Digital certificates in https vs device - https

I am new to digital certificates and it's various types and applications. What I know/assume as of now is in https communication, a CA will issue a certificate which will basically contain a public-private key pair which the Server and Client will use to communicate securely. And authentication will be through conventional password like mechanisms. Please correct me.
Now in the context of device certificates, does it serve the purpose of authentication only, if yes, then how? or it also serves the purpose of secure communication by means of public-private keys. How it is used.
How does a server determine the authenticity of device?
And in https there is only one certificate that a Server/Host and it's Clients will have, whereas, in device based it's issued per device. Am I right?
Thanks

Related

Guzzle disabling certificate verification to false, how insecure is it?

Recently I found myself working with Guzzle while making requests to another server to post and fetch some data, in some cases, tokens. But I was getting certificate invalid error and I even tried to get a new .pem certificate, but Guzzle was still not accepting and kept throwing that error. So finally, I did what the "Internet" said:
$guzzleClient = new Client([
'verify' => false
]);
Now although this solution works, I am not sure how insecure it can get. Do I need to worry? If yes, in what scenarios?
well this is a big problem if you are for example
having login system on the request you are sending using guzzle
having payment/checkout on the request
basically any sensitive data being passed to the other server
because when you pass data without SSL certificate then your requests might get caught by malicious programs like
BurbSuite / WireShark , cain and abel / EtterCap
as these programs are Sniffing programs and anyone can get a version from the internet as they are open sourced and every thing going without SSL can be intercepted by the hacker using the tools mentioned above and the hacker can look to the entire request in plaintext! so its highly recommended to use SSL connection when passing sensitive data
Worth Mentioning : now a days even SSL isn't very secure because hackers can remove it using SSLStrip tool but believe me SSL will make it much harder for them to get to your request because if they used it your website sometimes will make non-completed requests and it will notify the user that the network isn't secure this will make it very hard for the hacker to get the user's data,
TLS/SSL in common configurations is meant to give you three things:
confidentiality - no third party is able to read the messages sent and received,
integrity - no third party is able to modify the messages sent and received,
server authentication - you know who are you talking to.
What you do with setting verify to false is disabling the certificate verification. It immediately disables the server authentication feature and enables loosing confidentiality and integrity too when facing an active attacker that has access to your data stream.
How is that?
First of all TLS/SSL relieas on Public Key Infrastructure. Without going into too much details: you hold on your machine a set of certificates of so called Certification Authorities (CA) whom you trust. When you open a new communication to a service, you get the services certificates and in the process of verification you validate amongst other things if the certificate belongs to a CA you trust. If yes, then the communication may proceed. If no, then the communication channel is closed.
Attack patterns
Disabling certificate verification allows for Man-in-the-Middle (MitM) attacks than can easily be performed in your local network (e.g. via ARP poisoning attacks), in the local network of the service you are calling or in the network between. As we usually do not trust the network completely, we tend to verify.
Imagine me performing an attack on you. I have performed ARP poisoning, now I can see all your traffic. It's encrypted, isn't it? Well, not obviously. The TCP handshake and TLS handshake you believe you have performed with the target service - you have performed with me. I have presented you not the certificate of the target service, as I am unable to fake it, but my own. But you did not validate it to reject it. I have opened a connection between me and the target service on your behalf too so I can look into the decrypted traffic, modify if necessary and reply to you to make you believe everything is ok.
First of all - all your secrets are belong to me. Second of all - I am able to perform attacks on both you and the target service (which might have been secured by authentication mechanisms, but now is not).
How to fix this?
In XXI century there should be little reason to disable TLS verification anywhere. Configuring it to work properly might be a pain though, even more when you are doing it for the first time. From my experience the most common issues in the micro service world are:
the target certificate is self-signed,
you are missing a CA root certificate in your trust store,
the microservice does provide his certificate, but does not provide an intermediate CA certificate.
It's hard to guess what your issue is. We would need to dig deeper.
While the other answers points out some really good point about how important SSL/TLS is, your connection is still encrypted and the remote endpoint you're using has https:// in it as well. So you're not entirely disabling SSL when you set verify to false if I'm not mistken. It's just less secure since that you're not verifying the certificate of the remote server if they are signed by a Certificate Authority (CA) using the CA bundle.
Do you need to worry?
If this is something on your production, ideally you'd want things to be secure and configured correctly, so yes.
By not verifying the certificate, like Marek Puchalski mentioned, there's possibility of the server might not be the one you think it is and allows mitm (man in the middle) attack as well. More about mitm here, and peer verification here.
Why is it happening & how do you fix it?
Most common issue is misconfigured server, especially PHP configuration. You can fix your PHP configuration following this guide, where you'll be using adding the CA root certificates bundle to your configuration. Alternatively you can add this to Guzzle.
Another common issue is, the remote server is using a self-signed certificate. Even if you configured your CA bundle in your trustedstore, this certificate can't be trusted since it's not signed by a trusted CA. So the server needs to configure a SSL certificated signed by a CA. If that's not possible, you can manually trust this CA root, however this comes with some security concerns as well.
Hope this helped :)

