Missing glyph not identified by indesign - adobe-indesign

For test purposes I created text box in inDesign, where same text is repeated three times using three different TTF fonts. (VAG Rounded AT Regular, VAG Rounded STD Thin and VAGRoundedM Light).
Every font has missing glyphs. Missing glyphs are correctly identified with pink rectangle or crossed rectangle.
However the glyphs missing in last font are not identified and they are shown as D-stroke, or crossed D. ( identified with bigger size and pink color in my example.) Also preflight does not report any missing glyphs on this font.
This is causing troubles with missing glyphs identification/replacement. How can I push/configure/make inDesign to identify all missing glyphs in all fonts ?

Related

DirectWrite renders issues and metric scaling inaccuracy

I have DirectWrite setup to render single glyphs and then shape them programmatically based on the glyph run and font metrics. (Due to my use case, I can't store every full texture in an OpenGL texture otherwise it's essentially a memory leak. So we store each glyph into one texture to lay them out glyph by glyph.)
However, I have two issues:
Inconsistent rendering results.
Scaling metrics leads to inconsistent distances between glyphs.
These results are are transferred to a bitmap using Direct2D and WIC bitmap (CreateWicBitmapRenderTarget).
Let's look at an example, font size 12 with Segoe UI.
Full string rendered 1st line is rendered using DrawTextLayout drawn with D2D1_DRAW_TEXT_OPTIONS_ENABLE_COLOR_FONT. 2nd line is drawn with each Glyph using DrawGlyphRun with DWRITE_MEASURING_MODE_NATURAL. 3rd is rendered with paint.net just for reference.
This leads to the second issue, the distance between each letter can be off. I am not sure if this is a symptom of the previous issue. You can see the distance between s and P is now 2 pixels when drawn separately. Because i is no longer 3 pixels wide, it visually looks too close to c now when zoomed out. p and e look too close.
I have checked the metrics, and I am receiving the right metrics from the font from shaping. Above string metrics from DirectWrite : [1088.0, 1204.0, 1071.0, 946.0, 496.0, 1071.0, 869.0]. I am comparing output with Harfbuzz: [S=0+1088|p=1+1204|e=2+1071|c=3+946|i=4+496|e=5+1071|s=6+869] which is correct.
To convert to DIP I am using this formula for the ratio multiplier: (size * dpi) / 72 / metrics.designUnitsPerEm
So with a default DPI of 96 and default size of 12 we get the following ratio: 0.0078125.
Let's look at S is 1088. So the advance should be 1088 * 0.0078125 = 8.5. Since we can't write between half a pixel, which way do we go? I tried every value from the lsb, to the advance, to render offset in every combination of flooring, ceiling, rounding, converting to int. Whichever way I choose, even if it fixes it for one situation, I'll test with another font, or another size, it will be one or two pixels too close in another string. I just can't seem to find a proper balance that is universal.
I am not really sure where to go from here. Any suggestions are appreciated. Here is the code: https://github.com/pyglet/pyglet/blob/master/pyglet/font/directwrite.py#L1736
EDIT: After a suggestion of using DrawGlyphRun using the full run, it does appear exactly what the DrawTextLayout outputs. So the DrawGlyphRun should produce the same appearance. Here's where it gets interesting:
Line1: DrawTextLayout
Line2: Single glyphs drawn by DrawGlyphRun
Line3: All glyphs drawn using DrawGlyphRun
You can see something interesting. If I render each 'c' by itself (right side), you can see that it has 4 pixels on the left of the character by itself. But in the strings it looks like it's missing. Actually, taking a deeper look, and a color dropper, it appears the color is indeed there, but it's much darker. So somehow each glyph is affecting the blend of the pixels around it. I am not really sure how it's doing this.
EDIT2: Talking with another, I think we narrowed this down to anti-aliasing. Applying the antialias to the whole string vs each character produces a different result. Setting D2D1_TEXT_ANTIALIAS_MODE_ALIASED each character looks and appears exactly the same now compared to both.

