I want to split a long audio file (raw, 48 kHz, 16 bit mono) into smaller chunks of 7 hours each.
I go to the sox directory (which is "D:\sox"), then I call
sox "D:\Dev\Projects\work\audio.raw" trim 0 50400 : newfile : restart
It throws an error saying "Not enough input filenames specified.
What am I doing wrong?
Thank you!
I'm running Imagemagick on a command line Ubuntu terminal in Windows 10 - using the built in facility in Windows 10 - the Ubuntu App.
I am a complete linux novice but have installed imagemagick in the above environment.
My task - Auto remove the black(ish) border and deskew the images of thousands of scanned 35mm slides.
I can successfully run commands such as
mogrify -fuzz 35% -deskew 80% -trim +repage *.tif
The problem is:-
The border is not crisply defined nor is completely black, hence the -fuzz. Some images are over-trimmed at a certain fuzz, while others are not trimmed enough.
So what I want to do is to have two passes at this, with different fuzz %, for these reasons:-
1st pass with a low Fuzz%. Many images will not be trimmed at all but I have found that the ones that are susceptible to over-trimming will trim Ok with low %
Since all the images start with an identical filesize, the ones that have trimmed Ok will have a lower filesize (note these are tifs not jpgs)
So what I need to do is set a file size condition for the second pass at higher fuzz% THAT IGNORES file sizes below a certain value and does not perform any operation.
In this way, with few errors, all the images will be trimmed correctly.
So the question
- How can I adjust the command line to have 2 passes and to ignore a lower file size on the second pass?
I have a horrible feeling the the answer will be a script. I have no idea how to construct or set up Ubuntu to run this so if so, please can you point me to help for that also!!
In ImageMagick, you could do something like the following:
Get the input filesize
Use convert to deskew and trim.
Then find the new file
Then compare the new to the old to compute the percentdifference to some percent threshold
If the percent difference is less than some threshold, then the processing did not trim enough
So reprocess with a higher fuzz value and write over the input; otherwise keep the first one only and do not write over the old one.
Unix syntax.
Choose two fuzz values
Choose a percent change threshold
Create a new empty directory to hold the output (results)
cd
cd desktop/Originals
fuzz1=20
fuzz2=40
threshpct=10
list=`ls`
for img in $list; do
filesize=`convert -ping $img -precision 16 -format "%b" info: | sed 's/[B]*$//'`
echo "filesize=$filesize"
convert $img -background black -deskew 40% -fuzz $fuzz1% ../results/$img
newfilesize=`convert -ping ../results/$img -precision 16 -format "%b" info: | sed 's/[B]*$//'`
test=`convert xc: -format "%[fx:100*($filesize-$newfilesize)/$filesize<$threshpct?1:0]" info:`
echo "newfilesize=$newfilesize; test=$test;"
[ $test -eq 1 ] && convert $img -background black -deskew 40% -fuzz $fuzz2% ../results/$img
done
The issue is that you need to be sure you set your TIFF compression for the output the same as for the input so that the file sizes are equivalent and presumably the new size is not larger than the old one as happens with JPG.
Note that the sed is used to remove the letter B (bytes) from the file size, so they can be compared as numerals and not strings. The -precision 16 forces "%b" to report as B and not KB or MB.
I am trying to use pocket sphinx to transcribe audio files.
pocketsphinx_continuous -infile 116-288045-0005.flac.wav
but I am getting the errors:
ERROR: "continuous.c", line 136: Input audio file has sample rate [44100],
but decoder expects [16000]
FATAL: "continuous.c", line 165: Failed to process file '116-288045-0005.flac.wav'
due to format mismatch.
Here's one of the audio files I need to transcribe: Download from GitHub
Eventually I will batch-transcribe over 5 hours of audio files like these, currently they all throw the same error.
Here's some stats of the same file I'm trying to transcribe:
$ soxi 116-288045-0000.flac.wav
Input File : '116-288045-0000.flac.wav'
Channels : 1
Sample Rate : 44100
Precision : 16-bit
Duration : 00:00:10.65 = 469665 samples = 798.75 CDDA sectors
File Size : 939k
Bit Rate : 706k
Sample Encoding: 16-bit Signed Integer PCM
There might be a problem with some of this file's configuration, I've done some pre-processing to merge it with mp3s, convert from flac to wav, among others.
