Convert connect address with address familiy AF_SYSTEM to human readable string - macos

Background
I'm writing some dtrace program which tracks application socket file descriptors. Aim is to provide logs which help me spot leak of file descriptors in some very complex OS X application.
Here is my other question with very helpful answer.
Problem
I want that my program is logging address to which file descriptor has been connected to. In examples there is a code which partial do what I need: soconnect_mac.d, here is link to github.
soconnect_mac.d works great when applied on Firefox, but it completely fails in case of my application. Quick investigation shown that soconnect_mac.d is able to interpret only AF_INET (value 2) family address and som library used by my application is using AF_SYSTEM (value 32) family address.
I can't find anything which could help me convert received address to something what is human readable.
So far I've got this:
#!/usr/sbin/dtrace -s
inline int af_inet = 2 ; /* AF_INET defined in Kernel/sys/socket.h */
inline int af_inet6 = 30; /* AF_INET6 defined in Kernel/sys/socket.h */
inline int af_system = 32; /* AF_SYSTEM defined in Kernel/sys/socket.h */
… // some stuff
syscall::connect:entry
/pid == $target && isOpened[pid, arg0] == 1/
{
/* assume this is sockaddr_in until we can examine family */
this->s = (struct sockaddr_in *)copyin(arg1, arg2);
this->f = this->s->sin_family;
self->fileDescriptor = arg0;
}
/* this section is copied with pride from "soconnect_mac.d" */
syscall::connect:entry
/this->f == af_inet/
{
/* Convert port to host byte order without ntohs() being available. */
self->port = (this->s->sin_port & 0xFF00) >> 8;
self->port |= (this->s->sin_port & 0xFF) << 8;
/*
* Convert an IPv4 address into a dotted quad decimal string.
* Until the inet_ntoa() functions are available from DTrace, this is
* converted using the existing strjoin() and lltostr(). It's done in
* two parts to avoid exhausting DTrace registers in one line of code.
*/
this->a = (uint8_t *)&this->s->sin_addr;
this->addr1 = strjoin(lltostr(this->a[0] + 0ULL),
strjoin(".",
strjoin(lltostr(this->a[1] + 0ULL),
".")));
this->addr2 = strjoin(lltostr(this->a[2] + 0ULL),
strjoin(".",
lltostr(this->a[3] + 0ULL)));
self->address = strjoin(this->addr1, this->addr2);
}
/* this section is my */
syscall::connect:entry
/this->f == af_system/
{
/* TODO: Problem how to handle AF_SYSTEM address family */
/* Convert port to host byte order without ntohs() being available. */
self->port = (this->s->sin_port & 0xFF00) >> 8;
self->port |= (this->s->sin_port & 0xFF) << 8; // this also doen't work as it should
self->address = "system family address needed here";
}
// a fallback
syscall::connect:entry
/this->f && this->f != af_inet && this->f != af_system/
{
/* Convert port to host byte order without ntohs() being available. */
self->port = (this->s->sin_port & 0xFF00) >> 8;
self->port |= (this->s->sin_port & 0xFF) << 8;
self->address = strjoin("Can't handle family: ", lltostr(this->f));
}
syscall::connect:return
/self->fileDescriptor/
{
this->errstr = err[errno] != NULL ? err[errno] : lltostr(errno);
printf("%Y.%03d FD:%d Status:%s Address:%s Port:%d",
walltimestamp, walltimestamp % 1000000000 / 1000000,
self->fileDescriptor, this->errstr, self->address, self->port);
self->fileDescriptor = 0;
self->address = 0;
self->port = 0;
}
What is even more annoying my code has failed to read port number (I get 512 value instead one of this: 443, 8443, 5061).
IMO problem is first syscall::connect:entry where it is assumed that second argument can be treated as struct sockaddr_in. I'm guessing struct sockaddr_storage should be used in case of AF_SYSTEM address family, but I didn't found any documentation or source code which proves this in direct way.
My section with this->f == af_system condition properly catches events from application I'm investigating.

Related

CAN 1 RX works in loopback mode, but not in Normal mode

I am using a STM32F413RG based custom board and trying to run some CAN bus based applications on it.
I am trying to start with CAN 1 and wrote a bare metal code using CMSIS library to transmit and receive.
