Fix relocations for global variables in position-independent executables with GCC - gcc

I'm looking for a gcc command-line flag or other settings to produce GOTOFF relocations rather than GOT relocations for my statically linked, position-independent i386 executable. More details on what I was trying below.
My source file g1.s looks like this:
extern int answer;
int get_answer1() { return answer; }
My other source file g2.s looks like this:
extern int answer;
int get_answer2() { return answer; }
I compile them with gcc -m32 -fPIE -Os -static -S -ffreestanding -fomit-frame-pointer -fno-unwind-tables -fno-asynchronous-unwind-tables g1.c for i386.
I get the following assembly output:
.file "g1.c"
.text
.globl get_answer1
.type get_answer1, #function
get_answer1:
call __x86.get_pc_thunk.cx
addl $_GLOBAL_OFFSET_TABLE_, %ecx
movl answer#GOT(%ecx), %eax
movl (%eax), %eax
ret
.size get_answer1, .-get_answer1
.section .text.__x86.get_pc_thunk.cx,"axG",#progbits,__x86.get_pc_thunk.cx,comdat
.globl __x86.get_pc_thunk.cx
.hidden __x86.get_pc_thunk.cx
.type __x86.get_pc_thunk.cx, #function
__x86.get_pc_thunk.cx:
movl (%esp), %ecx
ret
.ident "GCC: (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4"
.section .note.GNU-stack,"",#progbits
Here is how to reproduce this behavior online with GCC 7.2: https://godbolt.org/g/XXkxJh
Instead of GOT above, I'd like to get GOTOFF, and the movl %(eax), %eax should disappear, so the assembly code for the function should look like this:
get_answer1:
call __x86.get_pc_thunk.cx
addl $_GLOBAL_OFFSET_TABLE_, %ecx
movl answer#GOTOFF(%ecx), %eax
ret
I have verified that this GOTOFF assembly version is what works, and the GOT version doesn't work (because it has an extra pointer indirection).
How can I convince gcc to generate the GOTOFF version? I've tried various combinations of -fPIC, -fpic, -fPIE, -fpie, -pie, -fno-plt. None of them worked, all of them made gcc produce the GOT version.
I couldn't find any i386-specific flag on https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html or any generic flag here: https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html
In fact, I'm getting GOTOFF relocations for "..." string literals, and I also want to get them for extern variables.
The final output is a statically linked executable in a custom binary format (for which I've written a GNU ld linker script). There is no dynamic linking and no shared libraries. The address randomization is performed by a custom loader, which is free to load the executable to any address. So I do need position-independent code. There is no per-segment memory mapping: the entire executable is loaded as is, contiguously.
All the documentation I've been able to find online talk about position-independent executables which are dynamically linked, and I wasn't able to find anything useful there.

I wasn't able to solve this with gcc -fPIE, so I solved it manually, by processing the output file.
I use gcc -Wl,-q, with an output ELF executable file containing the relocations. I post-process this ELF executable file, and I add the following assembly instructions to the beginning:
call next
next:
pop ebx
add [ebx + R0 + (after_add - next)], ebx
add [ebx + R1 + (after_add - next)], ebx
add [ebx + R2 + (after_add - next)], ebx
...
after_add:
, where R0, R1, R2 ... are the addresses of R_386_32 relocations in the ELF executable. The In use objdump -O binary prog.elf prog.bin', and nowprog.bin' contains position-independent code, because it starts with the `add [ebx + ...], ebx' instructions, which do the necessary relocations to the code when the code starts running.
Depending on the execution environment, the gcc flag -Wl,-N is needed, to make the .text section writable (the `add [ebx + ...], ebx' instructions need that).

