I build a spark streaming application.This application read data form socket, and compute, then write the result into hdfs. But application run in A hadoop cluster, the hdfs in B hadoop cluster. Below is my code:
if (args.length < 2) {
System.out.println("Usage: StreamingWriteHdfs hostname port")
System.exit(-1)
}
val conf = new SparkConf()
conf.setAppName("StreamingWriteHdfs")
val ssc = new StreamingContext(conf, Durations.seconds(10))
ssc.checkpoint("/tmp")
val hostname: String = args(0)
val port :Int = Integer.parseInt(args(1))
val lines = ssc.socketTextStream(hostname, port)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print()
//TODO write to hdfs
wordCounts.saveAsHadoopFiles("hdfs://plumber/tmp/test/streaming",
"out",
classOf[Text],
classOf[IntWritable],
classOf[TextOutputFormat[Text, IntWritable]])
ssc.start()
ssc.awaitTermination()
When run this appplication in A cluster,get this execption:
java.lang.IllegalArgumentException: java.net.UnknownHostException:plumber
at org.apache.hadoop.security.SecurityUtil.buildTokenService(SecurityUtil.java:377)
at org.apache.hadoop.hdfs.NameNodeProxies.createNonHAProxy(NameNodeProxies.java:310)
at org.apache.hadoop.hdfs.NameNodeProxies.createProxy(NameNodeProxies.java:176)
at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:678)
at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:619)
at org.apache.hadoop.hdfs.DistributedFileSystem.initialize(DistributedFileSystem.java:149)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2653)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:92)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2687)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2669)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:371)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:251)
at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:63)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:361)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:358)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:62)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.UnknownHostException: plumber
the B hadoop cluster's fs.defaultFS is hdfs://plumber.
some one can help me out! thxs.
I think you need to modify the host name like
"hdfs://plumber:8020/tmp/test/streaming".
Related
I am running word count program from my windows machine on hadoop cluster which is setup on remote linux machine.
Program is running successfully and I am getting output but I am getting following exception and my waitForCompletion(true) is not returning true.
java.io.IOException: java.net.ConnectException: Your endpoint configuration is wrong; For more details see: http://wiki.apache.org/hadoop/UnsetHostnameOrPort
at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:345)
at org.apache.hadoop.mapred.ClientServiceDelegate.getJobStatus(ClientServiceDelegate.java:430)
at org.apache.hadoop.mapred.YARNRunner.getJobStatus(YARNRunner.java:870)
at org.apache.hadoop.mapreduce.Job$1.run(Job.java:331)
at org.apache.hadoop.mapreduce.Job$1.run(Job.java:328)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1682)
at org.apache.hadoop.mapreduce.Job.updateStatus(Job.java:328)
at org.apache.hadoop.mapreduce.Job.isComplete(Job.java:612)
at org.apache.hadoop.mapreduce.Job.monitorAndPrintJob(Job.java:1629)
at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1591)
at practiceHadoop.WordCount$1.run(WordCount.java:60)
at practiceHadoop.WordCount$1.run(WordCount.java:1)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1682)
at practiceHadoop.WordCount.main(WordCount.java:24)
Caused by: java.net.ConnectException: Your endpoint configuration is wrong; For more details see: http://wiki.apache.org/hadoop/UnsetHostnameOrPort
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:831)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:751)
at org.apache.hadoop.ipc.Client.getRpcResponse(Client.java:1495)
at org.apache.hadoop.ipc.Client.call(Client.java:1437)
at org.apache.hadoop.ipc.Client.call(Client.java:1347)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:228)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:116)
at com.sun.proxy.$Proxy16.getJobReport(Unknown Source)
at org.apache.hadoop.mapreduce.v2.api.impl.pb.client.MRClientProtocolPBClientImpl.getJobReport(MRClientProtocolPBClientImpl.java:133)
