] is either a maximum sub array of A[1..j] or a sub array A[i..j+1], for some 1 <= i <= j + 1.
Determine a maximum sub array of the form A[i..j+1] in constant time based on knowing a maximum subarray ending at index j.
max-sum = A[1]
current-sum = A[1]
left = right = 1
current-left = current-right = 1
for j = 2 to n
if A[j] > current-sum + A[j]
current-sum = A[j]
current-left = current-right = j
else
current-sum += A[j]
current-right = j
if current-sum > max-sum
max-sum = current-sum
left = current-left
right = current-right
return (max-sum, left, right)
Too bad Java does not have tuple return type. So, had to print the indices and sum in the method.
public class Kadane {
public static void main(String[] args) {
int[] intArr = {-1, 3, -5, 4, 6, -1, 2, -7, 13, -3};
findMaxSubArray(intArr);
}
public static void findMaxSubArray(int[] inputArray){
int maxStartIndex=0;
int maxEndIndex=0;
int maxSum = Integer.MIN_VALUE;
int sum= 0;
for (int currentIndex = 0; currentIndex < inputArray.length; currentIndex++) {
int eachArrayItem = inputArray[currentIndex];
sum+=eachArrayItem;
if( eachArrayItem > sum){
maxStartIndex = currentIndex;
sum = eachArrayItem;
}
if(sum>maxSum){
maxSum = sum;
maxEndIndex = currentIndex;
}
}
System.out.println("Max sum : "+maxSum);
System.out.println("Max start index : "+maxStartIndex);
System.out.println("Max end index : "+maxEndIndex);
}
}
And here is some shameless marketing : I managed to pull together a slide on how this works
Here is the java class which runs in linear time
public class MaxSumOfContinousSubset {
public static void main(String[] args) {
System.out.println(maxSum(1, -7, 4, 5, -1, 5));
}
private static int maxSum (int... nums) {
int maxsofar = 0;
int maxhere = 0;
for (int i = 0; i < nums.length; i++) {
maxhere = Math.max(maxhere + nums[i], 0);
maxsofar = Math.max(maxhere, maxsofar);
}
return maxsofar;
}
}
Given an array of size n and k, how do you find the maximum for every contiguous subarray of size k?
For example
arr = 1 5 2 6 3 1 24 7
k = 3
ans = 5 6 6 6 24 24
I was thinking of having an array of size k and each step evict the last element out and add the new element and find maximum among that. It leads to a running time of O(nk). Is there a better way to do this?
You have heard about doing it in O(n) using dequeue.
Well that is a well known algorithm for this question to do in O(n).
The method i am telling is quite simple and has time complexity O(n).
Your Sample Input:
n=10 , W = 3
10 3
1 -2 5 6 0 9 8 -1 2 0
Answer = 5 6 6 9 9 9 8 2
Concept: Dynamic Programming
Algorithm:
N is number of elements in an array and W is window size. So, Window number = N-W+1
Now divide array into blocks of W starting from index 1.
Here divide into blocks of size 'W'=3.
For your sample input:
We have divided into blocks because we will calculate maximum in 2 ways A.) by traversing from left to right B.) by traversing from right to left.
but how ??
Firstly, Traversing from Left to Right. For each element ai in block we will find maximum till that element ai starting from START of Block to END of that block.
So here,
Secondly, Traversing from Right to Left. For each element 'ai' in block we will find maximum till that element 'ai' starting from END of Block to START of that block.
So Here,
Now we have to find maximum for each subarray or window of size 'W'.
So, starting from index = 1 to index = N-W+1 .
max_val[index] = max(RL[index], LR[index+w-1]);
for index=1: max_val[1] = max(RL[1],LR[3]) = max(5,5)= 5
Simliarly, for all index i, (i<=(n-k+1)), value at RL[i] and LR[i+w-1]
are compared and maximum among those two is answer for that subarray.