Related

Including header file in assembly file

I am trying to include a header file containing a macro into my main assembly file, but the compilation fails.
Below is my main.S file
#include "common.h"
BEGIN
mov $0x0E40, %ax
int $0x10
hlt
Below is my common.h file :
.macro BEGIN
LOCAL after_locals
.code16
cli
ljmp $0, $1f
1:
xor %ax, %ax
/* We must zero %ds for any data access. */
mov %ax, %ds
mov %ax, %es
mov %ax, %fs
mov %ax, %gs
mov %ax, %bp
/* Automatically disables interrupts until the end of the next instruction. */
mov %ax, %ss
/* We should set SP because BIOS calls may depend on that. TODO confirm. */
mov %bp, %sp
/* Store the initial dl to load stage 2 later on. */
mov %dl, initial_dl
jmp after_locals
initial_dl: .byte 0
after_locals:
.endm
Both files are in same directory. When I do the compilation :
$ as --32 -o main.o main.S
main.S: Assembler messages:
main.S:2: Error: no such instruction: `begin'
What am I missing? I did a little research and got this answer in SO, but its not helpful. Please help.
$ as --32 -o main.o main.S
as is just an assembler, it translates assembly source to object code. It does not run the C preprocessor which is supposed to expand #include.
(# is the comment character in GAS syntax for x86 so the line is treated as a comment if it's seen by the assembler instead of replaced by CPP)
What you can do:
Use gcc to assemble, with appropriate file suffix (.S or .sx), it will run the C preprocessor before running the assembler.
Add -v to see what commands gcc is invoking.
If your source has a different suffix, you can -x assembler-with-cpp source.asm.
If you want to see the intermediate result after preprocessing, add -save-temps. This will write a .s file with the preprocessed source.
If you want to pass down a command line option to as, you can for example -Wa,--32. However, it is better to use options which the compiler driver understands like -m32 or -m16 in the present case. The driver knows about such options, for example it will also cater for appropriate options when linking, provided you are linking with gcc -m32 ... as noted below.
Use a .include assembler directive which is handled by the assembler itself, not the C preprocessor.
Note: In case 1. adding include search paths by means of -I path might not work as expected: The compiler driver (gcc in this case) will add -I path only to the assembler's command line if it knows that it's the GNU assembler. You can tell this when the compiler is configured by configure flag --with-gnu-as.
Note: Similar applies to linking. You probably do not want to call the linker (ld by hand) unless you're making a static executable or flat binary; use gcc or g++ instead if you're making a normal executable to run on the host system. It will add many options needed for linking like multilib paths, search paths, etc. which you do not want to fiddle by hand.
(int $0x10 is a 16-bit BIOS call, though, which won't work under a modern mainstream OS, only DOS or a legacy BIOS bootloader.)
If your header file is just assembly then include with .include "file" directive in main.S. But this way of doing would insert the code the location where its included.

Nasm Dwarf Error Bad Offset

I have a simple Hello World program for Windows in pure x86 assembly code that I have compiled and linked with nasm and ld. The problem I am running into is that I can't get DWARF debugging to work. I am using gdb from Mingw64 (i686-posix-dwarf-rev1). This same problem happens if I use gcc to link instead of ld. But, the program builds fine, and if I use STABS debugging, then everything is fine and dandy.
EDIT: Oops, I completely forgot to give the error that gdb shows.
...Dwarf Error: bad offset (0x407000) in compilation unit header (offset 0x0
+ 6) [in module C:\Projects\AsmProjects\HelloWorldWin32\bin\x86\hello32.exe]
(no debugging symbols found)...done
The versions of each program are:
gdb 7.10.1
nasm 2.12.02
ld 2.25
gcc 6.2.0
These are the flags I'm sending to nasm: -f elf32 -Fdwarf -g
These are the flags for gcc link: -o $(BDIR)/x86/$#.exe $^ -L$(Mingw64-x86libs) -lkernel32 -luser32
And these are from ld link:
-mi386pe -o $(BDIR)/x86/$#.exe $^ -L$(Mingw64-x86libs) -lkernel32 -luser32
I have a pretty big makefile, so I'm trying to give the least information that is absolutely neccessary.
Here is the source code for the program:
global _main
extern _GetStdHandle#4
extern _WriteFile#20
extern _ExitProcess#4
section .text
_main:
push ebp
mov ebp,esp
; GetstdHandle( STD_OUTPUT_HANDLE)
push -11
call _GetStdHandle#4
mov ebx, eax
; WriteFile( hstdOut, message, length(message), &bytes, 0);
push 0
push esp
push message_end
push message
push ebx
call _WriteFile#20
; ExitProcess(0)
push 0
call _ExitProcess#4
section .data
message db 'Hello, World',10
message_end equ $ - message
This is not a proper answer but was too long for the comment section.
I compiled on Ubuntu and then ran dwarfdump
It gave an error that may be related to the offset error.
dwarfdump ERROR: dwarf_get_globals: DW_DLE_PUBNAMES_VERSION_ERROR (123)
From a similar error on LLVM, I conclude that the dwarf version information is possibly corrupt or unsupported.
This post indicates that the dwarf information is sensitive to the proper section names. The example appears to have the section names right however.
Have you tried a 64-bit version? Perhaps a clue will appear.
This program appears to work fine Ubuntu. Can you try it on Mingw64?
section .text
global _start ;must be declared for linker (ld)
_start: ;tell linker entry point
mov edx,len ;message length
mov ecx,msg ;message to write
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel
mov eax,1 ;system call number (sys_exit)
int 0x80 ;call kernel
section .data
msg db 'Hello, world!',0xa ;our dear string
len equ $ - msg ;length of our dear string