Here is the code for three functions - Init,Send and Receive.
void initCAN()
{
// enable clock
// note: because CAN2 is a "slave CAN" you have to enable CAN1 clock
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN;
// and reset CAN1, so request reset
CAN1->MCR |= CAN_MCR_RESET;
// wait for it to say it has gone to sleep
while ((CAN1->MSR & CAN_MSR_SLAK_Msk) == 1) {}
//CAN1
// enable port A clock
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;
__DSB();
// CAN_RX = CAN1R on PA11, so set alt function
GPIOA->MODER &= ~GPIO_MODER_MODER11_Msk;
GPIOA->MODER |= GPIO_MODER_MODER11_1;
// CAN 1 is AF9 (AFSEL 9 = 0b1001 -> bit 3 & bit 0
GPIOA->AFR[1] |= (GPIO_AFRH_AFSEL11_3 | GPIO_AFRH_AFSEL11_0);
// CAN_TX = CAN1T on PA12
GPIOA->MODER &= ~GPIO_MODER_MODER12_Msk;
GPIOA->MODER |= GPIO_MODER_MODER12_1;
// open-drain
GPIOA->OTYPER |= GPIO_OTYPER_OT_11;
GPIOA->OTYPER |= GPIO_OTYPER_OT_12;
// CAN 1 is AF9 (AFSEL 9 = 0b1001 -> bit 3 & bit 0
GPIOA->AFR[1] |= (GPIO_AFRH_AFSEL12_3 | GPIO_AFRH_AFSEL12_0);
//bring it our from sleep by setting the sleep bit in MCR to 0
CAN1->MCR &= ~CAN_MCR_SLEEP_Msk;
//if sleep ACK(SLAK) not zero, wait i.e. exited from sleep
while ((CAN1->MSR & CAN_MSR_SLAK_Msk) != 0) {}
//put CAN 1 to Init mode
CAN1->MCR |= CAN_MCR_INRQ;
// wait for it to say it has gone there
while ((CAN1->MSR & CAN_MSR_INAK_Msk) != CAN_MSR_INAK_Msk) {}
uint32_t APB1Clock = SystemCoreClock/2000000; // in MHz
CAN1->BTR = 0x00050007U;
CAN1->FMR |= CAN_FMR_FINIT;
// and make sure the CANSB value is zero
CAN1->FMR &= ~(CAN_FMR_CAN2SB_Msk);
//Give 14 filter banks to CAN 1 and 2 each
CAN1->FMR |= (((uint32_t) 14) << CAN_FMR_CAN2SB_Pos) & CAN_FMR_CAN2SB_Msk;
// set all as 32 bit filter in identifier mask mode (zeros)
CAN1->FM1R = 0;
// use all as 32 bit filter with mask
CAN1->FS1R |= CAN_FS1R_FSC_Msk;
// assign FIFO0 to CAN1, and FIFO1 to CAN2 (well, all to FIFO0, except filter 14)
CAN1->FFA1R = CAN_FFA1R_FFA14;
// make sure it is deactivated (clear FACT in CAN_FAR)
CAN1->FA1R &= ~CAN_FA1R_FACT0;
CAN1 ->FA1R &= ~CAN_FA1R_FACT14;
// setup a filter that accepts everything (w/ extended id)
// Each filter bank i (i= 0 to 27 in dual CAN configuration and i= 0 to 13 in single CAN configuration)
//is composed of two 32-bit registers, CAN_FiR\[2:1\].
CAN1->sFilterRegister[0].FR1 = CAN_F0R1_FB2;
CAN1->sFilterRegister[0].FR2 = CAN_F0R1_FB2;
CAN1->sFilterRegister[14].FR1 = CAN_F0R1_FB2;
CAN1->sFilterRegister[14].FR2 = CAN_F0R1_FB2;
// now activate filter
CAN1->FA1R |= CAN_FA1R_FACT0;
CAN1->FA1R |= CAN_FA1R_FACT14;
// take out of init mode for filters
CAN1->FMR &= ~CAN_FMR_FINIT;
//loopback mode. need to do it while on init mode
// CAN1->BTR |= CAN_BTR_LBKM;
//bring CAN1 out from init mode.