From self managed Let's Encrypt to AWS Certificate Manager

I have been managing Let's Encrypt's SSL certificates for a domain.
Now I am moving to Amazon API gateway. I will be using the AWS Certificate Manager to generate HTTPS certificates for the root domain and a bunch of subdomains.
If I make the transfer, what happens to my current HTTPS certificate which is associated with my domain. If browsers suddenly start seeing a new HTTPS certificate for a domain, for which they had been getting a different HTTPS certificate until now, would this be a problem?
Also, once I make the shift, what do I do with my current (manually managed) Let's Encrypt certificate? Is there a way to permanently void it?
Szabolcs Dombi says
You can have multiple valid certificates for the same domain at the
same time. Moving from one certificate issuer to another should not
cause a problem.
Toby Osbourn says
SSL certificates don’t last forever, most of them need to be renewed
on a yearly cycle and occasionally you will want to change the type of
the SSL certificate mid-cycle.
Since you are replacing certificates, I suggest you to back up the ones you have.
Once you have backed up the old certificates, just overwrite the .crt and .key files with your new ones. Then, reload your web server so it knows to look at these new certificates, and you should be good to go.
If it's within your interest to know more about how to Generate SSL certificate using Amazon Certificate Manager (ACM), I suggest Barguzar, A. (July 2018). Building Serverless Python Web Services with Zappa. where one can read a good step by step guide. See an excerpt of it below:
ACM is a service that manages and creates SSL/TSL certificates for
AWS-based services and applications. An ACM certificate works with
multiple domain names and subdomains. You can also use ACM to create a
wildcard SSL.
ACM is strictly linked with AWS Certificate Manager Private
Certificate Authority (ACM PCA). ACM PCA is responsible for validating
the domain authority and issuing the certificate.
You can have multiple valid certificates for the same domain at the same time. Moving from one certificate issuer to another should not cause a problem.
This also means that if you create a new certificate the old one still can be used unless it already expired.

What type of Https certificate needed for Serviceworker

I have a website that works offline using service worker. I heard that, to make it live need a proper https certificate. How to get one https certificate? its free? Please Help.
There are 3 grades of TLS certificates:
Domain Authority
Organizational Authority
Enterprise Authority
They are all valid certificates, they just require a higher level of authentication to obtain. Most sties just need a DA certificate, which is validated via the whois e-mail. The other two take more vetting.
As far as SNI or not SNI that does not matter either.
All that matters is you have the TLS certificate to create that wrapper of encryption around the data packets.
You could use a certificate from the Letsencrypt organisation. It's free and reliable. I can recommend it.