Tab length in Sublime Text on Mac not correct

I bought a new iMac 27 inch and one of the first things I did was installing my text editor of choice, Sublime Text. After a bit of writing code I noticed that the indentation with tabs is to wide. In the bottom left corner it says Tab Size: 4 but in fact one tab is as wide as 12 spaces. When changing the setting to Tab Size: 2 one tab is as wide as 6 spaces.
Could it be that Sublime multiplies the length of one tab with 3 because of the large resolution (2560 x 1440)? Does anybody know how to fix this issue?
EDIT:
I use the Ubuntu Mono font with 16px font size. When setting the option Indent Using Spaces everything works as expected. Here an image of the current situation with Tab Size: 4.
Sublime works fine on my iMac, so the screen resolution isn't the issue. Instead, I would suspect that you are using a proportional font instead of a fixed-width one. A likely cause of this is lacking the specified font on your new system - I use a non-system font with Sublime, and so need to install it on new computers before everything looks right to me.
With a proportional font, spaces tend to be rather small, especially when compared to "large" characters like D, W, e, s, etc., that take up a proportionally larger amount of horizontal space (hence the name proportional font). Additionally, a tab character may be calculated by Sublime to be a certain size as a function of the pixel size of the font, and so may bear no relation to the actual number of space characters it takes to equal the size of the tabstop. I know that in programs such as MS Word, tabstops are set in fractions of an inch (or cm, or pica, or whatever), and have no relation to the type or size of font being used.
All this is simplified with fixed-width fonts. All characters (even Unicode ones) take up the same horizontal width. Sublime calculates the width of tabs using the standard character width, so everything is consistent.
All that being said, how to fix your problem? The easiest way to determine if this actually is the problem is to set your "font_face" setting to Menlo, an Apple-designed fixed-width font that's been on all their systems since the early days of the Macintosh. If your code goes back to looking like normal, that was the issue. You can then search for whichever font you were using before, if you like, or take a look at my favorite font, linked above, or just keep using Menlo if you're not too picky.
Good luck!

What algorithm does Windows use to render various style and size of the same font?

When I set a block of text to be bold or italic and change its size , what Windows does under the hood ? Is the new text image just an affine transformation of the original one ?
Limiting the discussion to outline fonts such as Type 1 and TrueType/OpenType, the answer is that it depends on the font.
Fonts defined as vector outlines can be scaled. Usually they have additional information called 'hints' that direct the renderer to make certain adjustments such as ensuring that various lines are the same width or that certain parts are not rendered above or below baselines below a given size. This is important for rendering the font at low resolutions.
Many fonts have italic designs, which are separate from the upright. In this case the system will use the italic font. If no italic is available it may synthesize an oblique font by applying a shear transform to the upright.
Some fonts have different designs for rendering at higher or lower resolutions. The Original Adope Type-1 rendition of Optima is an example of a font that uses this technique.
Some fonts can have parameters applied to their shape - Adobe Multiple Master fonts are an example of this technique. Font outlines are defined in terms of control points of spline curves. On multiple master fonts the control points for the splines are defined as tracks rather than points. The additional parameter defines how far along the tracks the control points move. This allows (for example) the boldness level or obliquing of a font to be controlled by tweaking the variables. The movement of the control points can compensate for artefacts of the adjustment, for example making sure the width of uprights remains constant during shearing.
References
This is the specification for the Adobe Type-1 font format.
Wikipedia entry on multiple master fonts
Wikipedia entry on the OpenType font format
Paper on font rendering