at sun.reflect.GeneratedMethodAccessor2.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:326)
... 17 more
Caused by: java.net.ConnectException: Connection refused: no further information
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:685)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:788)
at org.apache.hadoop.ipc.Client$Connection.access$3500(Client.java:409)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1552)
at org.apache.hadoop.ipc.Client.call(Client.java:1383)
... 26 more
My MapReduce Program which I run on eclipse (windows)
UserGroupInformation ugi = UserGroupInformation.createRemoteUser("admin");
ugi.doAs(new PrivilegedExceptionAction<Void>() {
public Void run() throws Exception {
try {
Configuration configuration = new Configuration();
configuration.set("yarn.resourcemanager.address", "192.168.33.75:50001"); // see step 3
configuration.set("mapreduce.framework.name", "yarn");
configuration.set("yarn.app.mapreduce.am.env",
"HADOOP_MAPRED_HOME=/home/admin/hadoop-3.1.0");
configuration.set("mapreduce.map.env", "HADOOP_MAPRED_HOME=/home/admin/hadoop-3.1.0");
configuration.set("mapreduce.reduce.env", "HADOOP_MAPRED_HOME=/home/admin/hadoop-3.1.0");
configuration.set("fs.defaultFS", "hdfs://192.168.33.75:54310"); // see step 2
configuration.set("mapreduce.app-submission.cross-platform", "true");
configuration.set("mapred.remote.os", "Linux");
configuration.set("yarn.application.classpath",
"{{HADOOP_CONF_DIR}},{{HADOOP_COMMON_HOME}}/share/hadoop/common/*,{{HADOOP_COMMON_HOME}}/share/hadoop/common/lib/*,"
+ " {{HADOOP_HDFS_HOME}}/share/hadoop/hdfs/*,{{HADOOP_HDFS_HOME}}/share/hadoop/hdfs/lib/*,"
+ "{{HADOOP_MAPRED_HOME}}/share/hadoop/mapreduce/*,{{HADOOP_MAPRED_HOME}}/share/hadoop/mapreduce/lib/*,"
+ "{{HADOOP_YARN_HOME}}/share/hadoop/yarn/*,{{HADOOP_YARN_HOME}}/share/hadoop/yarn/lib/*");
configuration.set("mlv_construct", "min");
configuration.set("column_name", "TotalCost");
Job job = Job.getInstance(configuration);
job.setJar("C:\\Users\\gauravp\\Desktop\\WordCountProgam.jar");
job.setJarByClass(WordCount.class); // use this when uploaded the Jar to the server and
// running the job directly and locally on the server
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(MapForWordCount.class);
job.setReducerClass(ReduceForWordCount.class);
Path input = new Path("/user/admin/wordCountInput.txt");
Path output = new Path("/user/admin/output");
FileSystem fs = FileSystem.get(configuration);
fs.delete(output);
FileInputFormat.addInputPath(job, input);
FileOutputFormat.setOutputPath(job, output);
if (job.waitForCompletion(true)) {
System.out.println("Job done...");
}
One more observation :
My connection from windows machine to remote linux machine ports (54310 and 50001) vanish after some time.
HDFS port connection status
yarn port connection status
I am stuck here from last 5 days. Please help me. Thanks in advance.
Check if your ResourceManager and NodeManager services are up and running using jps command. In my case only NameNode and DataNode services were up and above were not running. So when running a INSERT query on Hive, when it tried to run map reduce job it was failing with above error.
Starting yarn services mentioned above fixed the issue for me.
there
I am quite new to Hive, and a java app which accesses hive with kerberos authentication, like below:
try
{
System.setProperty("java.security.krb5.conf", "/haManage/krb5.conf");
StringBuilder sBuilder = new StringBuilder();
sBuilder.append("jdbc:hive2://ha-cluster/default");
sBuilder.append(";zk.quorum=").append("x.x.x.x,x.x.x.x");//ip list
sBuilder.append(";zk.port=").append("24002");
if (isSecureVer) {
sBuilder.append(";user.principal=")
.append("hadoop#HADOOP.COM")
.append(";user.keytab=")
.append("/home/hdclient/gyj/user.keytab")
.append(";sasl.qop=auth-conf;auth=KERBEROS;principal=hive/" +
"hadoop.hadoop.com#HADOOP.COM;zk.principal=zookeeper/hadoop.hadoop.com");
}
url = sBuilder.toString();
logger.info(url);
Class.forName("org.apache.hive.jdbc.HiveDriver");
connToHive = DriverManager.getConnection(url,"","");
} catch (Exception e)
{
logger.error("Error occurs",e);
}
But exception happens, shown below:
Caused by: org.apache.thrift.transport.TTransportException: Cannot open without port.