So Final Answer : 5 6 6 9 9 9 8 2
Time Complexity: O(n)
Implementation code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LIM 100001
using namespace std;
int arr[LIM]; // Input Array
int LR[LIM]; // maximum from Left to Right
int RL[LIM]; // maximum from Right to left
int max_val[LIM]; // number of subarrays(windows) will be n-k+1
int main(){
int n, w, i, k; // 'n' is number of elements in array
// 'w' is Window's Size
cin >> n >> w;
k = n - w + 1; // 'K' is number of Windows
for(i = 1; i <= n; i++)
cin >> arr[i];
for(i = 1; i <= n; i++){ // for maximum Left to Right
if(i % w == 1) // that means START of a block
LR[i] = arr[i];
else
LR[i] = max(LR[i - 1], arr[i]);
}
for(i = n; i >= 1; i--){ // for maximum Right to Left
if(i == n) // Maybe the last block is not of size 'W'.
RL[i] = arr[i];
else if(i % w == 0) // that means END of a block
RL[i] = arr[i];
else
RL[i] = max(RL[i+1], arr[i]);
}
for(i = 1; i <= k; i++) // maximum
max_val[i] = max(RL[i], LR[i + w - 1]);
for(i = 1; i <= k ; i++)
cout << max_val[i] << " ";
cout << endl;
return 0;
}
Running Code Link
I'll try to proof: (by #johnchen902)
If k % w != 1 (k is not the begin of a block)
Let k* = The begin of block containing k
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= max( max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k*]),
max( arr[k*], arr[k* + 1], arr[k* + 2], ..., arr[k + w - 1]) )
= max( RL[k], LR[k+w-1] )
Otherwise (k is the begin of a block)
ans[k] = max( arr[k], arr[k + 1], arr[k + 2], ..., arr[k + w - 1])
= RL[k] = LR[k+w-1]
= max( RL[k], LR[k+w-1] )
Dynamic programming approach is very neatly explained by Shashank Jain. I would like to explain how to do the same using dequeue.
The key is to maintain the max element at the top of the queue(for a window ) and discarding the useless elements and we also need to discard the elements that are out of index of current window.
useless elements = If Current element is greater than the last element of queue than the last element of queue is useless .
Note : We are storing the index in queue not the element itself. It will be more clear from the code itself.
1. If Current element is greater than the last element of queue than the last element of queue is useless . We need to delete that last element.
(and keep deleting until the last element of queue is smaller than current element).
2. If if current_index - k >= q.front() that means we are going out of window so we need to delete the element from front of queue.
vector<int> max_sub_deque(vector<int> &A,int k)
{
deque<int> q;
for(int i=0;i<k;i++)
{
while(!q.empty() && A[i] >= A[q.back()])
q.pop_back();
q.push_back(i);
}
vector<int> res;
for(int i=k;i<A.size();i++)
{
res.push_back(A[q.front()]);
while(!q.empty() && A[i] >= A[q.back()] )
q.pop_back();
while(!q.empty() && q.front() <= i-k)
q.pop_front();
q.push_back(i);
}
res.push_back(A[q.front()]);
return res;
}
Since each element is enqueued and dequeued atmost 1 time to time complexity is O(n+n) = O(2n) = O(n).
And the size of queue can not exceed the limit k . so space complexity = O(k).
An O(n) time solution is possible by combining the two classic interview questions:
Make a stack data-structure (called MaxStack) which supports push, pop and max in O(1) time.
This can be done using two stacks, the second one contains the minimum seen so far.
Model a queue with a stack.
This can done using two stacks. Enqueues go into one stack, and dequeues come from the other.
For this problem, we basically need a queue, which supports enqueue, dequeue and max in O(1) (amortized) time.
We combine the above two, by modelling a queue with two MaxStacks.
To solve the question, we queue k elements, query the max, dequeue, enqueue k+1 th element, query the max etc. This will give you the max for every k sized sub-array.
I believe there are other solutions too.
1)
I believe the queue idea can be simplified. We maintain a queue and a max for every k. We enqueue a new element, and dequeu all elements which are not greater than the new element.
2) Maintain two new arrays which maintain the running max for each block of k, one array for one direction (left to right/right to left).
3) Use a hammer: Preprocess in O(n) time for range maximum queries.
The 1) solution above might be the most optimal.
