In mathematica, how can I execute multiple expressions in do loop? - wolfram-mathematica

I want to realize this function:
Do[
expr(1),
expr(2)...
expr(n),
{i,1,j}]
to execute expr(k), the result of expr(k-1) is required, so the function can not realized by simply multiple layer of do loop. How can I execute the function by do loop? Or by other loop in mathematica?(I also notice that both for and while loop can only support one expr just as do loop)

Try separating by semicolon rather than comma. Like:
y = 0
Do[y += x; Print[y], {x, 1, 5}]

Do loops, and many of the other control-flow constructs from imperative programming languages, are almost always not the right answer to Mathematica programming questions.
You don't tell us what expr is supposed to calculate so it's difficult to provide more than a very general answer ... so I'll use the factorial as a simple example of how one might program a function where expr[n] depends on expr[n-1]
fact[0] = 1
fact[n_] := n*fact[n-1]
Here, I've defined the factorial function in two rules; the first establishes the base case, and the second establishes the case for values other than 0. To avoid situations where the function is fed bad data we'd probably prefer a formulation such as
fact[0] = 1
fact[n_Integer /; n > 0] := n*fact[n-1]
In this version the function fact will only operate on positive integers or on 0.
(Note: to those knowledgeable about Mathematica: Yes I know that this is not a good way to program the factorial function, and that there is a built-in function for calculating factorials. But this is supposed to help someone who appears to be a complete novice.)

Related

construct a structured matrix efficiently in fortran

Having left Fortran for several years, now I have to pick it up and start to work with it again.
I'd like to construct a matrix with entry(i,j) in the form f(x_i,y_j), where f is a function of two variables, e.g., f(x,y)=cos(x-y). In Matlab or Python(Numpy), there are efficient ways to handle this kind of specific issue. I wonder whether there is such optimization in Fortran.
BTW, is it also true in Fortran that a vectorized operation is faster than a do/for loop (as is the case in Matlab and Numpy) ?
If you mean by vectorized the same as you mean in Matlab and Python, the short form you call on whole array then no, these forms are often slower, because they mey be harder to optimize than simple loops. What is faster is when the compiler actually uses the vector instructions of the CPU, but that is something else. And it is easier for the compiler to use them for simple loops.
Fortran has elemental functions, do concurrent, forall and where constructs, implied loops and array constructors. There is no point repeating them here, they have been described many times on this site or in tutorials.
Your example is most simply done using a loop
do j = 1, ny
do i = 1, nx
entry(i,j) = f(x(i), y(j))
end do
end do
One of the short ways, you probably meant by Python-like vectorization, would be the whole-array operations, e.g.,
A = cos(B)
C = A * B
D = f(A*B)
and similar. The function (which is called on each element of the array), must be elemental. These operations are not necessarily efficient. For example, the last call may require a temporary array to be created, which would be avoided when using a loop.