In Win7 some fonts don't work like they did in Win2K/XP

My question is about how font handling needs to be changed in order to work correctly under Windows 7. I'm sure that I've made an assumption about something that was valid before, but is no longer valid. But I don't even know where to begin looking! I'm praying someone can help! Here are the details as I understand them (I've also posted this question on a Microsoft Windows Developers forum, but they're not answering):
Yes, I'm behind the times (heck, I still write WIN32 code in plain C!) I have a 10 yr old DLL I wrote that mimics an even older DOS screen I/O library within the client area of a window. Needless to say, it only allows the use of fixed-width fonts. When some of the programs using the DLL have been moved to Windows 7, there is a strange flickering that appears when a fixed-width TRUE TYPE font is used (bitmap fonts still work perfectly.) We've tracked the problem down to the fact that a single character written with ExtTextOut is wider than it should be. I've checked the measurements three different ways (by using GetTextExtentPoint32 on a 132 character string and dividing by 132, by calling GetTextMetrics and even by using GetCharABCWidths for all 256 characters) and they all agree that the font is the same width. But ExtTextOut is rendering the background rectangle one or two pixels wider than the font width. Either than, or it is beginning the background rendering a pixel or two to the left of the position given in the parameters [I call it like this: ExtTextOut( hdc, r.left, r.top, ETO_OPAQUE, &r, &ch, 1, NULL ).] And remember, this EXACT code worked perfectly under Windows 2000, Windows XP and, with bitmap fonts on Windows 7 -- but it no longer works correctly with fixed-width true type fonts under Windows 7.
For anyone who isn't grasping what I need to do: try to imagine writing one character per square on a piece of graph paper. Every square uses the same font, but may have a different foreground and/or background color. I use TA_TOP|TA_LEFT text alignment, because it is the simplest and any consistently applied alignment should work for a fixed-width font.
What I'm seeing is that ExtTextOut is emitting a larger background rectangle than I've specified in the RECT * parameter. Since the rectangle I'm providing is created from the reported size of the font, this should NEVER happen -- and it never happened on Windows XP and earlier, and doesn't happen with bitmap (i.e. .FON) fonts under Windows 7, either. But it ALWAYS happens with fixed-width TrueType fonts under Windows 7. This is with the EXACT SAME EXECUTABLE running on Windows 2000, Windows XP and Windows 7 (32 & 64.) While I would love to simply say Windows 7 has a bug, I'm more inclined to believe that some fundamental assumption that I've made about font handling under Windows is no longer true (after 20 years of writing software for Windows.)
But I have no idea how or where to discover what that might be! Please, PLEASE help me!
--- ammendment ---
For anyone interested, I've managed to work around what I am considering a bug -- until I find documentation to the contrary. My workaround consists of two changes to my library:
Use the size returned from GetTextExtentPoint32() of an 'X' instead
of data from TEXTMETRICS.
Include the ETO_CLIPPING flag in all ExtTextOut() calls.
Previously, I was using tmHeight+tmExternalLeading for the number of pixels between the tops of consecutive rows of text, as is documented. I discovered that the size.cy value coming back from the GetTextExtentPoint32() wasn't the same and seemed more accurate. The worst example I found was the OCRB true type font. Here's what I saw in the debugger for the OCRB font I'd created (using the system font selection dialog):
ocrbtm.tmHeight = 11
ocrbtm.tmExternalLeading = 7
ocrbsize.cy = 11
So, for some reason that I've yet to discover, Windows is ignoring the external leading value defined for the OCRB font. Using the size value instead of the TM results in nice, neat, close packed text, which is just what I wanted.
The ETO_CLIPPING flag should not be necessary for me because I am setting the rectangle to exactly the dimensions of a single character and using ETO_OPAQUE to fill in the background (and overwrite the previous cell content.) But without the clipping flag, a single character is wider than either the size, text metric, or ABC width would indicate -- at least, that is true based on all of the documentation I've found so far.
I believe that HEIGHT issue has existed for a long time, but the rest was unnecessary until we ran our software under Windows 7. I'm appending this to my question to see if anyone can explain what I obviously don't understand.
-- ammendment 2 --
1: All documentation I can find says that tmHeight+tmExternalLeading should produce single spaced lines of text. Period. But that is not always true and I cannot find documentation indicating how Windows determines the different values that are sometimes returned by GetTextExtentPoint32().