GNU assembler did not produce a program that I can execute

I tried assembling some intermediate code generated by gcc. I used the command as -o hello hello.s, which, as far as I can tell, is the correct syntax. When I tried to run the program, it said bash: ./hello: cannot execute binary file. It doesn't seem like there's a problem with the assembly code, since it was the code generated by gcc, and it doesn't seem like there's anything wrong with how I invoked the assembler, since that seems to be the right syntax according to this manual. Can anyone help me with this?
Working with GNU Assembler
Assume that your assembly file is called hello.s and looks something like (assuming a 32-Bit Linux target):
.data
msg: .asciz "Hello World\n"
msglen = .-msg
.text
.global _start
_start:
/* Use int $0x80/eax=4 to write to STDOUT */
/* Output Hello World */
mov $4, %eax /* write system call */
mov $0, %ebx /* File descriptor 0 = STDOUT */
mov $msg, %ecx /* The message to output */
mov $msglen, %edx /* length of message */
int $0x80 /* make the system call */
/* Exit the program with int $0x80/eax=1 */
mov $1, %eax /* 1 = exit system call */
mov $0, %ebx /* value to exit with */
int $0x80 /* make the system call */
This is a 32-bit Linux assembler program in AT&T syntax that displays Hello World to standard output using 32-bit system calls via int $0x80. It doesn't use any C functions so can be assembled with the GNU assembler as and linked with the GNU linker ld to produce a final executable.
as --32 hello.s -o hello.o
ld -melf_i386 hello.o -o hello
The first line assembles hello.s into a 32-bit ELF object called hello.o . hello.o is then linked to a 32-bit ELF executable called hello with the second command. The GNU linker assumes by default that your program starts execution at the label _start .
Alternatively you can use GCC to assemble and link this program with this command:
gcc -nostdlib -m32 hello.s -o hello
This will produce a 32-bit ELF executable called hello . The -nostdlib tells GCC not to link in the C runtime library and allows us to use _start as our program's entry point.
If your assembler program is intended to be linked to the C runtime and library so that it can utilize functions like C's printf then things are a bit different. Assume you have this program that needs printf (or any of the C library functions):
.data
msg: .asciz "Hello World\n"
.text
.global main
main:
push %ebp /* Setup the stack frame */
mov %esp, %ebp /* Stack frames make GDB debugging easier */
push $msg /* Message to print */
call printf
add $4,%esp /* cleanup the stack */
xor %eax, %eax /* Return 0 when exiting */
mov %ebp, %esp /* destroy our stack frame */
pop %ebp
ret /* Return to C runtime that called us
and allow it to do program termination */
Your entry point now must be mainon most *nix type systems. The reason is that the C runtime will have an entry point called _start that does C runtime initialization and then makes a call to the function called main which we supply in our assembler code. To compile/assemble and link this we can use:
gcc -m32 hello.s -o hello
Note: on Windows the entry point called by the C runtime is _WinMain, not main.
Working with NASM
In the comments you also asked about NASM so I'll provide some information when assembling with it. Assume that your assembly file is called hello.asm and looks something like (It doesn't require the C runtime libraries):
SECTION .data ; data section
msg db "Hello World", 13, 10
len equ $-msg
SECTION .text ; code section
global _start ; make label available to linker
_start: ; standard gcc entry point
mov edx,len ; length of string to print
mov ecx,msg ; pointer to string
mov ebx,1 ; write to STDOUT (file descriptor 0)
mov eax,4 ; write command
int 0x80 ; interrupt 80 hex, call kernel
mov ebx,0 ; exit code, 0=normal
mov eax,1 ; exit command to kernel
int 0x80 ; interrupt 80 hex, call kernel
Then to build it into an executable you can use commands like these:
nasm -f elf32 hello.asm -o hello.o
gcc -nostdlib -m32 hello.o -o hello
The first command assembles hello.asm to the ELF object file hello.o . The second line does the linking. -nostdlib excludes the C runtime from be linked in (functions like _printf etc wouldn't be available). The second line links hello.o to the executable hello .
Alternatively you can skip using GCC and use the linker directly like this:
nasm -f elf32 hello.asm -o hello.o
ld -melf_i386 hello.o -o hello
If you need the C runtime and library for calling things like printf then it is a bit different. Assume you have this NASM code that needs printf:
extern printf
SECTION .data ; Data section, initialized variables
msg: db "Hello World", 13, 10, 0
SECTION .text ; Code section.
global main ; the standard gcc entry point
main: ; the program label for the entry point
push ebp ; Setup the stack frame
mov ebp, esp ; Stack frames make GDB debugging easier
push msg ; Message to print
call printf
add esp, 4 ; Cleanup the stack
mov eax, 0 ; Return value of 0
mov esp, ebp ; Destroy our stack frame
pop ebp
endit:
ret ; Return to C runtime that called us
; and allow it to do program termination
Then to build it into an executable you can use commands like these:
nasm -f elf32 hello.asm -o hello.o
gcc -m32 hello.o -o hello
Neither a compiler nor an assembler generates an executable file. Both generate an object file, which can then be linked with other object and/or library files to generate an executable.
The command gcc -c, for example, invokes just the compiler; it can take a source file like hello.c as input and generate an object file like hello.o as output.
Likewise, as can take an assembly language source file like hello.s and generate an object file like hello.o.
The linker is a separate tool that generates executables from object files.
It just happens that compiling and linking in one step is so convenient that that's what the gcc command does by default; gcc hello.c -o hello invokes the compiler and the linker to generate an executable file.
Note that the gcc command isn't just a compiler. It's a driver program that invokes the preprocessor, the compiler proper, the assembler, and/or the linker. (The preprocessor and assembler, can be thought of as components of the compiler, and in some cases they aren't even separate programs, or a compiler can generate machine object code instead of assembly code.)
In fact, you can perform the same multi-step process in one command for assembly language as well:
gcc hello.s -o hello
will invoke the assembler and linker and generate an executable file.
This is specific to gcc (and probably to most other compilers for Unix-like systems). Other implementations might be organized differently.