CAN1->MCR &= ~CAN_MCR_INRQ;
while ((CAN1->MSR & CAN_MSR_INAK_Msk) != 0) {}
}
void sendCAN1( uint32_t pgn, uint8_t bytes[], uint8_t len)
{
// wait for the mailbox to be empty
while ((CAN1->TSR & CAN_TSR_TME0_Msk) == 0) {};
// put this in next empty mailbox
int boxnum = (CAN1->TSR & CAN_TSR_CODE_Msk) >> CAN_TSR_CODE_Pos;
CAN1->sTxMailBox[boxnum].TDTR &= ~CAN_TDT0R_DLC_Msk;
CAN1->sTxMailBox[0].TIR = ((pgn << CAN_TI0R_EXID_Pos) & CAN_TI0R_EXID_Msk) | CAN_TI0R_IDE;
// for standard (11-bit) ids, replace the above with:
// CAN1->sTxMailBox[boxnum].TIR = ((pgn << CAN_TI0R_STID_Pos) & CAN_TI0R_STID_Msk);
CAN1->sTxMailBox[boxnum].TDHR = ((bytes[7]<<CAN_TDH0R_DATA7_Pos) |
(bytes[6]<<CAN_TDH0R_DATA6_Pos) |
(bytes[5]<<CAN_TDH0R_DATA5_Pos) | bytes[4]);
CAN1->sTxMailBox[boxnum].TDLR = ((bytes[3]<<CAN_TDL0R_DATA3_Pos) |
(bytes[2]<<CAN_TDL0R_DATA2_Pos) |
(bytes[1]<<CAN_TDL0R_DATA1_Pos) | bytes[0]);
CAN1->sTxMailBox[boxnum].TDTR = (len << CAN_TDT0R_DLC_Pos) & CAN_TDT0R_DLC_Msk;
CAN1->sTxMailBox[boxnum].TIR |= CAN_TI0R_TXRQ;
}
uint8_t recCAN1()
{
uint8_t data[8];
uint32_t pgn;
uint8_t len;
uint8_t msgcount;
static uint8_t ret = 0;
// check for any msg in FIFO
// we only use FIFO 0 here
msgcount = CAN1->RF0R & CAN_RF0R_FMP0_Msk;
ret += msgcount;
// read them out one at a time
while (msgcount > 0)
{
pgn = CAN1->sFIFOMailBox[0].RIR >> 3;
len = CAN1->sFIFOMailBox[0].RDTR & 0xF;
// NOTE: case fall through is intentional and critical
switch (len)
{
case 8:
data[7] = (CAN1->sFIFOMailBox[0].RDHR >> 24) & 0xFF;
case 7:
data[6] = (CAN1->sFIFOMailBox[0].RDHR >> 16) & 0xFF;
case 6:
data[5] = (CAN1->sFIFOMailBox[0].RDHR >> 8) & 0xFF;
case 5:
data[4] = CAN1->sFIFOMailBox[0].RDHR & 0xFF;
case 4:
data[3] = (CAN1->sFIFOMailBox[0].RDLR >> 24) & 0xFF;
case 3:
data[2] = (CAN1->sFIFOMailBox[0].RDLR >> 16) & 0xFF;
case 2:
data[1] = (CAN1->sFIFOMailBox[0].RDLR >> 8) & 0xFF;
case 1:
data[0] = CAN1->sFIFOMailBox[0].RDLR & 0xFF;
// do nothing as data is empty
}
// process as they are read
// processCAN(pgn, data, len);
// release that mailbox
CAN1->RF0R |= CAN_RF0R_RFOM0;
// update the message count
msgcount = CAN1->RF0R & CAN_RF0R_FMP0_Msk;
}
return ret;
}
Sending a packet from CAN 1 is fine. When receiving, I cannot see any status changing on the Rx Registers. But, I can see an ACK being transmitted from the TX pin upon receiving a packet when scoping the signals.
The CAN 1 Error Status is completely empty (0x0).
However, when I try the same code with Loopback mode activated, I can see a message received on the registers and my code picks it up too.
Attaching screenshots of CAN 1 RF0R register when in loopback mode which indicates reception.
This scope (Channel 0 for RX and Channel 2 for TX) shows that its receiving a message on RX and it sends back an ACK on its TX under normal mode.
I have checked the termination too and its fine. (120 ohms added. Anyway, getting an ACK, so I am thinking that's not the problem).
I am out of ideas of where I might be going wrong.
No explicit error messages. However, the Rx message is not reflecting on any one of the registers under normal mode.
From the reference manual in CAN_FMR register : to use CAN1 only: stop the clock on CAN2 and/or set the CAN_MCR.INRQ on CAN2, I haven't seen instruction that does this explicitly in your code.
