I've a task with graph. I'm not looking for code, but only for idea. I don't know even where should I start.. so content of this task is:
in first line we have two number, n and q.
n - number of cities and q - number of days.
next line contain n integer number n1, n2, n3, n4...n_n where n_i means that we can earn n_i money in city with number i.
next n-1 lines desribe connection between city a and b.
each line is form a, b, c which is mean that
a is connected with b (and b with a) and cost of this path is c.
next we have q lines which desribe changes, we have 2 case
in form 1 v d which means that from dawn day i profit from city v will be d
and form 2 a b d which means that from dawn day i cost of path between a and b (and b to a) will be d
our task is print ids of city where we will be sleep after i day.
we start from city which index 1 and when we're in city number 2 then we will sleep in this city.
for example
input:
4 4
10 20 30 50
1 2 5
2 3 7
2 4 57
1 3 28
1 1 25
2 3 2 1
2 2 4 13
output:
3 1 3 4
sorry for my english :/ as I said before I'm not looking for code but for general idea.
#EDIT
maybe it will be some useful info. When we go to city with index B. We spend there night. Question is. Where we will be spend our nights. I mean how our path looks
Related
I've read every answer here, Wikipedia and WikiHow, the indian guy's lecture, and other sources, and I'm pretty sure I understand what they're saying and have implemented it that way. But I'm confused about a statement that all of these explanations make that is clearly false.
They all say to cover the zeros in the matrix with a minimum number of lines, and if that is equal to N (that is, there's a zero in every row and every column), then there's a zero solution and we're done. But then I found this:
a b c d e
A 0 7 0 0 0
B 0 8 0 0 6
C 5 0 7 3 4
D 5 0 5 9 3
E 0 4 0 0 9
There's a zero in every row and column, and no way to cover the zeros with fewer than five lines, but there's clearly no zero solution. Row C has only the zero in column b, but that leaves no zero for row D.
Do I misunderstand something here? Do I need a better test for whether or not there's a zero assignment possible? Are all these sources leaving out something essential?
You can cover the zeros in the matrix in your example with only four lines: column b, row A, row B, row E.
Here is a step-by-step walkthrough of the algorithm as it is presented in the Wikipedia article as of June 25 applied to your example:
a b c d e
A 0 7 0 0 0
B 0 8 0 0 6
C 5 0 7 3 4
D 5 0 5 9 3
E 0 4 0 0 9
Step 1: The minimum in each row is zero, so the subtraction has no effect. We try to assign tasks such that every task is performed at zero cost, but this turns out to be impossible. Proceed to next step.
Step 2: The minimum in each column is also zero, so this step also has no effect. Proceed to next step.
Step 3: We locate a minimal number of lines to cover up all the zeros. We find [b,A,B,E].
a b c d e
A ---|---------
B ---|---------
C 5 | 7 3 4
D 5 | 5 9 3
E ---|---------
Step 4: We locate the minimal uncovered element. This is 3, at (C,d) and (D,e). We subtract 3 from every unmarked element and add 3 to every element covered by two lines:
a b c d e
A 0 10 0 0 0
B 0 11 0 0 6
C 2 0 4 0 1
D 2 0 2 6 0
E 0 7 0 0 9
Immediately the minimum number of lines to cover up all the zeros becomes 5. This is easy to verify as there is a zero in every row and a zero in every column. The algorithm asserts that an assignment like the one we were looking for in step 1 should now be possible on the new matrix.
We try to assign tasks such that every task is performed at zero cost (according to the new matrix). This is now possible. We find the solution [(A,e),(B,c),(C,d),(D,b),(E,a)].
We can now go back and verify that the solution that we found actually is optimal. We see that every assigned job has zero cost, except (C,d), which has cost 3. Since 3 is actually the lowest nonzero element in the matrix, and we have seen that there is no zero-cost solution, it is clear that this is an optimal solution.
Consider the following matrix/array that contains the distances between 4 cities:
0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0
Each row/column pair (i,j) represents the distance between city i and city j.
For example the distance between city 1 and city 4 is 3.