ELF Shared Object in x86-64 Assembly language

I'm trying to create a Shared library (*.so) in ASM and I'm not sure that i do it correct...
My code is:
.section .data
.globl var1
var1:
.quad 0x012345
.section .text
.globl func1
func1:
xor %rax, %rax
# mov var1, %rcx # this is commented
ret
To compile it i run
gcc ker.s -g -fPIC -m64 -o ker.o
gcc ker.o -shared -fPIC -m64 -o libker.so
I can access variable var1 and call func1 with dlopen() and dlsym() from a program in C.
The problem is in variable var1. When i try to access it from func1, i.e. uncomment that line, the compiler generates an error:
/usr/bin/ld: ker.o: relocation R_X86_64_32S against `var1' can not be used when making a shared object; recompile with -fPIC
ker.o: could not read symbols: Bad value
collect2: ld returned 1 exit status
I don't understand. I've already compiled with -fPIC, so what's wrong?
I've already compiled with -fPIC, so what's wrong?
That part of the error message is for people who are linking compiler-generated code.
You're writing asm by hand, so as datenwolf correctly wrote, when writing a shared library in assembly, you have to take care for yourself that the code is position independent.
This means file must not contain any 32-bit absolute addresses (because relocation to an arbitrary 64-bit base is impossible). 64-bit absolute relocations are supported, but normally you should only use that for jump tables.
mov var1, %rcx uses a 32-bit absolute addressing mode. You should normally never do this, even in position-dependent x86-64 code. The normal use-cases for 32-bit absolute addresses are: putting an address into a 64-bit register withmov $var1, %edi (zero-extends into RDI)
and indexing static arrays: mov arr(,%rdx,4), %edx
mov var1(%rip), %rcx uses a RIP-relative 32-bit offset. It's the efficient way to address static data, and compilers always use this even without -fPIE or -fPIC for static/global variables.
You have basically two possibilities:
Normal library-private static data, like C compilers will make for __attribute__((visibility("hidden"))) long var1;, same as for -fno-PIC.
.data
.globl var1 # linkable from other .o files in the same shared object / library
.hidden var1 # not visible for *dynamic* linking outside the library
var1:
.quad 0x012345
.text
.globl func1
func1:
xor %eax, %eax # return 0
mov var1(%rip), %rcx
ret
full symbol-interposition-aware code like compilers generate for -fPIC.
You have to use the Global Offset Table. This is how a compiler does it, if you tell him to produce code for a shared library.
Note that this comes with a performance hit because of the additional indirection.
See Sorry state of dynamic libraries on Linux for more about symbol-interposition and the overheads it imposes on code-gen for shared libraries if you're not careful about restricting symbol visibility to allow inlining.
var1#GOTPCREL is the address of a pointer to your var1, the pointer itself is reachable with rip-relative addressing, while the content (the address of var1) is filled by the linker during loading of the library. This supports the case where the program using your library defined var1, so var1 in your library should resolve to that memory location instead of the one in the .data or .bss (or .text) of your .so.
.section .data
.globl var1
# without .hidden
var1:
.quad 0x012345
.section .text
.globl func1
func1:
xor %eax, %eax
mov var1#GOTPCREL(%rip), %rcx
mov (%rcx), %rcx
ret
See some additional information at http://www.bottomupcs.com/global_offset_tables.html
An example on the Godbolt compiler explorer of -fPIC vs. -fPIE shows the difference that symbol-interposition makes for getting the address of non-hidden global variables:
movl $x, %eax 5 bytes, -fno-pie
leaq x(%rip), %rax 7 bytes, -fPIE and hidden globals or static with -fPIC
y#GOTPCREL(%rip), %rax 7 bytes and a load instead of just ALU, -fPIC with non-hidden globals.