Also in the comments from your code it says that you are not filtering anything but you set CAN_F0R1_FB2 in sFilterRegister thus not everything will be accepted. The ID you are sending is one of those.

programming PIC32MX250F128B with Pickit3

I am successfully programming PIC32MX250F128B using Pickit3. I have written a code where, when I press a I am getting 100 data from vibration sensor. Now if I want to get another 100 data, either I have to disconnect and then reconnect the 10k ohm pull up resistor connected to MCLR pin or have to run the program again.
Is there any other way I can reset the pickit?
Here is the code I am using:
#include <p32xxxx.h> // include chip specific header file
#include <plib.h> // include peripheral library functions
// Configuration Bits
#pragma config FNOSC = FRCPLL // Internal Fast RC oscillator (8 MHz) w/ PLL
#pragma config FPLLIDIV = DIV_2 // Divide FRC before PLL (now 4 MHz)
#pragma config FPLLMUL = MUL_20 // PLL Multiply (now 80 MHz)
#pragma config FPLLODIV = DIV_2 // Divide After PLL (now 40 MHz)
// see figure 8.1 in datasheet for more info
#pragma config FWDTEN = OFF // Watchdog Timer Disabled
#pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select
#pragma config JTAGEN = OFF // Disable JTAG
#pragma config FSOSCEN = OFF // Disable Secondary Oscillator
#pragma config FPBDIV = DIV_1 // PBCLK = SYCLK
// Defines
#define SYSCLK 40000000L
// Macros
// Equation to set baud rate from UART reference manual equation 21-1
#define Baud2BRG(desired_baud) ( (SYSCLK / (16*desired_baud))-1)
// Function Prototypes
int SerialTransmit(const char *buffer);
unsigned int SerialReceive(char *buffer); //, unsigned int max_size);
int UART2Configure( int baud);
short a2dvals[11000];
int adcptr,num_channels,k,i;
char sampling;
int ADC_RSLT0,totaldata,totaldata1,chunks_sent,data_count,l;
short temp;
BOOL a2don;
volatile unsigned int channel4;
void __ISR(_ADC_VECTOR, IPL2) TIMER3Handler(void) // Fonction d'interruption Timer 3
{
temp = ReadADC10(0);
a2dvals[k] = (temp);
k++;
if (k>totaldata1)// && sampling == 's')
{
T3CONCLR = 0x8000;
a2don=FALSE;
chunks_sent = 0;
totaldata = k/2;
k = 1;
}
mAD1ClearIntFlag();
}
int main(void)
{
char buf[1024]; // declare receive buffer with max size 1024
// Peripheral Pin Select
U2RXRbits.U2RXR = 4; //SET RX to RB8
RPB9Rbits.RPB9R = 2; //SET RB9 to TX
SYSTEMConfigPerformance(SYSCLK);
UART2Configure(9600); // Configure UART2 for a baud rate of 9600
U2MODESET = 0x8000; // enable UART2
ANSELBbits.ANSB2 = 1; // set RB2 (AN4) to analog
TRISBbits.TRISB2 = 1; // set RB2 as an input
//adcConfigureManual(); // Configure ADC
//AD1CON1SET = 0x8000; // Enable ADC
SerialTransmit("Hello! Enter 'a' to do ADC conversion \r\n");
unsigned int rx_size;
while( 1){
rx_size = SerialReceive(buf); //, 1024); // wait here until data is received
SerialTransmit(buf); // Send out data exactly as received
SerialTransmit("\r\n");
}
return 1;
} // END main()
/* UART2Configure() sets up the UART2 for the most standard and minimal operation
* Enable TX and RX lines, 8 data bits, no parity, 1 stop bit, idle when HIGH
* Input: Desired Baud Rate
* Output: Actual Baud Rate from baud control register U2BRG after assignment*/
int UART2Configure( int desired_baud){
U2MODE = 0; // disable autobaud, TX and RX enabled only, 8N1, idle=HIGH
U2STA = 0x1400; // enable TX and RX
U2BRG = Baud2BRG(desired_baud); // U2BRG = (FPb / (16*baud)) - 1
// Calculate actual assigned baud rate
int actual_baud = SYSCLK / (16 * (U2BRG+1));
return actual_baud;
} // END UART2Configure()
/* SerialTransmit() transmits a string to the UART2 TX pin MSB first
*
* Inputs: *buffer = string to transmit */
int SerialTransmit(const char *buffer)
{
unsigned int size = strlen(buffer);
while( size)
{