at org.apache.thrift.transport.TSocket.open(TSocket.java:172) ~[hive-exec-0.14.0.jar:0.14.0]
at org.apache.thrift.transport.TSaslTransport.open(TSaslTransport.java:248) ~[hive-exec-0.14.0.jar:0.14.0]
at org.apache.thrift.transport.TSaslClientTransport.open(TSaslClientTransport.java:37) ~[hive-exec-0.14.0.jar:0.14.0]
at org.apache.hadoop.hive.thrift.client.TUGIAssumingTransport$1.run(TUGIAssumingTransport.java:52) ~[hive-exec-0.14.0.jar:0.14.0]
at org.apache.hadoop.hive.thrift.client.TUGIAssumingTransport$1.run(TUGIAssumingTransport.java:49) ~[hive-exec-0.14.0.jar:0.14.0]
at java.security.AccessController.doPrivileged(Native Method) ~[na:1.7.0_45]
at javax.security.auth.Subject.doAs(Subject.java:415) ~[na:1.7.0_45]
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1656) ~[hadoop-common-2.6.4.jar:na]
at org.apache.hadoop.hive.thrift.client.TUGIAssumingTransport.open(TUGIAssumingTransport.java:49) ~[hive-exec-0.14.0.jar:0.14.0]
at org.apache.hive.jdbc.HiveConnection.openTransport(HiveConnection.java:190) ~[hive-jdbc-1.1.0.jar:1.1.0]
... 6 common frames omitted
Any effort will be appreciated.
While you have the zookeeper port specified as a query string parameter (needed for kerberos auth) you also need to have the port for hive after the hostname part of the URL. The normal port used by Hive is 10000, so your URL might start like this:
sBuilder.append("jdbc:hive2://ha-cluster:10000/default");
I am using a Proprietary database which provides its own OutputFormatter. Using This OutputFormatter I can write a Map Reduce Job and save the data from MR into this database.
However I am trying to use the OutputFormatter inside of Spark and trying to save an RDD to a database.
The code I have written is
object VerticaSpark extends App {
val scConf = new SparkConf
val sc = new SparkContext(scConf)
val conf = new Configuration()
val job = new Job(conf)
job.setInputFormatClass(classOf[VerticaInputFormat])
job.setOutputKeyClass(classOf[Text])
job.setOutputValueClass(classOf[VerticaRecord])
job.setOutputFormatClass(classOf[VerticaOutputFormat])
VerticaInputFormat.setInput(job, "select * from Foo where key = ?", "1", "2", "3", "4")
VerticaOutputFormat.setOutput(job, "Bar", true, "name varchar", "total int")
val rddVR : RDD[VerticaRecord] = sc.newAPIHadoopRDD(job.getConfiguration, classOf[VerticaInputFormat], classOf[LongWritable], classOf[VerticaRecord]).map(_._2)
val rddTup = rddVR.map(x => (x.get(1).toString(), x.get(2).toString().toInt))
val rddGroup = rddTup.reduceByKey(_ + _)
val rddVROutput = rddGroup.map({
case(x, y) => (new Text("Bar"), getVerticaRecord(x, y, job.getConfiguration))
})
//rddVROutput.saveAsNewAPIHadoopFile("Bar", classOf[Text], classOf[VerticaRecord], classOf[VerticaOutputFormat], job.getConfiguration)
rddVROutput.saveAsNewAPIHadoopDataset(job.getConfiguration)
def getVerticaRecord(name : String, value : Int , conf: Configuration) : VerticaRecord = {
var retVal = new VerticaRecord(conf)
//println(s"going to build Vertica Record with ${name} and ${value}")
retVal.set(0, new Text(name))
retVal.set(1, new IntWritable(value))
retVal
}
}
I entire solution can be downloaded from here
https://github.com/abhitechdojo/VerticaSpark.git
My code works perfectly till the saveAsNewAPIHadoopFile function is reached. At this line it throws a NullPointer Exception