What's the easiest way now for me to get the transcription working?
Is it possible without re-sampling the files back down to 16kHz. Originally the flac files had a sample-rate of 16kHz, but I had to merge them with 44.1kHz mp3 files. Therefore there's some high-frequency information in them now that may be lost if resampled to 16k.
Resample the audio to 16000 samples then try again.
You can resample like this
sox file.wav -r 16000 file-16000.wav
I am trying to classify binary data. In the data file, class [0,1] is converted to [-1,1]. Data has 21 features. All features are categorical. I am using neural network for training. The training command is:
vw -d train.vw --cache_file data --passes 5 -q sd -q ad -q do -q fd --binary -f model --nn 22
I create raw prediction file as:
vw -d test.vw -t -i neuralmodel -r raw.txt
And normal prediction file as:
vw -d test.vw -t -i neuralmodel -p out.txt
First five lines of raw file are:
0:-0.861075,-0.696812 1:-0.841357,-0.686527 2:0.796014,0.661809 3:1.06953,0.789289 4:-1.23823,-0.844951 5:0.886767,0.709793 6:2.02206,0.965555 7:-2.40753,-0.983917 8:-1.09056,-0.797075 9:1.22141,0.84007 10:2.69466,0.990912 11:2.64134,0.989894 12:-2.33309,-0.981359 13:-1.61462,-0.923839 14:1.54888,0.913601 15:3.26275,0.995055 16:2.17991,0.974762 17:0.750114,0.635229 18:2.91698,0.994164 19:1.15909,0.820746 20:-0.485593,-0.450708 21:2.00432,0.964333 -0.496912
0:-1.36519,-0.877588 1:-2.83699,-0.993155 2:-0.257558,-0.251996 3:-2.12969,-0.97213 4:-2.29878,-0.980048 5:2.70791,0.991148 6:1.31337,0.865131 7:-2.00127,-0.964116 8:-2.14167,-0.972782 9:2.50633,0.986782 10:-1.09253,-0.797788 11:2.29477,0.97989 12:-1.67385,-0.932057 13:-0.740598,-0.629493 14:0.829695,0.680313 15:3.31954,0.995055 16:3.44069,0.995055 17:2.48612,0.986241 18:1.32241,0.867388 19:1.97189,0.961987 20:1.19584,0.832381 21:1.65151,0.929067 -0.588528
0:0.908454,0.72039 1:-2.48134,-0.986108 2:-0.557337,-0.505996 3:-2.15072,-0.973263 4:-1.77706,-0.944375 5:0.202272,0.199557 6:2.37479,0.982839 7:-1.97478,-0.962201 8:-1.78124,-0.944825 9:1.94016,0.959547 10:-1.67845,-0.932657 11:2.54895,0.987855 12:-1.60502,-0.92242 13:-2.32369,-0.981008 14:1.59895,0.921511 15:2.02658,0.96586 16:2.55443,0.987987 17:3.47049,0.995055 18:1.92482,0.958313 19:1.47773,0.901044 20:-3.60913,-0.995055 21:3.56413,0.995055 -0.809399
0:-2.11677,-0.971411 1:-1.32759,-0.868656 2:2.59003,0.988807 3:-0.198721,-0.196146 4:-2.51631,-0.987041 5:0.258549,0.252956 6:1.60134,0.921871 7:-2.28731,-0.97959 8:-2.89953,-0.993958 9:-0.0972349,-0.0969177 10:3.1409,0.995055 11:1.62083,0.924746 12:-2.30097,-0.980134 13:-2.05674,-0.967824 14:1.6744,0.932135 15:1.85612,0.952319 16:2.7231,0.991412 17:1.97199,0.961995 18:3.47125,0.995055 19:0.603527,0.539567 20:1.25539,0.84979 21:2.15267,0.973368 -0.494474
0:-2.21583,-0.97649 1:-2.16823,-0.974171 2:2.00711,0.964528 3:-1.84079,-0.95087 4:-1.27159,-0.854227 5:-0.0841799,-0.0839635 6:2.24566,0.977836 7:-2.19458,-0.975482 8:-2.42779,-0.98455 9:0.39883,0.378965 10:1.32133,0.86712 11:1.87572,0.95411 12:-2.22585,-0.976951 13:-2.04512,-0.96708 14:1.52652,0.909827 15:1.98228,0.962755 16:2.37265,0.982766 17:1.73726,0.939908 18:2.315,0.980679 19:-0.08135,-0.081154 20:1.39248,0.883717 21:1.5889,0.919981 -0.389856
First five lines of (normal) prediction file are:
-0.496912
-0.588528
-0.809399
-0.494474
-0.389856
I have tallied this (normal) output with raw output. I notice that the (last or) ending float value in each of the five raw lines is the same as above.
