How often should i make an Ajax request on a timer? - ajax

setInterval(function(){
// ajax request here
}, 9000);
I use a script like this to check for new notifications in the database and display them back on the page, giving the fact that for every user this check will be performed every few seconds or every minute i wonder if this can cause any performance issues.
Is it ok to make so many requests to the database or should i check for new notifications some other way?

There are two things you need to consider:
How often are updates needed?
Can the server respond to them that frequently?
The first of those, only you can answer.
The second depends mostly on how much work the server has to do for each request, how many concurrent users you have, and how good the server hardware and network connection are.
The biggest risk with your current approach is that if the server can't respond that frequently, then you will have simultaneous requests in flight. If there is a real performance problem, you could end up with a queue of requests waiting to go out from the browser once you hit the maximum simultaneous HTTP request limit.
You can mitigate this risk by putting setTimeout in the success and error handlers for the request instead of sending them out every 9 seconds regardless.
An alternative approach would be to have the server initiate the sending of data when a notification became available. You could do this using WebSockets.

Related

Notification System - Socket.io or Ajax?

I'm using Laravel5 and, I want to create a notification system for my (web) project. What I want to do is, notifying the user for new notifications such as;
another user starts following him,
another user writes on his wall,
another user sends him a message, etc,
(by possibly highlighting an icon on the header with a drop-down menu. The ones such as StackOverflow).
I found out the new tutorials on Laracast: Real-time Laravel with Socket.io, where a kind of similar thing is achieved by using Node, Redis and Socket.io.
If I choose using socket.io and I have 5000 users online, I assume I will have to make 5000 connections, 5000 broadcastings plus the notifications, so it will make a lot of number of requests. And I need to start for every user on login, on the master blade, is that true?
Is it a bad way of doing it? I also think same thing can be achieved with Ajax requests. Should I tend to avoid using too many continuous ajax requests?
I want to ask if Socket.io is a good way of logic for creating such system, or is it a better approach to use Ajax requests in 5 seconds instead? Or is there any alternative better way of doing it? Pusher can be an alternative, however, I think free is a better alternative in my case.
A few thoughts:
Websockets and Socket.io are two different things.
Socket.io might use Websockets and it might fall back to AJAX (among different options).
Websockets are more web friendly and resource effective, but they require work as far as coding and setup is concerned.
Also using SSL with Websockets for production is quite important for many reasons, and some browsers require that the SSL certificate be valid... So there could be a price to pay.
Websockets sometimes fail to connect even when supported by the browser (that's one reason using SSL is recommended)... So writing an AJAX fallback for legacy or connectivity issues, means that the coding of Websockets usually doesn't replace the AJAX code.
5000 users at 5 seconds is 1000 new connections and requests per second. Some apps can't handle 1000 requests per second. This shouldn't always be the case, but it is a common enough issue.
The more users you have, the close your AJAX acts like a DoS attack.
On the other hand, Websockets are persistent, no new connections - which is a big resources issue - especially considering TCP/IP's slow start feature (yes, it's a feature, not a bug).
Existing clients shouldn't experience a DoS even when new clients are refused (server design might effect this issue).
A Heroku dyno should be able to handle 5000 Websocket connections and still have room for more, while still answering regular HTTP requests.
On the other hand, I think Heroku imposes an active requests per second and/or backlog limit per dyno (~50 requests each). Meaning that if more than a certain amount of requests are waiting for a first response or for your application to accept the connection, new requests will be refused automatically.... So you have to make sure you have no more than 100 new requests at a time. For 1000 requests per second, you need your concurrency to allows for 100 simultaneous requests at 10ms per request as a minimal performance state... This might be easy on your local machine, but when network latency kicks in it's quite hard to achieve.
This means that it's quite likely that a Websocket application running on one Heroku Dyno would require a number of Dynos when using AJAX.
These are just thoughts of things you might consider when choosing your approach, no matter what gem or framework you use to achieve your approach.
Outsourcing parts of your application, such as push notifications, would require other considerations such as scalability management (what resources are you saving on?) vs. price etc'