I just wanted to check if my understanding here is correct. Like an array, the first city starts off at 0. So in the matrix, city 1 is 0 and city 2 is 1.
The path between city 3 and city 3 would be 0? First we look at row 2 and then column 2.
Let's imagine we had the following tour: T = {1,3,2,4}. To work this out we do...
City 1 to city 3 is 2. City 3 to city 2 is 4. City 2 to 4 is 5.
So the length of the tour should be 2 + 4 + 5 = 11? In the traveling salesman problem however, we always travel back to the starting position, so from city 4 we must go back to 1 which will cost a extra 3, so our final tour is 14 (11 + 3).
Yes, correct. For more TSP info see the TSP webpage.
Permutation Game (30 Points)
Alice and Bob play the following game:
1) They choose a permutation of the first N numbers to begin with.
2) They play alternately and Alice plays first.
3) In a turn, they can remove any one remaining number from the permutation.
4) The game ends when the remaining numbers form an increasing sequence. The person who played the last turn (after which the sequence becomes increasing) wins the game.
Assuming both play optimally, who wins the game?
Input:
The first line contains the number of test cases T. T test cases follow. Each case contains an integer N on the first line, followed by a permutation of the integers 1..N on the second line.
Output:
Output T lines, one for each test case, containing "Alice" if Alice wins the game and "Bob" otherwise.
Constraints:
1 <= T <= 100
2 <= N <= 15
The permutation will not be an increasing sequence initially.
Sample Input:
2
3
1 3 2
5
5 3 2 1 4
Sample Output:
Alice
Bob
Explanation: For the first example, Alice can remove the 3 or the 2 to make the sequence increasing and wins the game.
Can someone please help me out on the second input case: 5 3 2 1 4
The increasing sequences possible are:
1) 3 4 - Removing 5 , 2 , 1 in any sequence
2) 2 4 - Removing 5 , 3 , 1 in any sequence
3) 1 4 - Removing 5 , 3 , 2 in any sequence
So the output should be Alice?
Please do not share any code. Thanks
If Alice removes any of 5,3,2,1 then Bob removes 4. So, the increasing sequence can be of only one element, elements can be removed in any order. Hence, Bob wins.
If Alice removes 4, then also the increasing sequence has to be of one element. Bob wins.
So, Bob wins.
A possible case might be 4 or 5 is considered as increasing seq
As the input parameters are n>=2
But Alice would play optimally and remove 5 to win
NOTE: This isn't a programming problem and really doesn't belong on this site...
It sure looks like Alice should be the winner of the second test case.
Flow:
// Start state
5 3 2 1 4
// Alice remove 5
3 2 1 4
// Bob remove 3, 2, or 1
(2 1 4) or (3 1 4) or (3 2 4)
// Alice remove first number remaining
(1 4) or (2 4)
// Alice won!
Alice invents a key (s1, s2, s3, ... , sk). Bob makes a guess (g1, g2, g3, ... , gk).He is awarded one point for each si = gi.
Each s1 is an integer with the range of 0<=si<=11.
Given a q guesses with their scores bi
(g1, g2, g3, ... , gk) b1
(g1, g2, g3, ... , gk) b2
.
.
.
(g1, g2, g3, ... , gk) bq
Can you state if there is a key possible. Given 0<=si<=11, 1<=k<=11, 1<=q<=8.
For Example
2 2 1 1 2
1 1 2 2 1
For the guess 2 2 1 1 the score is 2
For the guess 1 1 2 2 the score is 1
Because there is a key possible let's say 2 1 1 3 which gives the desired scores.Hence the answer is yes
Another Example
1 2 3 4 4
4 3 2 1 1
For the guess 1 2 3 4 the score is 4
For the guess 4 3 2 1 the score is 1
This has no key which gives the desired scores hence answer is NO
I tried the brute force approach generating n^k such keys where n is the range of si.But it gave Time Limit exceeding error.
Its an interview puzzle. I have seen variants of this question but was not able to solve them.Can you tell me what should I read for such type of questions.
I don't know the best solution to this problem, but if you did a recursive search of the possible solution space, pruning branches which could not possibly lead to a solution, it would be much faster than trying all (n^k) keys.