The same logic and same Input and Output Formatter work perfectly in a Map Reduce Program and I can write successfully from DB using the MR program
https://my.vertica.com/docs/7.2.x/HTML/index.htm#Authoring/HadoopIntegrationGuide/HadoopConnector/ExampleHadoopConnectorApplication.htm%3FTocPath%3DIntegrating%2520with%2520Hadoop%7CUsing%2520the%2520%2520MapReduce%2520Connector%7C_____7
The stack trace of the error is
16/01/15 16:42:53 WARN TaskSetManager: Lost task 1.0 in stage 1.0 (TID 5, machine): java.lang.NullPointerException
at com.abhi.VerticaSpark$$anonfun$4.apply(VerticaSpark.scala:39)
at com.abhi.VerticaSpark$$anonfun$4.apply(VerticaSpark.scala:38)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$12.apply(PairRDDFunctions.scala:999)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$12.apply(PairRDDFunctions.scala:979)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:64)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 1.0 failed 4 times, most recent failure: Lost task 1.3 in stage 1.0 (TID 12, machine): java.lang.NullPointerException
at com.abhi.VerticaSpark$$anonfun$4.apply(VerticaSpark.scala:39)
at com.abhi.VerticaSpark$$anonfun$4.apply(VerticaSpark.scala:38)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$12.apply(PairRDDFunctions.scala:999)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$12.apply(PairRDDFunctions.scala:979)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:64)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1203)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1192)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1191)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1191)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:693)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:693)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:693)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1393)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1354)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
16/01/15 16:42:54 INFO TaskSetManager: Lost task 3.1 in stage 1.0 (TID 11) on executor machine: java.lang.NullPointerException (null) [duplicate 7]
I am running a map reduce job using an Accumulo table as input and storing the data in another table in Accumulo. This is the run method
public int run(String[] args) throws Exception {
Opts opts = new Opts();
opts.parseArgs(PivotTable.class.getName(), args);
Configuration conf = getConf();
conf.set("formula", opts.formula);
Job job = Job.getInstance(conf);
job.setJobName("Pivot Table Generation");
job.setJarByClass(PivotTable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setMapperClass(PivotTableMapper.class);
job.setCombinerClass(PivotTableCombiber.class);
job.setReducerClass(PivotTableReducer.class);
AccumuloInputFormat.setInputTableName(job, opts.dataTable);
BatchWriterConfig bwConfig = new BatchWriterConfig();
AccumuloOutputFormat.setBatchWriterOptions(job, bwConfig);
AccumuloOutputFormat.setDefaultTableName(job, opts.pivotTable);
AccumuloOutputFormat.setCreateTables(job, true);
job.setInputFormatClass(AccumuloInputFormat.class);
job.setOutputFormatClass(AccumuloOutputFormat.class);
opts.setAccumuloConfigs(job);
return job.waitForCompletion(true) ? 0 : 1;
}
The problem though is that when I run the job, I get an exception that says that it cannot connect to zookeeper.