browser implication when ajax call every 3 sec

We would like to check every 3 seconds if there are any updates in our database, using jquery $.ajax. Technology is clear but are there any reasons why not to fire so many ajax calls? (browser, cache, performance, etc.). The web application is running for round about 10 hrs per day on every client.
We are using Firefox.
Ajax calls has implications not on client side(Browser,...) but on the server side. For example, every ajax call is a hit on server. ie. more bandwidth consumption, no of server request hit increases which in turn increases server load etc etc. Ajax call is actually meant to increase client friendliness at the cost of Server side implications.
Regards,
Ravi
You should think carefully before implementing infinite repeating AJAX calls with an arbitrary delay between them. How did you come up with 3 seconds? If you're going to be polling your server in this way, you need to reduce the frequency of requests to as low a number as possible. Here are some things to think about:
Is the data you're fetching really going to change that often?
Can your server handle a request every 3 seconds, how long does the operation take for a single request?
Could you increase the delay after inactivity or guess based on previous server responses how long the next delay should be?
Can you stop the polling completely when the window loses focus, and restart it when it's in the foreground again.
If a user opens the same page in a website 10 times, your server should recognise this and throttle its responses, either using a cookie with a unique value in it (recommended) or based on the client IP address.
Above all, instead of polling, consider using HTML 5 web sockets to "push" data to the client - most modern browsers support this. Several frameworks are available that will fall back to polling if web sockets are not available - one excellent .NET example is SignalR.
I've seen a lot of application making request each 5sec or so, for instance a remote control (web player) or a chat. So that should not be a problem for the browser to do so.
What would be a good practice is to wait an answer before making a new request, that means not firing the requests with a setInterval for instance.
(In the case the user lose its connection that would prevent opening too much connections).
Also verifying that all the calculations associated with an answer are done when receiving the next answer.
And if you have access to that in the server side, configure you server to set http headers Connection: Keep-Alive, so you won't add to much TCP overhead to each of your requests. That could speed up small requests a lot.
The last point I see is of course verifying that you server is able to answer that much request.
You are looking for any changes after each 3sec , In this way the traffic would be increased as you fetching data after short duration and continuously . It may also continuous increase the memory usage on browser side . As you need to check any update done in the database , you can go for any other alternatives like Sheepjax , Comet or SignalR . (SignalR generally broadcast the data to all users and comet needs license ) . Hope this may help you .

Periodic Ajax POST calls versus COMET/Websocket Push

On a site like Trello.com, I noticed in firebug console that it makes frequent and periodic Ajax POST calls to its server to retrieve new data from the database and update the dom as and when something new is available.
On the other hand, something like Facebook notifications seem to be implementing a COMET push mechanism.
What's the advantage and disadvantage of each approach and specifically, my question is why Trello.com uses a "pull" mechanism as I have always thought using such an approach (especially since it pings its server so frequently) as it seems like it is not a scalable solution - when more and more users sign up to use its services?
Short Answer to Your Question
Your gut instinct is correct. Long-polling (aka comet) will be more efficient than straight up polling. And when available, websockets will be more efficient than long-polling. So why some companies use the "pull polling" is quite simply: they are out of date and need to put some time into updating their code base!
Comparing Polling, Long-Polling (comet) and WebSockets
With traditional polling you will make the same request repeatedly, often parsing the response as JSON or stuffing the results into a DOM container as content. The frequency of this polling is not in any way tied to the frequency of the data updates. For example you could choose to poll every 3 seconds for new data, but maybe the data stays the same for 30 seconds at a time? In that case you are wasting HTTP requests, bandwidth, and server resources to process many totally useless HTTP requests (the 9 repeats of the same data before anything has actually changed).
With long polling (aka comet), we significantly reduce the waste. When your request goes out for the updated data, the server accepts the request but doesn't respond if there is no new changes, instead it holds the request open for 10, 20, 30, or 60 seconds or until some new data is ready and it can respond. Eventually the request will either timeout or the server will respond with an update. The idea here is that you won't be repeating the same data so often like in the 3 second polling above, but you still get very fast notification of new data as there is likely already an open request just waiting for the server to respond to.
You'll notice that long polling reduced the waste considerably, but there will still be the chance for some waste. 30-60 seconds is a common timeout period for long polling as many routers and gateways will shutdown hanging connections beyond that time anyway. So what if your data is actually changed every 15 minutes? Polling every 3 seconds would be horribly inefficient, but long-polling with timeouts at 60 seconds would still have some wasted round trips to the server.
Websockets is the next technology advancement that will allow a browser to open a connection with the server and keep it open for as long as it wants and deliver multiple messages or chunks of data via the same open websocket. The server can then send down updates exactly when new data is ready. The websocket connection is already established and waiting for data, so it is quick and efficient.
Reality Check
The problem is that Websockets is still in its infancy. Only the very latest generation of browsers support it, if at all. The spec hasn't been fully ratified as of this posting, so implementations can vary from browser to browser. And of course your visitors may be using browsers a few years old. So unless you can control what browsers your visitors are using (say corporate intranet where IT can dictate the software on the workstations) you'll need a mechanism to abstract away this transport layer so that your code can use the best technique available for that particular visitor's browser.
There are other benefits to having an abstracted communications layer. For example what if you had 3 grid controls on your page all pull polling every 3 seconds, see the mess this would be? Now rolling your own long-polling implementation can clean this up some, but it would be even cooler if you aggregated the updates for all 3 of these tables into one long-polling request. That will again cut down on waste. If you have a small project, again you could roll your own, but there is a standard Bayeux Protocol that many server push implementations follow. The Bayeux protocol automatically aggregates messages for delivery and then segregates messages out by "channel" (an arbitrary path-like string you as a developer use to direct your messages). Clients can listen on channels, and you can publish data on channels, the messages will get to all clients listening on the channel(s) you published to.
The number of server side server push tool kits available is growing quite fast these days as Push technology is becoming the next big thing. There are probably 20 or more working implementations of server push out there. Do your own search for "{Your favorite platform} comet implementation" as it will continue to change every few months I'm sure (and has been covered on stackoverflow before).

Timeout behavior of different browsers?