Vectorization of matlab code

i'm kinda new to vectorization. Have tried myself but couldn't. Can somebody help me vectorize this code as well as give a short explaination on how u do it, so that i can adapt the thinking process too. Thanks.
function [result] = newHitTest (point,Polygon,r,tol,stepSize)
%This function calculates whether a point is allowed.
%First is a quick test is done by calculating the distance from point to
%each point of the polygon. If that distance is smaller than range "r",
%the point is not allowed. This will slow down the algorithm at some
%points, but will greatly speed it up in others because less calls to the
%circleTest routine are needed.
polySize=size(Polygon,1);
testCounter=0;
for i=1:polySize
d = sqrt(sum((Polygon(i,:)-point).^2));
if d < tol*r
testCounter=1;
break
end
end
if testCounter == 0
circleTestResult = circleTest (point,Polygon,r,tol,stepSize);
testCounter = circleTestResult;
end
result = testCounter;
Given the information that Polygon is 2 dimensional, point is a row vector and the other variables are scalars, here is the first version of your new function (scroll down to see that there are lots of ways to skin this cat):
function [result] = newHitTest (point,Polygon,r,tol,stepSize)
result = 0;
linDiff = Polygon-repmat(point,size(Polygon,1),1);
testLogicals = sqrt( sum( ( linDiff ).^2 ,2 )) < tol*r;
if any(testLogicals); result = circleTest (point,Polygon,r,tol,stepSize); end
The thought process for vectorization in Matlab involves trying to operate on as much data as possible using a single command. Most of the basic builtin Matlab functions operate very efficiently on multi-dimensional data. Using for loop is the reverse of this, as you are breaking your data down into smaller segments for processing, each of which must be interpreted individually. By resorting to data decomposition using for loops, you potentially loose some of the massive performance benefits associated with the highly optimised code behind the Matlab builtin functions.
The first thing to think about in your example is the conditional break in your main loop. You cannot break from a vectorized process. Instead, calculate all possibilities, make an array of the outcome for each row of your data, then use the any keyword to see if any of your rows have signalled that the circleTest function should be called.
NOTE: It is not easy to efficiently conditionally break out of a calculation in Matlab. However, as you are just computing a form of Euclidean distance in the loop, you'll probably see a performance boost by using the vectorized version and calculating all possibilities. If the computation in your loop were more expensive, the input data were large, and you wanted to break out as soon as you hit a certain condition, then a matlab extension made with a compiled language could potentially be much faster than a vectorized version where you might be performing needless calculation. However this is assuming that you know how to program code that matches the performance of the Matlab builtins in a language that compiles to native code.
Back on topic ...
The first thing to do is to take the linear difference (linDiff in the code example) between Polygon and your row vector point. To do this in a vectorized manner, the dimensions of the 2 variables must be identical. One way to achieve this is to use repmat to copy each row of point to make it the same size as Polygon. However, bsxfun is usually a superior alternative to repmat (as described in this recent SO question), making the code ...
function [result] = newHitTest (point,Polygon,r,tol,stepSize)
result = 0;
linDiff = bsxfun(#minus, Polygon, point);
testLogicals = sqrt( sum( ( linDiff ).^2 ,2 )) < tol*r;
if any(testLogicals); result = circleTest (point,Polygon,r,tol,stepSize); end
I rolled your d value into a column of d by summing across the 2nd axis (note the removal of the array index from Polygon and the addition of ,2 in the sum command). I then went further and evaluated the logical array testLogicals inline with the calculation of the distance measure. You will quickly see that a downside of heavy vectorisation is that it can make the code less readable to those not familiar with Matlab, but the performance gains are worth it. Comments are pretty necessary.
Now, if you want to go completely crazy, you could argue that the test function is so simple now that it warrants use of an 'anonymous function' or 'lambda' rather than a complete function definition. The test for whether or not it is worth doing the circleTest does not require the stepSize argument either, which is another reason for perhaps using an anonymous function. You can roll your test into an anonymous function and then jut use circleTest in your calling script, making the code self documenting to some extent . . .
doCircleTest = #(point,Polygon,r,tol) any(sqrt( sum( bsxfun(#minus, Polygon, point).^2, 2 )) < tol*r);
if doCircleTest(point,Polygon,r,tol)
result = circleTest (point,Polygon,r,tol,stepSize);
else
result = 0;
end
Now everything is vectorised, the use of function handles gives me another idea . . .
If you plan on performing this at multiple points in the code, the repetition of the if statements would get a bit ugly. To stay dry, it seems sensible to put the test with the conditional function into a single function, just as you did in your original post. However, the utility of that function would be very narrow - it would only test if the circleTest function should be executed, and then execute it if needs be.
Now imagine that after a while, you have some other conditional functions, just like circleTest, with their own equivalent of doCircleTest. It would be nice to reuse the conditional switching code maybe. For this, make a function like your original that takes a default value, the boolean result of the computationally cheap test function, and the function handle of the expensive conditional function with its associated arguments ...
function result = conditionalFun( default, cheapFunResult, expensiveFun, varargin )
if cheapFunResult
result = expensiveFun(varargin{:});
else
result = default;
end
end %//of function
You could call this function from your main script with the following . . .
result = conditionalFun(0, doCircleTest(point,Polygon,r,tol), #circleTest, point,Polygon,r,tol,stepSize);
...and the beauty of it is you can use any test, default value, and expensive function. Perhaps a little overkill for this simple example, but it is where my mind wandered when I brought up the idea of using function handles.

given code of function f, how to decide statically if x effects f(x)?