You need a fast data structure that can add, remove and query for the max element in less than O(n) time (you can just use an array if O(n) or O(nlogn) is acceptable). You can use a heap, a balanced binary search tree, a skip list, or any other sorted data structure that performs these operations in O(log(n)).
The good news is that most popular languages have a sorted data structure implemented that supports these operations for you. C++ has std::set and std::multiset (you probably need the latter) and Java has PriorityQueue and TreeSet.
Here is the java implementation
public static Integer[] maxsInEveryWindows(int[] arr, int k) {
Deque<Integer> deque = new ArrayDeque<Integer>();
/* Process first k (or first window) elements of array */
for (int i = 0; i < k; i++) {
// For very element, the previous smaller elements are useless so
// remove them from deque
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast(); // Remove from rear
}
// Add new element at rear of queue
deque.addLast(i);
}
List<Integer> result = new ArrayList<Integer>();
// Process rest of the elements, i.e., from arr[k] to arr[n-1]
for (int i = k; i < arr.length; i++) {
// The element at the front of the queue is the largest element of
// previous window, so add to result.
result.add(arr[deque.getFirst()]);
// Remove all elements smaller than the currently
// being added element (remove useless elements)
while (!deque.isEmpty() && arr[i] >= arr[deque.peekLast()]) {
deque.removeLast();
}
// Remove the elements which are out of this window
while (!deque.isEmpty() && deque.getFirst() <= i - k) {
deque.removeFirst();
}
// Add current element at the rear of deque
deque.addLast(i);
}
// Print the maximum element of last window
result.add(arr[deque.getFirst()]);
return result.toArray(new Integer[0]);
}
Here is the corresponding test case
#Test
public void maxsInWindowsOfSizeKTest() {
Integer[] result = ArrayUtils.maxsInEveryWindows(new int[]{1, 2, 3, 1, 4, 5, 2, 3, 6}, 3);
assertThat(result, equalTo(new Integer[]{3, 3, 4, 5, 5, 5, 6}));
result = ArrayUtils.maxsInEveryWindows(new int[]{8, 5, 10, 7, 9, 4, 15, 12, 90, 13}, 4);
assertThat(result, equalTo(new Integer[]{10, 10, 10, 15, 15, 90, 90}));
}
Using a heap (or tree), you should be able to do it in O(n * log(k)). I'm not sure if this would be indeed better.
here is the Python implementation in O(1)...Thanks to #Shahshank Jain in advance..
from sys import stdin,stdout
from operator import *
n,w=map(int , stdin.readline().strip().split())
Arr=list(map(int , stdin.readline().strip().split()))
k=n-w+1 # window size = k
leftA=[0]*n
rightA=[0]*n
result=[0]*k
for i in range(n):
if i%w==0:
leftA[i]=Arr[i]
else:
leftA[i]=max(Arr[i],leftA[i-1])
for i in range(n-1,-1,-1):
if i%w==(w-1) or i==n-1:
rightA[i]=Arr[i]
else:
rightA[i]=max(Arr[i],rightA[i+1])
for i in range(k):
result[i]=max(rightA[i],leftA[i+w-1])
print(*result,sep=' ')
Method 1: O(n) time, O(k) space
We use a deque (it is like a list but with constant-time insertion and deletion from both ends) to store the index of useful elements.
The index of the current max is kept at the leftmost element of deque. The rightmost element of deque is the smallest.
In the following, for easier explanation we say an element from the array is in the deque, while in fact the index of that element is in the deque.
Let's say {5, 3, 2} are already in the deque (again, if fact their indexes are).
If the next element we read from the array is bigger than 5 (remember, the leftmost element of deque holds the max), say 7: We delete the deque and create a new one with only 7 in it (we do this because the current elements are useless, we have found a new max).
If the next element is less than 2 (which is the smallest element of deque), say 1: We add it to the right ({5, 3, 2, 1})
If the next element is bigger than 2 but less than 5, say 4: We remove elements from right that are smaller than the element and then add the element from right ({5, 4}).