Shipping SSL certificate in Mac OS X app

I'm writing a utility Mac OS X app that basically acts as a web server accepting incoming HTTP requests (think of it as a mock REST API server). I want to be able to support HTTPS, but ideally I'd like to remove the requirement for my users to have to purchase their own SSL certificates.
I've been thinking a little on how I might achieve this. Let's say I register a domain called myapp.com. I then purchase an SSL cert for myserver.myapp.com that is signed by a registered CA. I ship my app with those SSL cert details embedded within it. All my users have to do is update their /etc/hosts file to point myserver.myapp.com to whatever IP address my app is installed and running on.
In fact, by far, the most common scenario would be my app running on the same machine as the client, so I'm considering updating the main DNS entry for myserver.myapp.com to point to 127.0.0.1, and most users wouldn't have to change anything.
So, that's the basic theory. What have I missed that would make this an unworkable plan? A couple of things that have crossed my mind:
I could use a self-signed cert. However, many SSL clients barf (or throw up warnings) if the cert doesn't have a valid CA chain. I'm happy to pay the money for a real cert to alleviate this inconvenience for my users.
I would be embedding the private key for my SSL cert into my app. In theory, someone could extract that and use it to impersonate my app. I guess my reaction is "so what?" My app is a small productivity app, it isn't an e-commerce site. It doesn't collect sensitive info. It literally just simulates web server responses so devs can test their apps.
Any advice/feedback would be greatly appreciated. Thanks.
This won't work - but for nontechnical reasons.
Distributing an SSL certificate to your users along with its associated key will violate the issuance terms of your SSL certificate provider, and they will revoke the certificate when they discover what you have done. (This happened, for example, when Pivotal tried to offer SSL service for developers through sslip.io.) This will, of course, cause your application to stop working.
If your users have administrative access to their machines, they can create and trust their own self-signed CA using Keychain Access. Once they have done so, they could create a certificate (again, using Keychain Access) and insert that into your application to enable SSL.
As said in the other answer you can't ship the same certificate for everybody. What you could do is generate different for everybody:
The application ask them the domain name they want to use (a domain they must own, like myapp.example.com)
The application use the ACME protocol to get automatically a trusted certificate from let's encrypt
Note: you can provide them subdomains of a domain you control (like [clientid].yourappname.yourdomain.com) ONLY of you can register yourappname.yourdomain.com in the public suffix list (because let's encrypt have rate limits)

Are valid digital certificates required on the clients (Java, C++ etc) to make successful https connections?

I am planning to implement a small standalone program that will make a https request to a server. Does that require a valid ssl certificate in the client? How does the SSL handshake work in that case? Are there any security issues in the client not have an SSL certificate?
Apart from encrypting the network traffic, HTTPS is normally used to authenticate the server. That is, to give clients reassuring information about who owns the server, etc. For that to work, the client needs to inspect the trust chain in the certificate published by the server. For that to happen automatically, the client machine should have a certificate installed that describes a Certification Authority that issued the server's certificate. Normally such certificates are found on your machine in a store called "Trusted Root Certification Authorities" and most OS come with a set of common CAs already installed.
In addition, many web servers offer a feature where the client can authenticate itself to the server by supplying a client certificate. The web server is able to inspect the certificate coming from the client and map it onto a set of permissions on the server. This "client authentication" is not necessary for a working HTTPS session however, it's just an option.
In short, you don't actually need any certificate on the client, but you will probably want to have a root CA certificate in order to validate the server's identity. If you don't have that certificate it will be impossible for you to trust the server (unless you have another good reason to do so), but you might choose to exchange data with it anyway.
If you wish to learn more about the HTTPS handshake and what is negotiated, i fully recommend you look at this excellent write up at moserware
http://www.moserware.com/2009/06/first-few-milliseconds-of-https.html
A client certificate is required only if the server requires one. A client certificate allows the server to authenticate the client, but this is only useful if the server has a list of all authorized clients. That's generally not the case with a web server, so it's quite rare for them to require client certificates.
When present, the client-side certificate does not affect establishment of the secure channel. (Only the server's certificate is required for that and adding a client certificate into the mix doesn't change the process.) Once a secure channel is established, the server will use the client's certificate the authenticate the client (generally by comparing the client's public key or name with a list of authorized clients).
You dont need a certificate to make a HTTPS connection, but you do need to if you want to know with whom you are communicating.

Resources