If I have code for some function f (that takes in one input for simplicity), I need to decide if the input x affects the output f(x), i.e, if f is a constant function defined below.
Define f to be constant function if output of f is invariant w.r.t x. This should hold for ALL inputs. So for example, if we have f(x) = 0 power x, it may output 0 for all inputs except for x = 0, where it may output error. So f is not a constant function.
I can only do static analysis of the code and assume the code is Java source for simplicity.
Is this possible?
This is obviously at least as hard as solving the Halting Problem (proof left as an exercise), so the answer is "no", this is not possible.
It is almost certainly possible. In most cases. Where there aren't weird thing going on.
For normal functions, the ordinary, useful kind that actually return values rather than doing their own little thing, yes.
For a simple function, not recursive, no nastiness of that sort, doing it manually, I would probably make the static-analysis equivalent of a sign chart, where I examine the code and determine every value of x that might possibly be a boundary condition or such (e.g. the code has if (x < 0) somewhere in it, so I check the function for values of x near 0). If this sort of attempt is doomed to fail please tell me before I try to use it on something.
Using brute force to grind away at it could work, unless you are working with quadruple precision x values or something similarly-sized, because then brute force could take years. Although at that point its not really static-analysis anymore.
Static-analysis generally really means having a computer tell you by looking at the code, not you looking at it yourself (at least not very much). Algorithms exist for doing this in many languages, wikipedia has such a list, including some free or even open source.
The ultimate proof that something can be done is for it to have been done already.
Since you'd call a non-terminating function non-constant, here's the reduction from your problem to the halting problem:
void does_it_halt(...);
int f(int x) {
if(x == 1) {
does_it_halt();
}
return 0;
}
Asking if f is constant is equivalent to asking if does_it_halt halts. Therefore, what you're asking for is impossible, since the halting problem is undecidable.

ReleaseHoldAll in Wolfram Mathematica?

I want to assign values to variables (like c for speed of light or G for gravitational constant) but have formulas calculated symbolically until last step.
How is it possible to do this in shortest way?
Replace is very long and duplicating while HoldForm can require multiple RealeaseHold if nested.
Is there some other functions for this?
We can define N values for our constants. For example:
N[c] = 299792458;
This defines a numerical value for c. We can define a function that uses the constant:
f[v_] := Sqrt[1-v^2/c^2]
When we evaluate this function normally, it leaves c in symbolic form:
In[11]:= f[200000000]
Out[11]= Sqrt[1 - 40000000000000000/c^2]
But if we apply N, then c gets evaluated numerically:
In[12]:= f[200000000] // N
Out[12]= 0.744943
an example will help. But if I understood you, then you have
expr=9 c + 10 gravity
then you can write
expr /. {c -> 299792458, gravity -> 9.8}
to evaluate the symbolic expression with new values for the symbols involved.
The expression can remain symbolic all the time, and you can simply evaluates it for different values for the symbols in it.
I think this question has two parts.
(1) Whether we should force Mathematica to do all calculations symbolically. This is (almost always) wrong. Mathematica can do arbitrary precision numerics, so we should prefer to tell it the precision of our physical constants (when they exceed $MachinePrecision) and let it choose the most efficient way to solve the problem.
(2) How do we print intermediate steps in symbolic form. For this, use HoldForm[expr], and then
expr //. HoldForm[x_]:>ReleaseHold[HoldForm[x]]
should give you the evaluation results as you indicate.
Regarding a "ReleaseHoldAll" function, MapAll (short form //#) maps a function to all parts of an expression. Therefore, you can use:
ReleaseHold //# expr
where expr is your expression containing Hold, HoldForm, etc., at any level.
There are strange attributes to using the replacement operator in mathematica sometimes. This has to do with the context in which you apply it. The above answer will probably work well, but personally I always use Block[{variable=number}, code] command, which makes the variables act as global within the Block brackets, but once the evaluation proceeded outside, the variables remain undeclared.
use it like this:
Block[{c = 299792458, gravity = 9.0 }, answer = 9 c + 10 gravity ]
gives output:
2.69813*10^9
and also sets answer globally to the value of the output so you can use it after :
answer/2
results in:
1.34907*10^9