Also we keep elements of the current window only (we can do this in constant time because we are storing the indexes instead of elements).
from collections import deque
def max_subarray(array, k):
deq = deque()
for index, item in enumerate(array):
if len(deq) == 0:
deq.append(index)
elif index - deq[0] >= k: # the max element is out of the window
deq.popleft()
elif item > array[deq[0]]: # found a new max
deq = deque()
deq.append(index)
elif item < array[deq[-1]]: # the array item is smaller than all the deque elements
deq.append(index)
elif item > array[deq[-1]] and item < array[deq[0]]:
while item > array[deq[-1]]:
deq.pop()
deq.append(index)
if index >= k - 1: # start printing when the first window is filled
print(array[deq[0]])
Proof of O(n) time: The only part we need to check is the while loop. In the whole runtime of the code, the while loop can perform at most O(n) operations in total. The reason is that the while loop pops elements from the deque, and since in other parts of the code, we do at most O(n) insertions into the deque, the while loop cannot exceed O(n) operations in total. So the total runtime is O(n) + O(n) = O(n)
Method 2: O(n) time, O(n) space
This is the explanation of the method suggested by S Jain (as mentioned in the comments of his post, this method doesn't work with data streams, which most sliding window questions are designed for).
The reason that method works is explained using the following example:
array = [5, 6, 2, 3, 1, 4, 2, 3]
k = 4
[5, 6, 2, 3 1, 4, 2, 3 ]
LR: 5 6 6 6 1 4 4 4
RL: 6 6 3 3 4 4 3 3
6 6 4 4 4
To get the max for the window [2, 3, 1, 4],
we can get the max of [2, 3] and max of [1, 4], and return the bigger of the two.
Max of [2, 3] is calculated in the RL pass and max of [1, 4] is calculated in LR pass.
Using Fibonacci heap, you can do it in O(n + (n-k) log k), which is equal to O(n log k) for small k, for k close to n this becomes O(n).
The algorithm: in fact, you need:
n inserts to the heap
n-k deletions
n-k findmax's
How much these operations cost in Fibonacci heaps? Insert and findmax is O(1) amortized, deletion is O(log n) amortized. So, we have
O(n + (n-k) log k + (n-k)) = O(n + (n-k) log k)
Sorry, this should have been a comment but I am not allowed to comment for now.
#leo and #Clay Goddard
You can save yourselves from re-computing the maximum by storing both maximum and 2nd maximum of the window in the beginning
(2nd maximum will be the maximum only if there are two maximums in the initial window). If the maximum slides out of the window you still have the next best candidate to compare with the new entry. So you get O(n) , otherwise if you allowed the whole re-computation again the worst case order would be O(nk), k is the window size.
class MaxFinder
{
// finds the max and its index
static int[] findMaxByIteration(int arr[], int start, int end)
{
int max, max_ndx;
max = arr[start];
max_ndx = start;
for (int i=start; i<end; i++)
{
if (arr[i] > max)
{
max = arr[i];
max_ndx = i;
}
}
int result[] = {max, max_ndx};
return result;
}
// optimized to skip iteration, when previous windows max element
// is present in current window
static void optimizedPrintKMax(int arr[], int n, int k)
{
int i, j, max, max_ndx;
// for first window - find by iteration.