Actually loading always uses x(%rip), except for non-hidden / non-static vars with -fPIC where it has to get the runtime address from the GOT first, because it's not a link-time constant offset relative to the code.
Related: 32-bit absolute addresses no longer allowed in x86-64 Linux? (PIE executables).
A previous version of this answer stated that the DATA and BSS segments could move relative to TEXT when loading a dynamic library. This is incorrect, only the library base address is relocatable. RIP-relative access to other segments within the same library is guaranteed to be ok, and compilers emit code that does this. The ELF headers specify how the segments (which contain the sections) need to be loaded/mapped into memory.
I don't understand. I've already compiled with -fPIC, so what's wrong?
-fPIC is a flag concerning the creation of machine code from non-machine code, i.e. which operations to use. In the compilation stage. Assembly is not compiled, though! Each assembly mnemonic maps directly to a machine instruction, your code is not compiled. It's just transcribed into a slightly different format.
Since you're writing it in assembly, your assembly code must be position independent to be linkable into a shared library. -fPIC has not effect in your case, because it only affects code generation.
Ok, i think i found something...
First solution from drhirsch gives almost the same error but the relocation type is changed. And type is always ended with 32. Why is it? Why 64 bit program uses 32-bit relocation?
I found this from googling: http://www.technovelty.org/code/c/relocation-truncated.html
It says:
For code optimisation purposes, the default immediate size to the mov
instructions is a 32-bit value
So that's the case. I use 64-bit program but relocation is 32-bit and all i need is to force it to be 64 bit with movabs instruction.
This code is assembling and working (access to var1 from internal function func1 and from external C program via dlsym()):
.section .data
.globl var1
var1:
.quad 0x012345
.section .text
.globl func1
func1:
movabs var1, %rax # if one is symbol, other must be %rax
inc %rax
movabs %rax, var1
ret
But i'm in doubt about Global Offset Table. Must i use it, or this "direct" access is absolutely correct?

How to compile assembly whose entry point is not main with gcc?

.text
.globl _start
_start:
pushq %rbp
movq %rsp,%rbp
movq $2, %rax
leaveq
retq
I'm compiling with -nostdlib:
[root# test]# gcc -nostdlib -Wall minimal.S &&./a.out
Segmentation fault
What's wrong here?
BTW,is it possible to make the entry point other names than main and _start?
As #jaquadro mentions, you can specify the entry point on the command line to the linker (or use a link script): gcc -Wall -Wextra -nostdlib -Wl,-eMyEntry minimal.S && ./a.out
The reason your program segfaults is, that since you're not using the standard library there is nowhere to return back to (retq). Instead call exit using the correct syscall (in this case it is 60, which is put into rax, the first (and only) parameter is put into rdi.
Example:
.text
.globl MyEntry
MyEntry:
# Use Syscall 60 (exit) to exit with error code 42
movq $60, %rax
movq $42, %rdi
syscall
Related question on how to perform syscalls on x86_64
You can set the entry point by passing an option to the linker
http://sca.uwaterloo.ca/coldfire/gcc-doc/docs/ld_24.html
To do this with gcc, you would do something like...
gcc all_my_other_gcc_commands -Wl,-e,start_symbol
main is different, it is not the entry point to your compiled application, although it is the function that will be called from the entry point. The entry point itself, if you're compiling C or C++ code, is defined in something like Start.S deep in the source tree of glibc, and is platform-dependent. If you're programming straight assembly, I don't know what actually goes on.

Resources