Take your example:
1 2 3 4 4 -> 4
4 3 2 1 1 -> 1
The 3 possible values for g1 which could be significant are: 1, 4, and "neither 1 nor 4". Choose one of them, and then recursively look at the possible values for g2. Choose one, and recursively look at the possible values for g3, etc.
As you search, keep track of a cumulative score for each of the guesses from b1 to bq. Whenever you choose a value for a digit, increment the cumulative scores for all the guesses which have the same number in that position. Keep these cumulative scores on a stack (so you can back up).
When you reach a point where no solution is possible, back up and continue searching a different path. If you back all the way up to g1 and no more paths are left to search, then the answer is NO. If you find a solution, then the answer is YES.
When to stop searching a path and back up:
If the cumulative score of one of the guesses exceeds the given score
If the cumulative score of one of the guesses is less than the given score minus the number of levels left in the search tree (before you hit the bottom)
This approach could still be very slow, especially if "k" was large. But again, it will be far faster than generating (n^k) keys.
For example, if it is the choice of chocolate, ice cream, donut, ..., for the order of their preference.
If user 1 choose
A B C D E F G H I J
and user 2 chooses
J A B C I G F E D H
what are some good ways to calculate a score from 0 to 100 to tell how close their choices are? It has to make sense, such as if most answers are the same but just 1 or 2 answers different, the score cannot be made to extremely low. Or, if most answers are just "shifted by 1 position", then we cannot count them as "all different" and give 0 score for those differences of only 1 position.
Assign each letter item an integer value starting at 1
A=1, B=2, C=3, D=4, E=5, F=6 (stopping at F for simplicity)
Then consider the order the items are placed, use this as a multiple
So if a number is the first item, its multiplier is 1, if its the 6th item the multipler is 6
Figure out the maximum score you could have (basically when everything is in consecutive order)
item a b c d e f
order 1 2 3 4 5 6
value 1 2 3 4 5 6
score 1 4 9 16 25 36 Sum = 91, Score = 100% (MAX)
item a b d c e f
order 1 2 3 4 5 6
value 1 2 4 3 5 6
score 1 4 12 12 25 36 Sum = 90 Score = 99%
=======================
order 1 2 3 4 5 6
item f d b c e a
value 6 4 2 3 5 1
score 6 8 6 12 25 6 Sum = 63 Score = 69%
order 1 2 3 4 5 6
item d f b c e a
value 4 6 2 3 5 1
score 4 12 6 12 25 6 Sum = 65 Score = 71%
obviously this is a very crude implementation that I just came up with. It may not work for everything. Examples 3 and 4 are swapped by one position yet the score is off by 2% (versus ex 1 and 2 which are off by 1%). It's just a thought. I'm no algorithm expert. You could probably use the final number and do something else to it for a better numerical comparison.
You could
Calculate the edit distance between the sequences;
Subtract the edit distance from the sequence length;
Divide that by the length of the sequence
Multiply it by hundred
Score = 100 * (SequenceLength - Levenshtein( Sequence1, Sequence2 ) ) / SequenceLength
Edit distance is basically the number of operations required to transform sequence one in sequence two. An algorithm therefore is the Levenshtein distance algorithm.
Examples:
Weights
insert: 1
delete: 1
substitute: 1
Seq 1: ABCDEFGHIJ
Seq 2: JABCIGFEDH
Score = 100 * (10-7) / 10 = 30
Seq 1: ABCDEFGHIJ
Seq 2: ABDCFGHIEJ
Score = 100 * (10-3) / 10 = 70
The most straightforward way to calculate it is the Levenshtein distance, which is the number of changes that must be done to transform one string to another.
Disadvantage of Levenshtein distance for your task is that it doesn't measure closeness between products themselves. I.e. you will not know how A and J are close to each other. For example, user 1 may like donuts, and user 2 may like buns, and you know that most people who like first also like the second. From this information you can infer that user 1 makes choices that are close to choices of user 2, through they don't have same elements.
If this is your case, you will have to use one of two: statistical methods to infer correlation between choices or recommendation engines.