2: under Win7 (maybe Vista) ExtTextOut started filling in a little more background than it should (by adding a couple extra pixels to the right), but only when a true type font is selected. It does this even if the rectangle is double the expected size of the character (in BOTH dimensions.) DPI/Scaling might be a factor, but since my system is set to 100%, it would seem that Windows is having trouble with a 1:1 scaling factor and that would seem to be a bug. The fact that it only affects true type and not bitmap (.FON) fonts also seems to rule out scaling (unless there is a bug in the scaling system), since Windows should attempt to scale all of the text, not just some of it. Also, there's a greyed (but checked) setting "Use Windows XP style DPI scaling" in the "Custom DPI Setting" dialog. Lastly, this entire issue may be a result of my running under the Windows Classic theme instead of one of the Aero or other Win7 native themes.
-- ammendment 3 --
Simply calling SetProcessDPIAware() has no effect on the issue I'm having. Since my problem exists at the 100% DPI setting (scale 1:1), if my problem is DPI-related, then I must have discovered a bug in the DPI virtualization because this is how Microsoft describes the feature:
This feature works by providing "virtualized" system metrics and UI elements to the application, as if it were running at 96 DPI. The application then renders to a 96-DPI off-screen surface, and the Desktop Windows Manager scales the resulting application window to match the DPI setting.
All of my settings show that I'm at 100% scaling, and looking in the custom settings box clearly shows that means 96 DPI. So, if the DPI virtualization from 96 DPI to 96 DPI is not working for my fixed-width true type fonts, then Windows has a problem, right? Or is there some function I need to call (or stop calling?) in order allow the DPI virtualizer to work correctly?
I'm still not convinced that the supposed scaling issue actually has as much to do with the font SIZE as I originally thought. That's because the problem is manifesting in the background rectangle being filled by ExtTextOut() instead of the text character being emitted. The background rectangle gets enlarged a bit when the font is true type. I've also now verified that this problem occurs whether using the Windows Classic theme or the standard Windows Aero theme. Now to build a simplified example so others can experiment with it.
-- ammendment 4 --
I've created a minimal demo program that shows what I'm seeing (and what I'm doing.) The Visual Studio 2010 project/source may be downloaded from http://www.svalli.com/files/fwtt.7z -- I intentionally didn't include executables because I don't want to risk spreading malware. The program has you choose a fixed-width font and then writes two 5x5 character grids to the client area, one created using the GetTextExtentPoint32 size and one using the TEXTMETRIC size as documented by Microsoft. The grids are in a black&white checkerboard pattern with a yellow on red character written last into the center to show the overlap effect (you may need a zoom utility to see it clearly.) The program also draws a string that starts with 5 X's just below the grid, starting at the same left offset, to be used as a comparison for my method of placing individual characters (I match the string.) The menu allows toggling clipping on/off in ExtTextOut and selection of other fonts. There is also a command line option dpiaware (case-sensitive) that causes the program to call SetProcessDPIAware() when it starts up, so that the effect of that call may also be evaluated.
From creating this I've learned that ExtTextOut is filling the correct background rectangle, but the character being rendered with an opaque background may be wider than it should be and may not even begin where ExtTextOut was told to begin drawing! I said "should be" because the character spacing I'm ending up with matches what I get when I have ExtTextOut render a whole string. The overlap may apparently be on either or both sides of the given rectangle, for example, OCRB adds an extra pixel to both the left and right sides of the character cell while the other true type fonts I've checked add two pixels to the right edge.
I really want to do this the "right" way, but I cannot find any documentation that shows what I'm doing wrong or am missing. Well, I am probably missing something for DPI Aware at scales other than 100%, but otherwise, I'm just baffled.
-- ammendment 5 --
Slightly less baffled... the problem is caused by ClearType. Turning off ClearType made all of the fonts work again. Turning ON ClearType under XP causes the same problem. Apparently ClearType can silently (until someone tells me how to detect it) stretch characters horizontally by a couple pixels in order to make space for the shaded pixels it adds to smooth things out.
Is clipping the only way around this problem?
-- ammendment 6 --
Partial answer to my clipping question above: When creating a new font I now do the following (in pseudo code):
CreateFontIndirect
SelectFont
GetTextMetrics
if( (tmPitchAndFamily & TMPF_TRUETYPE) && Win6.x or above )
if( SystemParametersInfo( SPI_GETCLEARTYPE ) )
lfQuality = NONANTIALIASED_QUALITY
DeleteObject( font )
CreateFontIndirect