Iterative solving for unknowns in a fluids problem

I am a Mechanical engineer with a computer scientist question. This is an example of what the equations I'm working with are like:
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
The situation is this:
I need r to find x, but I need x to find z. I also need x to find f which is a part of finding z. So I guess a value for x, and then I use that value to find r and f. Then I go back and use the value I found for r and f to find x. I keep doing this until the guess and the calculated are the same.
My question is:
How do I get the computer to do this? I've been using mathcad, but an example in another language like C++ is fine.
The very first thing you should do faced with iterative algorithms is write down on paper the sequence that will result from your idea:
Eg.:
x_0 = ..., f_0 = ..., r_0 = ...
x_1 = ..., f_1 = ..., r_1 = ...
...
x_n = ..., f_n = ..., r_n = ...
Now, you have an idea of what you should implement (even if you don't know how). If you don't manage to find a closed form expression for one of the x_i, r_i or whatever_i, you will need to solve one dimensional equations numerically. This will imply more work.
Now, for the implementation part, if you never wrote a program, you should seriously ask someone live who can help you (or hire an intern and have him write the code). We cannot help you beginning from scratch with, eg. C programming, but we are willing to help you with specific problems which should arise when you write the program.
Please note that your algorithm is not guaranteed to converge, even if you strongly think there is a unique solution. Solving non linear equations is a difficult subject.
It appears that mathcad has many abstractions for iterative algorithms without the need to actually implement them directly using a "lower level" language. Perhaps this question is better suited for the mathcad forums at:
http://communities.ptc.com/index.jspa
If you are using Mathcad, it has the functionality built in. It is called solve block.
Start with the keyword "given"
Given
define the guess values for all unknowns
x:=2
f:=3
r:=2
...
define your constraints
x = √((y-z)×2/r)
z = f×(L/D)×(x/2g)
f = something crazy with x in it
etc…(there are more equations with x in it)
calculate the solution
find(x, y, z, r, ...)=
Check Mathcad help or Quicksheets for examples of the exact syntax.
The simple answer to your question is this pseudo-code:
X = startingX;
lastF = Infinity;
F = 0;
tolerance = 1e-10;
while ((lastF - F)^2 > tolerance)
{
lastF = F;
X = ?;
R = ?;
F = FunctionOf(X,R);
}
This may not do what you expect at all. It may give a valid but nonsense answer or it may loop endlessly between alternate wrong answers.
This is standard substitution to convergence. There are more advanced techniques like DIIS but I'm not sure you want to go there. I found this article while figuring out if I want to go there.
In general, it really pays to think about how you can transform your problem into an easier problem.
In my experience it is better to pose your problem as a univariate bounded root-finding problem and use Brent's Method if you can
Next worst option is multivariate minimization with something like BFGS.
Iterative solutions are horrible, but are more easily solved once you think of them as X2 = f(X1) where X is the input vector and you're trying to reduce the difference between X1 and X2.
As the commenters have noted, the mathematical aspects of your question are beyond the scope of the help you can expect here, and are even beyond the help you could be offered based on the detail you posted.
However, I think that even if you understood the mathematics thoroughly there are computer science aspects to your question that should be addressed.
When you write your code, try to make organize it into functions that depend only upon the parameters you are passing in to a subroutine. So write a subroutine that takes in values for y, z, and r and returns you x. Make another that takes in f,L,D,G and returns z. Now you have testable routines that you can check to make sure they are computing correctly. Check the input values to your routines in the routines - for instance in computing x you will get a divide by 0 error if you pass in a 0 for r. Think about how you want to handle this.
If you are going to solve this problem interatively you will need a method that will decide, based on the results of one iteration, what the values for the next iteration will be. This also should be encapsulated within a subroutine. Now if you are using a language that allows only one value to be returned from a subroutine (which is most common computation languages C, C++, Java, C#) you need to package up all your variables into some kind of data structure to return them. You could use an array of reals or doubles, but it would be nicer to choose to make an object and then you can reference the variables by their name and not their position (less chance of error).
Another aspect of iteration is knowing when to stop. Certainly you'll do so when you get a solution that converges. Make this decision into another subroutine. Now when you need to change the convergence criteria there is only one place in the code to go to. But you need to consider other reasons for stopping - what do you do if your solution starts diverging instead of converging? How many iterations will you allow the run to go before giving up?
Another aspect of iteration of a computer is round-off error. Mathematically 10^40/10^38 is 100. Mathematically 10^20 + 1 > 10^20. These statements are not true in most computations. Your calculations may need to take this into account or you will end up with numbers that are garbage. This is an example of a cross-cutting concern that does not lend itself to encapsulation in a subroutine.
I would suggest that you go look at the Python language, and the pythonxy.com extensions. There are people in the associated forums that would be a good resource for helping you learn how to do iterative solving of a system of equations.

Resources