while( U2STAbits.UTXBF); // wait while TX buffer full
U2TXREG = *buffer; // send single character to transmit buffer
buffer++; // transmit next character on following loop
size--; // loop until all characters sent (when size = 0)
}
while( !U2STAbits.TRMT); // wait for last transmission to finish
return 0;
}
/* SerialReceive() is a blocking function that waits for data on
* the UART2 RX buffer and then stores all incoming data into *buffer
*
* Note that when a carriage return '\r' is received, a nul character
* is appended signifying the strings end
*
* Inputs: *buffer = Character array/pointer to store received data into
* max_size = number of bytes allocated to this pointer
* Outputs: Number of characters received */
unsigned int SerialReceive(char *buffer) //, unsigned int max_size)
{
//unsigned int num_char = 0;
/* Wait for and store incoming data until either a carriage return is received
* or the number of received characters (num_chars) exceeds max_size */
while(1)
{
while( !U2STAbits.URXDA); // wait until data available in RX buffer
*buffer = U2RXREG; // empty contents of RX buffer into *buffer pointer
if (*buffer == 'a')
{
int dummy,dummy1;
unsigned char tempstr[5];
SYSTEMConfig(SYSCLK, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);
// the ADC ///////////////////////////////////////
// configure and enable the ADC
CloseADC10(); // ensure the ADC is off before setting the configuration
// define setup parameters for OpenADC10
// Turn module on | ouput in integer | trigger mode auto | enable autosample
// ADC_CLK_AUTO -- Internal counter ends sampling and starts conversion (Auto convert)
// ADC_AUTO_SAMPLING_ON -- Sampling begins immediately after last conversion completes; SAMP bit is automatically set
// ADC_AUTO_SAMPLING_OFF -- Sampling begins with AcquireADC10();
#define PARAM1 ADC_MODULE_ON|ADC_FORMAT_INTG32 | ADC_CLK_TMR | ADC_AUTO_SAMPLING_ON //
// define setup parameters for OpenADC10
// ADC ref external | disable offset test | disable scan mode | do 1 sample | use single buf | alternate mode off
#define PARAM2 ADC_VREF_AVDD_AVSS | ADC_OFFSET_CAL_DISABLE | ADC_SCAN_OFF | ADC_SAMPLES_PER_INT_1 | ADC_ALT_BUF_OFF | ADC_ALT_INPUT_OFF
//
// Define setup parameters for OpenADC10
// use peripherial bus clock | set sample time | set ADC clock divider
// ADC_CONV_CLK_Tcy2 means divide CLK_PB by 2 (max speed)
// ADC_SAMPLE_TIME_5 seems to work with a source resistance < 1kohm
#define PARAM3 ADC_CONV_CLK_SYSTEM | ADC_SAMPLE_TIME_5 | ADC_CONV_CLK_Tcy2 //ADC_SAMPLE_TIME_15| ADC_CONV_CLK_Tcy2
// define setup parameters for OpenADC10
// set AN4 and as analog inputs
#define PARAM4 ENABLE_AN4_ANA
// define setup parameters for OpenADC10
// do not assign channels to scan
#define PARAM5 SKIP_SCAN_ALL
// use ground as neg ref for A | use AN4 for input A
// configure to sample AN4
SetChanADC10( ADC_CH0_NEG_SAMPLEA_NVREF | ADC_CH0_POS_SAMPLEA_AN4 ); // configure to sample AN4
OpenADC10( PARAM1, PARAM2, PARAM3, PARAM4, PARAM5 ); // configure ADC using the parameters defined above
ConfigIntADC10(ADC_INT_PRI_2 | ADC_INT_ON);
EnableADC10(); // Enable the ADC
INTEnableSystemMultiVectoredInt();
OpenTimer3(T3_OFF | T3_SOURCE_INT | T3_PS_1_1 ,0x3e8);
num_channels = 1;
totaldata1 = 10500;
a2don=TRUE;
T3CONSET = 0x8000;
k=0;
while(1)
{
while(a2don);
for(i=0;i<100;i++)
{
dummy = a2dvals[i]/1000 ;
tempstr[0] = dummy + 0x30;
dummy1 = a2dvals[i]- dummy*1000;
dummy = dummy1/100;
tempstr[1] = dummy + 0x30;
dummy1 = dummy1 - dummy*100;
dummy = dummy1/10;
tempstr[2] = dummy + 0x30;
dummy1 = dummy1 - dummy*10;
tempstr[3] = dummy1 + 0x30;
//tempstr[4] = "\0";
printf("%c%c%c%c \n", tempstr[0],tempstr[1],tempstr[2],tempstr[3]);
}
a2don=TRUE;
}
}
}
return 1;
}// END SerialReceive()
enter image description here
Thanks for your advices.