I would please like to understand the raw output as also the normal output. That each line holds 22 pairs of values is something to do with 22 neurons? How to interpret the output as [-1,1] and why a sigmoid function is needed to convert either of the above to probabilities. Will be grateful for help.
For binary classification, you should use a suitable loss function (--loss_function=logistic or --loss_function=hinge). The --binary switch just makes sure that the reported loss is the 0/1 loss (but you cannot optimize for 0/1 loss directly, the default loss function is --loss_function=squared).
I recommend trying the --nn as one of the last steps when tuning the VW parameters. Usually, it improves the results only a little bit and the optimal number of units in the hidden layer is quite small (--nn 1, --nn 2 or --nn 3). You can also try adding a direct connections between the input and output layer with --inpass.
Note that --nn uses always tanh as the sigmoid function for the hidden layer and only one hidden layer is possible (it is hardcoded in nn.cc).
If you want to get probabilities (real number from [0,1]), use vw -d test.vw -t -i neuralmodel --link=logistic -p probabilities.txt. If you want the output to a be real number from [-1,1], use --link=glf1.
Without --link and --binary, the --pred output are the internal predictions (in range [-50, 50] when logistic or hinge loss function is used).
As for the --nn --raw question, your guess is correct:
The 22 pairs of numbers correspond to the 22 neurons and the last number is the final (internal) prediction. My guess is that each pair corresponds to the bias and output of each unit on the hidden layer.
Here is my problem, I have a set of big gz log files, the very first info in the line is a datetime text, e.g.: 2014-03-20 05:32:00.
I need to check what set of log files holds a specific data.
For the init I simply do a:
'-query-data-'
zgrep -m 1 '^20140320-04' 20140320-0{3,4}*gz
BUT HOW to do the same with the last line without process the whole file as would be done with zcat (too heavy):
zcat foo.gz | tail -1
Additional info, those logs are created with the data time of it's initial record, so if I want to query logs at 14:00:00 I have to search, also, in files created BEFORE 14:00:00, as a file would be created at 13:50:00 and closed at 14:10:00.
The easiest solution would be to alter your log rotation to create smaller files.
The second easiest solution would be to use a compression tool that supports random access.
Projects like dictzip, BGZF, and csio each add sync flush points at various intervals within gzip-compressed data that allow you to seek to in a program aware of that extra information. While it exists in the standard, the vanilla gzip does not add such markers either by default or by option.
Files compressed by these random-access-friendly utilities are slightly larger (by perhaps 2-20%) due to the markers themselves, but fully support decompression with gzip or another utility that is unaware of these markers.
You can learn more at this question about random access in various compression formats.
There's also a "Blasted Bioinformatics" blog by Peter Cock with several posts on this topic, including:
BGZF - Blocked, Bigger & Better GZIP! – gzip with random access (like dictzip)
Random access to BZIP2? – An investigation (result: can't be done, though I do it below)
Random access to blocked XZ format (BXZF) – xz with improved random access support
Experiments with xz
xz (an LZMA compression format) actually has random access support on a per-block level, but you will only get a single block with the defaults.
File creation
xz can concatenate multiple archives together, in which case each archive would have its own block. The GNU split can do this easily:
split -b 50M --filter 'xz -c' big.log > big.log.sp.xz
This tells split to break big.log into 50MB chunks (before compression) and run each one through xz -c, which outputs the compressed chunk to standard output. We then collect that standard output into a single file named big.log.sp.xz.