Error: java.lang.RuntimeException: Failed to connect to zookeeper (zookeeper.1:22181) within 2x zookeeper timeout period 30000
at org.apache.accumulo.fate.zookeeper.ZooSession.connect(ZooSession.java:124)
at org.apache.accumulo.fate.zookeeper.ZooSession.getSession(ZooSession.java:164)
at org.apache.accumulo.fate.zookeeper.ZooReader.getSession(ZooReader.java:43)
at org.apache.accumulo.fate.zookeeper.ZooReader.getZooKeeper(ZooReader.java:47)
at org.apache.accumulo.fate.zookeeper.ZooCache.getZooKeeper(ZooCache.java:59)
at org.apache.accumulo.fate.zookeeper.ZooCache.retry(ZooCache.java:159)
at org.apache.accumulo.fate.zookeeper.ZooCache.get(ZooCache.java:289)
at org.apache.accumulo.fate.zookeeper.ZooCache.get(ZooCache.java:238)
at org.apache.accumulo.core.client.ZooKeeperInstance.getInstanceID(ZooKeeperInstance.java:169)
at org.apache.accumulo.core.client.ZooKeeperInstance.<init>(ZooKeeperInstance.java:159)
at org.apache.accumulo.core.client.ZooKeeperInstance.<init>(ZooKeeperInstance.java:140)
at org.apache.accumulo.core.client.mapreduce.RangeInputSplit.getInstance(RangeInputSplit.java:364)
at org.apache.accumulo.core.client.mapreduce.AbstractInputFormat$AbstractRecordReader.initialize(AbstractInputFormat.java:495)
at org.apache.hadoop.mapred.MapTask$NewTrackingRecordReader.initialize(MapTask.java:548)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:786)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:164)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)
I checked to see if zookeeper was up and it was running. I ran telnet to see if the port was up and it was up.
I am using $ACCUMULO_HOME/bin/tool.sh to run the job. Any help would be appreciated.
It was an issue with the hosts file in my hadoop slaves. The hostname mappings were not correct.
I have a code that reads data from FTP server using mapreduce code . The code we use to connect to ftp server is as follows `
String inputPath = args[0];
String outputPath = args[1];
Configuration conf1 = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf1, args).getRemainingArgs();
Path arg = new Path(inputPath);
FTPFileSystem ftpfs = new FTPFileSystem();
Path arg1 =new Path(outputPath);
ftpfs.setConf(conf1);
String ftpUser = URLEncoder.encode("username", "UTF-8");
String ftpPass = URLEncoder.encode("password", "UTF-8");
String url = String.format("ftp://%s:%s#ftpserver.com",
ftpUser, ftpPass);
ftpfs.initialize(new URI(url), conf1);
JobConf conf = new JobConf(FTPIF.class);
FileOutputFormat.setOutputPath(conf, arg1));
FileInputFormat.setInputPaths(conf, ftpfs.makeQualified(arg));
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(NullWritable.class);
conf.setOutputFormat(TextOutputFormat.class);
conf.setInputFormat(CustomInputFormat.class);
conf.setMapperClass(CustomMap.class);
conf.setReducerClass(CustomReduce.class);
JobClient.runJob(conf);
`
The problem is this code works perfectly fine in pseudo mode but gives a login failed on server error when run on a cluster.the error stack trace is
ERROR security.UserGroupInformation: PriviledgedActionException as:username (auth:SIMPLE) cause:java.io.IOException: Login failed on server - 0.0.0.0, port - 21
Exception in thread "main" java.io.IOException: Login failed on server - 0.0.0.0, port - 21
at org.apache.hadoop.fs.ftp.FTPFileSystem.connect(FTPFileSystem.java:133)
at org.apache.hadoop.fs.ftp.FTPFileSystem.getFileStatus(FTPFileSystem.java:389)
at org.apache.hadoop.fs.FileSystem.getFileStatus(FileSystem.java:2106)
at org.apache.hadoop.fs.FileSystem.globStatusInternal(FileSystem.java:1566)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1503)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:174)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:205)
at org.apache.hadoop.mapred.JobClient.writeOldSplits(JobClient.java:1041)
at org.apache.hadoop.mapred.JobClient.writeSplits(JobClient.java:1033)
at org.apache.hadoop.mapred.JobClient.access$600(JobClient.java:172)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:943)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:896)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1332)
at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:896)
at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:870)
at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:1319)
at FTPIF.run(FTPIF.java:164)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:84)
at FTPIF.main(FTPIF.java:169)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:597)
at org.apache.hadoop.util.RunJar.main(RunJar.java:208
The cluster has connectivity to ftp . The credentials used are correct. Any ideas why the code is not able to connect to ftp ?
If you have many nodes on your cluster and multiple mappers are trying to open connections to your FTP server then you can exceed the limit of FTP users which FTP server supports.