Without enabling clipping this almost always works with the font sizes I'm using, though I've found a few that still render an extra pixel to the right (or left) of the character cell. Luckily, those appear to be free fonts found on the internet, so their overall quality might be below the standards of professional font foundries.
If anyone can find a better answer, I'd really, REALLY love to hear it! Until then, I think this is as good as it will get. Thanks for reading this far!
Make sure your code is high DPI aware, and then tell the OS that your process is DPI aware.
If you don't tell the OS that you're DPI aware, some of the measurement functions will lie and give you numbers based on the assumption that the display DPI is actually 96 dpi regardless of what it really is. Meanwhile, the drawing functions will try to scale in the other direction. For simple high-level drawing, this approach generally works (though it often leads to fuzzy text). For small measurements and precise placement of individual characters, this often results in round off problems that lead to things like inconsistent font sizes. This behavior was introduced in Windows Vista.
You can see it all the time in Visual Studio 2010+ as the syntax highlighter colors the text and words shift by a couple pixels here and there as you type. Really frickin' annoying.
Regarding the amendment:
tmExternalLeading is simply a recommendation from the font designer as to how much extra space to put between lines of text. MSDN documentation typically says, "the amount of extra leading (space) that the application adds between rows." Well, you're the application, so the "Right Thing To Do" is to add it between rows when you're drawing text yourself, but it really is up to you. (I suspect higher level functions like DrawText will use it.
It is perfectly correct for GetTextExtentPoint32 (and friends) to return a size.cy equal to tmHeight and to ignore tmExternalLeading. As the programmer, it's ultimately your choice how much leading to actually use.
You can see that this with some simply drawing code. Select a font with a non-zero tmExternalLeading (Arial works for me). Draw some text using TextOut and a unique background color. Then measure the text with GetTextExtentPoint32 and draw some lines based on the values you get back. You'll see that the background color rectangle excludes the external leading. External leading is just that: external. It's not in the bounds of the character cell.
// Draw the sample text with an opaque background.
assert(::GetMapMode(ps.hdc) == MM_TEXT);
assert(::GetBkMode(ps.hdc) == OPAQUE);
assert(::GetTextAlign(ps.hdc) == TA_TOP);
COLORREF rgbOld = ::SetBkColor(ps.hdc, RGB(0xC0, 0xFF, 0xC0));
::TextOutW(ps.hdc, x, y, pszText, cchText);
::SetBkColor(ps.hdc, rgbOld);
// This vertical line at the right side of the text shows that opaque
// background is exactly the height returned by GetTextExtentPoint32.
SIZE size = {0};
if (::GetTextExtentPoint32W(ps.hdc, pszText, cchText, &size)) {
::MoveToEx(ps.hdc, x + size.cx, y, NULL);
::LineTo(ps.hdc, x + size.cx, y + size.cy);
}
// These horizontal lines show the normal line spacing, taking into
// account tmExternalLeading.
assert(tm.tmExternalLeading > 0); // ensure it's an interesting case
::MoveToEx(ps.hdc, x, y, NULL);
::LineTo(ps.hdc, x + size.cx, y); // top of this line
const int yNext = y + tm.tmHeight + tm.tmExternalLeading;
::MoveToEx(ps.hdc, x, yNext, NULL);
::LineTo(ps.hdc, x + size.cx, yNext); // top of next line
The gap between the bottom of the colored rectangle and the top of the next line represents the external leading, which is always outside the character cell.
OCR-B is designed for reliable optical character recognition in banking equipment. Having a large external leading (relative to the height of the actual text) may be appropriate for some OCR applications. For this particular font, it's probably not an aesthetic choice.

GetTextExtentPoint32 returning values a little off, glyphs truncated

For all strings, the GDI function GetTextExtentPoint32 seems to be returning a width always a little smaller than what ExtTextOut displays:
Above the right red arrow, "buggy," is displayed as a block with ExtTextOut: no problem.
Above the left red arrow, "buggy" is displayed with ExtTextOut, then ", " is displayed width pixels later, where width = GetTextExtentPoint32("buggy"). width seems a little too small.
Using bigger font sizes and dark backgrounds:
Again, "00" and "()" are displayed in different ExtTextOut calls with GetTextExtentPoint32("00") pixels between them.
Any help appreciated.
I’ve found the same problem dealing with monospaced True Type fonts (Lucida Console) and OPAQUE background mode. The problem seems that you call ExtTextOut with correct x coordinate, but the function paints background starting at x-1, which is something I didn’t expect. Negative shift may be higher on larger font size. Glyphs are finally correctly positioned, but that "overpaint" is a problem unless TRANSPARENT background mode is selected. Previously, I thought that I didn’t need to specify the rc parameter, since I didn’t need clipping at all as all character runs were non overlapping, but eventually I’ve had to provide an apparently redundant RECT and ETO_CLIPPING flag, just to prevent this horizontal negative overpainting.

Resources