To do this without GNU, you'd need a loop:
split -b 50M big.log big.log-part
for p in big.log-part*; do xz -c $p; done > big.log.sp.xz
rm big.log-part*
Parsing
You can get the list of block offsets with xz --verbose --list FILE.xz. If you want the last block, you need its compressed size (column 5) plus 36 bytes for overhead (found by comparing the size to hd big.log.sp0.xz |grep 7zXZ). Fetch that block using tail -c and pipe that through xz. Since the above question wants the last line of the file, I then pipe that through tail -n1:
SIZE=$(xz --verbose --list big.log.sp.xz |awk 'END { print $5 + 36 }')
tail -c $SIZE big.log.sp.xz |unxz -c |tail -n1
Side note
Version 5.1.1 introduced support for the --block-size flag:
xz --block-size=50M big.log
However, I have not been able to extract a specific block since it doesn't include full headers between blocks. I suspect this is nontrivial to do from the command line.
Experiments with gzip
gzip also supports concatenation. I (briefly) tried mimicking this process for gzip without any luck. gzip --verbose --list doesn't give enough information and it appears the headers are too variable to find.
This would require adding sync flush points, and since their size varies on the size of the last buffer in the previous compression, that's too hard to do on the command line (use dictzip or another of the previously discussed tools).
I did apt-get install dictzip and played with dictzip, but just a little. It doesn't work without arguments, creating a (massive!) .dz archive that neither dictunzip nor gunzip could understand.
Experiments with bzip2
bzip2 has headers we can find. This is still a bit messy, but it works.
Creation
This is just like the xz procedure above:
split -b 50M --filter 'bzip2 -c' big.log > big.log.sp.bz2
I should note that this is considerably slower than xz (48 min for bzip2 vs 17 min for xz vs 1 min for xz -0) as well as considerably larger (97M for bzip2 vs 25M for xz -0 vs 15M for xz), at least for my test log file.
Parsing
This is a little harder because we don't have the nice index. We have to guess at where to go, and we have to err on the side of scanning too much, but with a massive file, we'd still save I/O.
My guess for this test was 50000000 (out of the original 52428800, a pessimistic guess that isn't pessimistic enough for e.g. an H.264 movie.)
GUESS=50000000
LAST=$(tail -c$GUESS big.log.sp.bz2 \
|grep -abo 'BZh91AY&SY' |awk -F: 'END { print '$GUESS'-$1 }')
tail -c $LAST big.log.sp.bz2 |bunzip2 -c |tail -n1
This takes just the last 50 million bytes, finds the binary offset of the last BZIP2 header, subtracts that from the guess size, and pulls that many bytes off of the end of the file. Just that part is decompressed and thrown into tail.
Because this has to query the compressed file twice and has an extra scan (the grep call seeking the header, which examines the whole guessed space), this is a suboptimal solution. See also the below section on how slow bzip2 really is.
Perspective
Given how fast xz is, it's easily the best bet; using its fastest option (xz -0) is quite fast to compress or decompress and creates a smaller file than gzip or bzip2 on the log file I was testing with. Other tests (as well as various sources online) suggest that xz -0 is preferable to bzip2 in all scenarios.
————— No Random Access —————— ——————— Random Access ———————
FORMAT SIZE RATIO WRITE READ SIZE RATIO WRITE SEEK
————————— ————————————————————————————— —————————————————————————————
(original) 7211M 1.0000 - 0:06 7211M 1.0000 - 0:00
bzip2 96M 0.0133 48:31 3:15 97M 0.0134 47:39 0:00
gzip 79M 0.0109 0:59 0:22
dictzip 605M 0.0839 1:36 (fail)
xz -0 25M 0.0034 1:14 0:12 25M 0.0035 1:08 0:00
xz 14M 0.0019 16:32 0:11 14M 0.0020 16:44 0:00
Timing tests were not comprehensive, I did not average anything and disk caching was in use. Still, they look correct; there is a very small amount of overhead from split plus launching 145 compression instances rather than just one (this may even be a net gain if it allows an otherwise non-multithreaded utility to consume multiple threads).
Well, you can access randomly a gzipped file if you previously create an index for each file ...
I've developed a command line tool which creates indexes for gzip files which allow for very quick random access inside them:
https://github.com/circulosmeos/gztool
The tool has two options that may be of interest for you:
-S option supervise a still-growing file and creates an index for it as it is growing - this can be useful for gzipped rsyslog files as reduces to zero in the practice the time of index creation.
-t tails a gzip file: this way you can do: $ gztool -t foo.gz | tail -1
Please, note that if the index doesn't exists, this will consume the same time as a complete decompression: but as the index is reusable, next searches will be greatly reduced in time!
This tool is based on zran.c demonstration code from original zlib, so there's no out-of-the-rules magic!