I am writing an on line chat room based on AJAX/COMET. My design is:
Request
----------------- wait -------------------------> send dump data
----------------- wait -------------------------> send dump data
----------------- wait -------------------------> send dump data
----------------- wait -------------------------> send dump data
----------------- wait -------------------------> send dump data
------ something happened, get response.
Another request
.....
....
As you see, the server hold the request and wait something happened, if there is some event happened, just push data and finish request. Then the client will issuse another request.
There is tick in request, so if there is event happened betweenhe t gap of two requests, server knows that there is pending event for the client.
Before the browser timeout, the server also send some idle data to prevent client from timeout.
Now, here comes the problem: what are timeout behavior of different browsers? I know that browser sends request and wait for data, if it take too long time to wait, it will timeout. But what are those timeout behavior of different browsers? And are there any header that can control the timeout behavior of browser? By knowing the timeout behavior of browsers, so that I can decide how to deal with them. Where can I find those data?
Actually, since the client could be going through proxies, the explicit values of the timeouts for different browsers don't mean as much as you'd think.
Rather, I'd ask why you're asking - you're going to have to deal with timeouts, and no amount of streaming to the browser is going to prevent it every time. So it'd be best to simply requery the server from the client when the connection drops - which is one reason why a lot of people recommend long polling which is what you seem to be trying to do. Regardless of whether you choose a streaming solution or a long poll, you have to allow for connection resets.
For a simple hidden iframe client setup, it's not too hard to do - and it's equally easy for XHR requests, depending on what client side framework you're using.
The timeout for most modern browsers seems to be rather large in IE (60 minutes? Wow), and shorter in FF (about:config says 300 seconds - eek) - but as I said, that doesn't help you against a proxy, where the timeout could be as short as 2 minutes or less, depending on how the proxy admin configured it.
So, in summary - timeouts happen. You can't stop them. Code your client to reconnect when they happen (with a limit to prevent a spin on server down), and don't worry about it further. Besides being more robust, it'll probably also make your code more performant, since you won't be periodically pumping useless data to every client.

Is there an alternative of ajax that does not require polling without server side modifications?

I'm trying to create a small and basic "ajax" based multiplayer game. Coordinates of objects are being given by a PHP "handler". This handler.php file is being polled every 200MS, by using ajax.
Since there is no need to poll when nothing happens, I wonder, is there something that could do the same thing without frequent polling? Eg. Comet, though I heard that you need to configure server side applications for Comet. It's a shared webserver, so I can't do that.
Maybe prevent the handler.php file from even returning a response if nothing has to be changed at the client, is that possible? Then again you'd still have the client uselessly asking for a response even though something hasn't changed yet. Basically, it should only use bandwidth and sever resources if something needs to be told to the client, eg. the change of an object's coordinates.
Comet is generally used for this kind of thing, and it can be a fragile setup as it's not a particularly common technology so it can be easy not to "get it right." That said, there are more resources available now than when I last tried it ~2 years ago.
I don't think you can do what you're thinking and have handler.php simply not return anything and stop execution: The web server will keep the connection open and prevent any further polling until handler.php does something (terminates or provides output). When it does, you're still handling a response.
You can try a long polling technique, where your AJAX allows a very large timeout (e.g. 30 seconds), and handler.php spins without responding until it has something to report, then returns. (You'll want to make sure the spinning is not resource-intensive). If handler.php "expires" and nothing happens, have it exit and let AJAX poll again. Since it only happens every 30 seconds, it will be a huge improvement over ~5 times a second. That would keep your polling to a minimum.
But that's the sort of thing Comet is designed for.
As Ajax only offers you a client server request model (normally termed pull, rather than push), the only way to get data from the server is via requests. However a common technique to get around this is for the server to only respond when it has new data. So the client makes a request, the server hangs on to that request until something happens and then replies. This gets around the need for frequent polling even when the data hasn't changed as you only need the client send a new request after it gets a response.
Since you are using PHP, one simple method might be to have the PHP code call the sleep command for 200ms at a time between checks for data changes and then return the data to the client when it does change.
EDIT: I would also recommend having a timeout on the request. So if nothing happens for say 2 seconds, a "no change" message is sent back. That way the client knows the server is still alive and processing its request.
Since this is tagged “html5”: HTML5 has <eventsource> and WebSocket, but the implementation side is still in the future tense in practice.
Opera implemented an old version of <eventsource> called <event-source>.
Here's a solution - use a SaaS comet provider, such as WebSync On-Demand. No server resources to worry about, shared hosting or not, since it's all offloaded, and you can push out the information as needed.
Since it's SaaS, it'll work with any server language. For PHP, there's already a publisher written and ready to go.
The server must take part in this. Check with the hosting provider what modules are available. Or try to convince them to support Comet.
Maybe you should consider a small Virtual Private Server (VPS) for this.
One thing to add on the long polling suggestions: If you're on a shared server, this solution will have limited scalability, as each active long poll will keep a connection (and a server-side process to service that connection) active. Your provider most likely has limits (either policy-defined or de facto) on the number of connections you can have open at a time, so you'll hit a wall if you have more sessions/windows than that playing concurrently.

Resources