You do not need to reset the Pickit. If anything, that might be the least efficient way to do it (arguably).
Rather try something like this. Please note this is high level. You will need to make it work yourself.
void(main){
// Setup your things here
while(1){ // Your infinite loop
// Check if you received 'a' here
if (received_a == 1){ // You received a 'a'
send_data(); // Send your data
}
}
}
Without providing actual code you have written we will not be able to help you.
You use while(1) loops everywhere, and if you don't use a break; or return command you stay in that loop forever.
I think you don't need while(1) loops in the functions except in main(). Remove these and it should work.
Try drawing out your program flow in a flow chart, it should clear things up. Also consider using a state machine using switch/case. It makes it a lot clearer where you are in the code and it's easier to debug. Also, it's probably even better to use interrupts for adc and the serial port. You free up the pic to do other stuff while peripherals are doing stuff that takes time.

Using I2C dev driver

I want to configure a sensor over the I2C bus using the I2C-dev module.
The required I2C bus is up and running, however, I cannot seem to receive any data from the sensor. Could anyone please help me debug the below code. All the sensor registers are 8 bit.
int main()
{
int devFile=0;
const char *devFileName="/dev/i2c-1";
char writeBuf[2];
uint16_t readBuf[2];
uint16_t tempReading = 0;
/* Initialize I2C interface */
devFile = hdc2010_i2c_init(devFileName, HDC2010_ADDR);
/* Configuring the sensor and trigerring measurement */
writeBuf[0] = HDC2010_CONFIG;
writeBuf[1] = 0x57;
hdc2010_i2c_write(devFile, writeBuf, 2);
writeBuf[0] = HDC2010_INTERRUPT_CONFIG;
writeBuf[1] = 0x78;
hdc2010_i2c_write(devFile, writeBuf, 2);
writeBuf[0] = HDC2010_MEASUREMENT_CONFIG;
writeBuf[1] = 0x03;
hdc2010_i2c_write(devFile, writeBuf, 2);
/* Reading temperature data from the registers */
writeBuf[0] = HDC2010_TEMP_LOW;
hdc2010_i2c_write(devFile, writeBuf, 1);
readBuf[0] = hdc2010_i2c_read(devFile, 1);
writeBuf[0] = HDC2010_TEMP_HIGH;
hdc2010_i2c_write(devFile, writeBuf, 1);
readBuf[1] = hdc2010_i2c_read(devFile, 1);
/*
* Converting the temperature to readable format
* Formula Source : HDC2010 Datasheet
*/
tempReading = ((readBuf[1] << 8) | (readBuf[0]));
tempReading = ((tempReading/65536)*165)-40;
printf("\nTemp: %d\n",tempReading);
}
int hdc2010_i2c_init(const char *devFileName, int slaveAddr)
{
int devFile;
/* Opening I2C device file */
devFile=open(devFileName,O_RDWR);
if (devFile < 0)
{
printf("\nError opening the %s device file.\n",devFileName);
exit (1);
}
/* Selecting HDC2010 by its slave address */
if (ioctl(devFile,I2C_SLAVE,slaveAddr) < 0)
{
printf("\nFailed to select HDC2010(addr=%u)\n",HDC2010_ADDR);
exit (1);
}
return devFile;
}
void hdc2010_i2c_write(int devFile, char *buf, int numBytes)
{
write(devFile, buf, numBytes);
}
uint16_t hdc2010_i2c_read(int devFile, int numBytes)
{
uint16_t readBuf;
read(devFile, &readBuf, 1);
return readBuf;
}
Do I need to use SMBus commands or read/write is sufficient ?
Are there any test applications, like in the case of SPIdev ?
I don't know interface to your chip. There is a great range of possible ways to use I2C. But there is a very common way to access a device with 8-bit registers, so let's assume that is what you need.