int result[] = findMaxByIteration(arr, 0, k);
System.out.printf("%d ", result[0]);
max = result[0];
max_ndx = result[1];
for (j=1; j <= (n-k); j++)
{
// if previous max has fallen out of current window, iterate and find
if (max_ndx < j)
{
result = findMaxByIteration(arr, j, j+k);
max = result[0];
max_ndx = result[1];
}
// optimized path, just compare max with new_elem that has come into the window
else
{
int new_elem_ndx = j + (k-1);
if (arr[new_elem_ndx] > max)
{
max = arr[new_elem_ndx];
max_ndx = new_elem_ndx;
}
}
System.out.printf("%d ", max);
}
}
public static void main(String[] args)
{
int arr[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
//int arr[] = {1,5,2,6,3,1,24,7};
int n = arr.length;
int k = 3;
optimizedPrintKMax(arr, n, k);
}
}
package com;
public class SlidingWindow {
public static void main(String[] args) {
int[] array = { 1, 5, 2, 6, 3, 1, 24, 7 };
int slide = 3;//say
List<Integer> result = new ArrayList<Integer>();
for (int i = 0; i < array.length - (slide-1); i++) {
result.add(getMax(array, i, slide));
}
System.out.println("MaxList->>>>" + result.toString());
}
private static Integer getMax(int[] array, int i, int slide) {
List<Integer> intermediate = new ArrayList<Integer>();
System.out.println("Initial::" + intermediate.size());
while (intermediate.size() < slide) {
intermediate.add(array[i]);
i++;
}
Collections.sort(intermediate);
return intermediate.get(slide - 1);
}
}
Here is the solution in O(n) time complexity with auxiliary deque
public class TestSlidingWindow {
public static void main(String[] args) {
int[] arr = { 1, 5, 7, 2, 1, 3, 4 };
int k = 3;
printMaxInSlidingWindow(arr, k);
}
public static void printMaxInSlidingWindow(int[] arr, int k) {
Deque<Integer> queue = new ArrayDeque<Integer>();
Deque<Integer> auxQueue = new ArrayDeque<Integer>();
int[] resultArr = new int[(arr.length - k) + 1];
int maxElement = 0;
int j = 0;
for (int i = 0; i < arr.length; i++) {
queue.add(arr[i]);
if (arr[i] > maxElement) {
maxElement = arr[i];
}
/** we need to maintain the auxiliary deque to maintain max element in case max element is removed.
We add the element to deque straight away if subsequent element is less than the last element
(as there is a probability if last element is removed this element can be max element) otherwise
remove all lesser element then insert current element **/
if (auxQueue.size() > 0) {
if (arr[i] < auxQueue.peek()) {
auxQueue.push(arr[i]);
} else {
while (auxQueue.size() > 0 && (arr[i] > auxQueue.peek())) {
auxQueue.pollLast();
}
auxQueue.push(arr[i]);
}
}else {
auxQueue.push(arr[i]);
}
if (queue.size() > 3) {
int removedEl = queue.removeFirst();
if (maxElement == removedEl) {
maxElement = auxQueue.pollFirst();
}
}
if (queue.size() == 3) {
resultArr[j++] = maxElement;
}
}
for (int i = 0; i < resultArr.length; i++) {
System.out.println(resultArr[i]);
}
}
}
static void countDistinct(int arr[], int n, int k)
{
System.out.print("\nMaximum integer in the window : ");
// Traverse through every window
for (int i = 0; i <= n - k; i++) {
System.out.print(findMaximuminAllWindow(Arrays.copyOfRange(arr, i, arr.length), k)+ " ");
}
}
private static int findMaximuminAllWindow(int[] win, int k) {
// TODO Auto-generated method stub
int max= Integer.MIN_VALUE;
for(int i=0; i<k;i++) {
if(win[i]>max)
max=win[i];
}
return max;
}
arr = 1 5 2 6 3 1 24 7
We have to find the maximum of subarray, Right?
So, What is meant by subarray?
SubArray = Partial set and it should be in order and contiguous.
From the above array
{1,5,2} {6,3,1} {1,24,7} all are the subarray examples
n = 8 // Array length
k = 3 // window size
For finding the maximum, we have to iterate through the array, and find the maximum.
From the window size k,
{1,5,2} = 5 is the maximum
{5,2,6} = 6 is the maximum
{2,6,3} = 6 is the maximum
and so on..
ans = 5 6 6 6 24 24
It can be evaluated as the n-k+1
Hence, 8-3+1 = 6
And the length of an answer is 6 as we seen.
How can we solve this now?
When the data is moving from the pipe, the first thought for the data structure came in mind is the Queue
But, rather we are not discussing much here, we directly jump on the deque
Thinking Would be:
Window is fixed and data is in and out
Data is fixed and window is sliding
EX: Time series database
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
For the rest:
Print the front of queue
// purged expired element
While (queue not empty and queue.front() <= I-k) {
Queue.pop_front();
While (Queue is not empty and arr[Queue.back() < arr[i]] {
Queue.pop_back();
Queue.push_back();
}
}
arr = [1, 2, 3, 1, 4, 5, 2, 3, 6]
k = 3
for i in range(len(arr)-k):
k=k+1
print (max(arr[i:k]),end=' ') #3 3 4 5 5 5 6
Two approaches.
Segment Tree O(nlog(n-k))
Build a maximum segment-tree.
Query between [i, i+k)
Something like..
public static void printMaximums(int[] a, int k) {
int n = a.length;
SegmentTree tree = new SegmentTree(a);
for (int i=0; i<=n-k; i++) System.out.print(tree.query(i, i+k));
}
Deque O(n)
If the next element is greater than the rear element, remove the rear element.
If the element in the front of the deque is out of the window, remove the front element.
public static void printMaximums(int[] a, int k) {
int n = a.length;
Deque<int[]> deck = new ArrayDeque<>();
List<Integer> result = new ArrayList<>();
for (int i=0; i<n; i++) {
while (!deck.isEmpty() && a[i] >= deck.peekLast()[0]) deck.pollLast();
deck.offer(new int[] {a[i], i});
while (!deck.isEmpty() && deck.peekFirst()[1] <= i - k) deck.pollFirst();
if (i >= k - 1) result.add(deck.peekFirst()[0]);
}
System.out.println(result);
}
Here is an optimized version of the naive (conditional) nested loop approach I came up with which is much faster and doesn't require any auxiliary storage or data structure.
As the program moves from window to window, the start index and end index moves forward by 1. In other words, two consecutive windows have adjacent start and end indices.
For the first window of size W , the inner loop finds the maximum of elements with index (0 to W-1). (Hence i == 0 in the if in 4th line of the code).
Now instead of computing for the second window which only has one new element, since we have already computed the maximum for elements of indices 0 to W-1, we only need to compare this maximum to the only new element in the new window with the index W.
But if the element at 0 was the maximum which is the only element not part of the new window, we need to compute the maximum using the inner loop from 1 to W again using the inner loop (hence the second condition maxm == arr[i-1] in the if in line 4), otherwise just compare the maximum of the previous window and the only new element in the new window.
void print_max_for_each_subarray(int arr[], int n, int k)
{
int maxm;
for(int i = 0; i < n - k + 1 ; i++)
{
if(i == 0 || maxm == arr[i-1]) {
maxm = arr[i];
for(int j = i+1; j < i+k; j++)
if(maxm < arr[j]) maxm = arr[j];
}
else {
maxm = maxm < arr[i+k-1] ? arr[i+k-1] : maxm;
}
cout << maxm << ' ';
}
cout << '\n';
}
You can use Deque data structure to implement this. Deque has an unique facility that you can insert and remove elements from both the ends of the queue unlike the traditional queue where you can only insert from one end and remove from other.
Following is the code for the above problem.
public int[] maxSlidingWindow(int[] nums, int k) {
int n = nums.length;
int[] maxInWindow = new int[n - k + 1];
Deque<Integer> dq = new LinkedList<Integer>();
int i = 0;
for(; i<k; i++){
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
for(; i <n; i++){
maxInWindow[i - k] = nums[dq.peekFirst()];
while(!dq.isEmpty() && dq.peekFirst() <= i - k){
dq.removeFirst();
}
while(!dq.isEmpty() && nums[dq.peekLast()] <= nums[i]){
dq.removeLast();
}
dq.addLast(i);
}
maxInWindow[i - k] = nums[dq.peekFirst()];
return maxInWindow;
}
the resultant array will have n - k + 1 elements where n is length of the given array, k is the given window size.
We can solve it using the Python , applying the slicing.
def sliding_window(a,k,n):
max_val =[]
val =[]
val1=[]
for i in range(n-k-1):
if i==0:
val = a[0:k+1]
print("The value in val variable",val)
val1 = max(val)
max_val.append(val1)
else:
val = a[i:i*k+1]
val1 =max(val)
max_val.append(val1)
return max_val
Driver Code
a = [15,2,3,4,5,6,2,4,9,1,5]
n = len(a)
k = 3
sl=s liding_window(a,k,n)
print(sl)
Create a TreeMap of size k. Put first k elements as keys in it and assign any value like 1(doesn't matter). TreeMap has the property to sort the elements based on key so now, first element in map will be min and last element will be max element. Then remove 1 element from the map whose index in the arr is i-k. Here, I have considered that Input elements are taken in array arr and from that array we are filling the map of size k. Since, we can't do anything with sorting happening inside TreeMap, therefore this approach will also take O(n) time.