To read a register, you want to generate the (simplified) primitive I2C sequence:
Start I2CAddr+Write RegAddr Start I2CAddr+Read [DATA] Stop
But what you are doing is this:
Start I2CAddr+Write RegAddr Stop
Start I2CAddr+Read [DATA] Stop
Basically, you need the read register operation to be a single transaction with one stop at the end and a repeated start between write mode and read mode. But what you are sending is two transactions.
You should not be using the read()/write() interface to i2c-dev. This interface is very simple and not suitable for most I2C transactions. Instead use the ioctl() interface and I2C_RDWR. This allows the appropriate transactions to be generated.
Since certain forms of transactions are very common, including the ones you most likely want, there is a library that has them coded already. Use i2c_smbus_read_byte_data() and i2c_smbus_write_byte_data() from the library in i2c-tools.
As for test programs, there is i2cget and i2cset, part of the above mentioned i2c-tools, that will be able to do what you want.

STM32F429 FMC SDRAM issue when column adress > 8bit

I have the issue with FMC controller when interfacing 64MB IS42S16400J-7BLI.
I'm using the CubeMX to set base configuration
static void MX_FMC_Init(void)
{
FMC_SDRAM_TimingTypeDef SdramTiming;
/** Perform the SDRAM1 memory initialization sequence
*/
hsdram1.Instance = FMC_SDRAM_DEVICE;
/* hsdram1.Init */
hsdram1.Init.SDBank = FMC_SDRAM_BANK1;
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_11;
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_DISABLE;
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* SdramTiming */
SdramTiming.LoadToActiveDelay = 2;
SdramTiming.ExitSelfRefreshDelay = 7;
SdramTiming.SelfRefreshTime = 4;
SdramTiming.RowCycleDelay = 7;
SdramTiming.WriteRecoveryTime = 3;
SdramTiming.RPDelay = 2;
SdramTiming.RCDDelay = 2;
if (HAL_SDRAM_Init(&hsdram1, &SdramTiming) != HAL_OK)
{
Error_Handler();
}
}
and config the memory
void SDRAM_Initialization_Sequence(SDRAM_HandleTypeDef* hsdram, FMC_SDRAM_CommandTypeDef* Command)
{
__IO uint32_t tmpmrd = 0;
/* Step 3: Configure a clock configuration enable command */
Command->CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;
Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command->AutoRefreshNumber = 1;
Command->ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Step 4: Insert 100 ms delay */
HAL_Delay(100);
/* Step 5: Configure a PALL (precharge all) command */
Command->CommandMode = FMC_SDRAM_CMD_PALL;
Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command->AutoRefreshNumber = 1;
Command->ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Step 6 : Configure a Auto-Refresh command */
Command->CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command->AutoRefreshNumber = 4;
Command->ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Step 7: Program the external memory mode register */
tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_2 |
SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |
SDRAM_MODEREG_CAS_LATENCY_3 |
SDRAM_MODEREG_OPERATING_MODE_STANDARD |
SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
Command->CommandMode = FMC_SDRAM_CMD_LOAD_MODE;
Command->CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
Command->AutoRefreshNumber = 1;
Command->ModeRegisterDefinition = tmpmrd;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Step 8: Set the refresh rate counter */
/* (15.62 us x Freq) - 20 */
/* Set the device refresh counter */
HAL_SDRAM_ProgramRefreshRate(hsdram, REFRESH_COUNT);
}
The memory and micro are connected according to the schematic
I can use only 8bit of addressing. In this configuration everything is perfect, i.e. I can read/write values and observe them in debug window. It limits me though to only 8MB of memory.
When I modify in settings 8bits up to 9/10/11bits to have more memory available it starts malfunctioning,i.e. garbage in some memory area.
I made customized board, but the same issue you going find on the STM32F429-disco board. So I reject rather the connections. I tried to play with the time delays like "Row to column delay" and increase all delays possible, but not luck. Any help would be appreciated.
From IS42S16400J-7BLI datasheet:
Internally configured as a quad-bank DRAM with a synchronous
interface. Each 16,777,216-bit bank is organized as 4,096 rows by 256
columns by 16 bits.
So, you should use 8 bit in ColumnBitsNumber. And you'll get 8 Mbytes (64 MBits/8) of memory.

keyboard emulator device behavior on ubuntu

I'm building a device driver of sorts that consumes data from a keyboard emulating device.