100% working Tested (Swift)
func maxOfSubArray(arr:[Int],n:Int,k:Int)->[Int]{
var lenght = arr.count
var resultArray = [Int]()
for i in 0..<arr.count{
if lenght+1 > k{
let tempArray = Array(arr[i..<k+i])
resultArray.append(tempArray.max()!)
}
lenght = lenght - 1
}
print(resultArray)
return resultArray
}
This way we can use:
maxOfSubArray(arr: [1,2,3,1,4,5,2,3,6], n: 9, k: 3)
Result:
[3, 3, 4, 5, 5, 5, 6]
Just notice that you only have to find in the new window if:
* The new element in the window is smaller than the previous one (if it's bigger, it's for sure this one).
OR
* The element that just popped out of the window was the current bigger.
In this case, re-scan the window.
for how big k? for reasonable-sized k. you can create k k-sized buffers and just iterate over the array keeping track of max element pointers in the buffers - needs no data structures and is O(n) k^2 pre-allocation.
A complete working solution in Amortised Constant O(1) Complexity.
https://github.com/varoonverma/code-challenge.git
Compare the first k elements and find the max, this is your first number
then compare the next element to the previous max. If the next element is bigger, that is your max of the next subarray, if its equal or smaller, the max for that sub array is the same
then move on to the next number
max(1 5 2) = 5
max(5 6) = 6
max(6 6) = 6
... and so on
max(3 24) = 24
max(24 7) = 24
It's only slightly better than your answer
Given an array of length N. How will you find the minimum length
contiguous sub-array of whose sum is S and whose product is P.
For eg 5 6 1 4 6 2 9 7 for S = 17, Ans = [6, 2, 9] for P = 24, Ans = [4 6].
Just go from left to right, and sum all the numbers, if the sum > S, then throw away left ones.
import java.util.Arrays;
public class test {
public static void main (String[] args) {
int[] array = {5, 6, 1, 4, 6, 2, 9, 7};
int length = array.length;
int S = 17;
int sum = 0; // current sum of sub array, assume all positive
int start = 0; // current start of sub array
int minLength = array.length + 1; // length of minimum sub array found
int minStart = 0; // start of of minimum sub array found
for (int index = 0; index < length; index++) {
sum = sum + array[index];
// Find by add to right
if (sum == S && index - start + 1 < minLength) {
minLength = index - start + 1;
minStart = start;
}
while (sum >= S) {
sum = sum - array[start];
start++;
// Find by minus from left
if (sum == S && index - start + 1 < minLength) {
minLength = index - start + 1;
minStart = start;
}
}
}
// Found
if (minLength != length + 1) {
System.out.println(Arrays.toString(Arrays.copyOfRange(array, minStart, minStart + minLength)));
}
}
}
For your example, I think it is OR.
Product is nothing different from sum, except for calculation.
pseudocode:
subStart = 0;
Sum = 0
for (i = 0; i< array.Length; i++)
Sum = Sum + array[i];
if (Sum < targetSum) continue;
if (Sum == targetSum) result = min(result, i - subStart +1);
while (Sum >= targetSum)
Sum = Sum - array[subStart];
subStart++;
I think that'll find the result with one pass through the array. There's a bit of detail missing there in the result value. Needs a bit more complexity there to be able to return the actual subarray if needed.
To find the Product sub-array just substitute multiplication/division for addition/subtraction in the above algorithm
Put two indices on the array. Lets call them i and j. Initially j = 1 and i =0. If the product between i and j is less than P, increment j. If it is greater than P, increment i. If we get something equal to p, sum up the elements (instead of summing up everytime, maintain an array where S(i) is the sum of everything to the left of it. Compute sum from i to j as S(i) - S(j)) and see whether you get S. Stop when j falls out of the array length.
This is O(n).
You can use a hashmap to find the answer for product in O(N) time with extra space.