The device is a card swipe, so its behavior is as follows:
User walks up, swipes card
I get a string of characters (key codes, really, including modifier keys for capital letters)
I don't know how many characters I'm going to get
I don't know when I'm getting something
Since I don't know how many characters I'm going to get, blocking reads on the keyboard tty aren't useful - I'd end up blocking after the last character. What I'm doing is, in Ruby, using the IO module to perform async reads against the keyboard device, and using a timeout to determine that the end of data was reached. This works fine logically (even a user swiping his or her card fast will do so slower than the send rate between characters).
The issue is that sometimes, I lose data from the middle of the string. My hunch is that there's some sort of buffer overflow happening because I'm reading the data too slowly. Trying to confirm this, I inserted small waits in between each key process. Longer waits (20ms+) do exacerbate the problem. However, a wait of around 5ms actually makes it go away? The only explanation I can come up with is that the async read itself is expensive (because Ruby), and doing them without a rate limit is actually slower than doing them with a 5ms delay.
Does this sound rational? Are there other ideas on what this could be?
The ruby is actually JRuby 9000. The machine is Ubuntu LTS 16.
Edit: here's a snippet of the relevant code
private def read_swipe(buffer_size, card_reader_input, pause_between_reads, seconds_to_complete)
limit = Time.now + seconds_to_complete.seconds
swipe_data = ''
begin
start_time = Time.now
sleep pause_between_reads
batch = card_reader_input.read_nonblock(buffer_size)
swipe_data << batch
rescue IO::WaitReadable
IO.select([card_reader_input], nil, nil, 0.5)
retry unless limit < start_time
end while start_time < limit
swipe_data
end
where card_reader_input = File.new(event_handle, 'rb')
I am not sure about Ruby code but you can use linux sysfs to access the characters coming out of keyboard 'like' device, and if feasible you can call C code from ruby application. I had done this for barcode reader and following is the code:
static int init_barcode_com(char* bcr_portname)
{
int fd;
/* Open the file descriptor in non-blocking mode */
fd = open(bcr_portname, O_RDONLY | O_NOCTTY | O_NDELAY);
cout << "Barcode Reader FD: " << fd <<endl;
if (fd == -1)
{
cerr << "ERROR: Cannot open fd for barcode communication with error " << fd <<endl;
}
fcntl(fd, F_SETFL, 0);
/* Set up the control structure */
struct termios toptions;
/* Get currently set options for the tty */
tcgetattr(fd, &toptions);
/* Set custom options */
/* 9600 baud */
cfsetispeed(&toptions, B9600);
cfsetospeed(&toptions, B9600);
/* 8 bits, no parity, no stop bits */
toptions.c_cflag &= ~PARENB;
toptions.c_cflag &= ~CSTOPB;
toptions.c_cflag &= ~CSIZE;
toptions.c_cflag |= CS8;
/* no hardware flow control */
toptions.c_cflag &= ~CRTSCTS;
/* enable receiver, ignore status lines */
toptions.c_cflag |= CREAD | CLOCAL;
/* disable input/output flow control, disable restart chars */
toptions.c_iflag &= ~(IXON | IXOFF | IXANY);
/* disable canonical input, disable echo,
* disable visually erase chars,
* disable terminal-generated signals */
toptions.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
/* disable output processing */
toptions.c_oflag &= ~OPOST;
/* wait for n (in our case its 1) characters to come in before read returns */
/* WARNING! THIS CAUSES THE read() TO BLOCK UNTIL ALL */
/* CHARACTERS HAVE COME IN! */
toptions.c_cc[VMIN] = 0;
/* no minimum time to wait before read returns */
toptions.c_cc[VTIME] = 100;
/* commit the options */
tcsetattr(fd, TCSANOW, &toptions);
/* Wait for the Barcode to reset */
usleep(10*1000);
return fd;
}
static int read_from_barcode_reader(int fd, char* bcr_buf)
{
int i = 0, nbytes = 0;
char buf[1];
/* Flush anything already in the serial buffer */
tcflush(fd, TCIFLUSH);
while (1) {
nbytes = read(fd, buf, 1); // read a char at a time
if (nbytes == -1) {
return -1; // Couldn't read
}
if (nbytes == 0) {
return 0;
}
if (buf[0] == '\n' || buf[0] == '\r') {
return 0;
}
bcr_buf[i] = buf[0];
i++;
}
return 0;
}
Now that you do not know how many characters your going to get you can use VMIN and VTIME combination to address your concern. This document details various possibilities with VMIN and VTIME.

Resources