What is Extend-protocol in a Jepsen context? - syntax

I'm new to clojure and I am trying to figure out what Jepsen does, a software used to check consistency of distributed system.
My questions are:
What does extend-protocol do?
To be more specific, In Jepsen.Generator, what is op in the Protocol.
What does mix mean in the context
Kind Regards

What does extend-protocol do?
A protocol is an abstract thing that looks like an interface in Java. It does nothing, but some other entities may implement it. In Java, you declare a class that implements an interface. In Clojure, you extend a
particular protocol with a custom type declared either with deftype or defrecord calling extend-protocol on it.
When extending a protocol with a type, you need to specify implementation for signatures mentioned in that protocol.
A good example might be JSON serialization. Say, the protocol would look like as follows:
(defprotocol JSON
(to-json [obj]))
If you call (to-json ...) on any value, you'll have an error saying that there is no to-json implementation for that type. You need to extend it:
(extend-protocol JSON
Integer
(to-json [obj] (str obj))
Boolean
(to-json [obj]
(if obj "true" "false")))
Now that, calling (to-json 42) and (to-json false) will work. You may extend that protocol for the rest of types: floats, array, maps and so on.
what is op in the Protocol
Protocols do not have implementations, only signatures. os is a signature of some function that just takes three arguments: [gen test process]. It's up to what should it return. As an example, you may refer the line #46 where its behavior is implemented for the clojure.lang.AFunction type. Since I'm not familiar with jepsen, I cannot say more on that.
What does mix mean in the context
I think its docstring is pretty clear as well as the code is. I takes a collection of gens. If it's empty, the result would be a special Generator instance named void. It's an anonymous type that extends Generator protocol returning just nil when calling op without any computations.
It the gens are not empty, the code returns an instance of Generator type with such op implementation that takes a random gen when executing op.
Hope that will help.

Related

Using multiple interfaces in Golang

I'm learning Golang and as an exercise in using interfaces I'm building a toy program. I'm having some problem trying to use a type that "should implement" two interfaces - one way to solve that in C++ and Java would be to use inheritance(there are other techniques, but I think that is the most common). As I lack that mechanism in Golang, I'm not sure how to proceed about it. Below is the code:
var (
faces = []string{"Ace", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King"}
suits = []string{"Hearts", "Diamonds", "Spades", "Clubs"}
)
type Card interface {
GetFace() string
GetSuit() string
}
type card struct {
cardNum int
face string
suit string
}
func NewCard(num int) Card {
newCard := card{
cardNum: num,
face: faces[num%len(faces)],
suit: suits[num/len(faces)],
}
return &newCard
}
func (c *card) GetFace() string {
return c.face
}
func (c *card) GetSuit() string {
return c.suit
}
func (c *card) String() string {
return fmt.Sprintf("%s%s ", c.GetFace(), c.GetSuit())
}
What I'm trying to achieve:
I would like to hide my struct type and only export the interface so that the clients of the code use only the "Card" interface
I would like to have a string representation of the struct, hence the implementation of the interface with the "String()" method in order to be able to call "fmt.Println()" on instantiations of my struct
The problem comes when I'm trying to use a new card though the "Card" interface and also trying to get the string representation. I cannot pass the interface as the parameter of the implementation of the "String()" method as there is a compiler error which is related to the addressability of an interface at the core language level(still digging through that documentation). The very simple example of testing exposes the issue:
func TestString(t *testing.T) {
card := NewCard(0)
assert.EqualValues(t, "AceHearts ", card.String(), " newly created card's string repr should be 'AceHearts '")
}
The compiler tells me, for good reason, that "card.String undefined (type card has no field or method string)". I could just add the "String()" method to my "Card" interface, but I do not find that to be clean: I have other entities implemented with the same model and I would have to add that redundancy everywhere; there is already an interface with that method.
What would be a good solution for the above issue that I'm having?
Edit:(to address some of the very good comments)
I do not expect to have another implementation of the Card interface; I'm not sure I grasp why would I want to do that, that is change the interface
I would like to have the Card interface to hide away implementation details and for the clients to program against the interface and not against the concrete type
I would like to always have access to the String() interface for all clients of the "card struct" instantiations(including the ones instantiated via the Card interface). I'm not interested in having clients only with the String interface. In some other languages this can be achieved by implementing both interfaces - multiple inheritance. I'm not saying that is good or wrong, or trying to start a debate about that, I'm just stating a fact!
My intent is to find out if the language has any mechanism to fulfill those requirements simultaneously. If that is not possible or maybe from the point of view of the design the problem should be tackled in a different manner, then I'm ready to be educated
Type assertions are very verbose and explicit and would expose implementation details - they have their places but I do not think they are appropriate in the situation I have
I should go over some prefacing points first:
Interfaces in Go are not the same as interfaces in other languages. You shouldn't assume that every idea from other languages should transfer over automatically. A lot of them don't.
Go has neither classes nor objects.
Go is not Java and Go is not C++. It's type system is significantly and meaningfully different than those languages.
From your question:
I would like to have the Card interface to hide away implementation details and for the clients to program against the interface and not against the concrete type
This is the root of your other problems.
As mentioned in the comments, I see this in multiple other packages and regard it as a particularly pesky anti-pattern. First, I will explain the reasons why this pattern is "anti" in nature.
Firstly and most pertinently, this point is proven by your very example. You employed this pattern, and it has resulted in bad effects. As pointed out by mkopriva, it has created a contradiction which you must resolve.
this usage of interfaces is contrary to their intended use, and you are not achieving any benefit by doing this.
Interfaces are Go's mechanism of polymorphism. The usage of interfaces in parameters makes your code more versatile. Think of the ubiquitous io.Reader and io.Writer. They are fantastic examples of interfaces. They are the reason why you can patch two seemingly unrelated libraries together, and have them just work. For example, you can log to stderr, or log to a disk file, or log to an http response. Each of these work exactly the same way, because log.New takes an io.Writer parameter, and a disk file, stderr, and http response writer all implement io.Writer. To use interfaces simply to "hide implementation details" (I explain later why this point fails), does not add any flexibility to your code. If anything, it is an abuse of interfaces by leveraging them for a task they weren't meant to fulfill.
Point / Counterpoint
"Hiding my implementation provides better encapsulation and safety by making sure all the details are hidden."
You are not achieving any greater encapsulation or safety. By making the struct fields unexported (lowercase), you have already prevented any clients of the package from messing with the internals of your struct. Clients of the package can only access the fields or methods that you have exported. There's nothing wrong with exporting a struct and hiding every field.
"Struct values are dirty and raw and I don't feel good about passing them around."
Then don't pass structs, pass pointers to struct. That's what you're already doing here. There's nothing inherently wrong with passing structs. If your type behaves like a mutable object, then pointer to struct is probably appropriate. If your type behaves more like an immutable data point, then struct is probably appropriate.
"Isn't it confusing if my package exports package.Struct, but clients have to always use *package.Struct? What if they make a mistake? It's not safe to copy my struct value; things will break!"
All you realistically have to do to prevent problems is make sure that your package only returns *package.Struct values. That's what you're already doing here. A vast majority of the time, people will be using the short assignment :=, so they don't have to worry about getting the type correct. If they do set the type manually, and the choose package.Struct by accident, then they will get a compilation error when trying to assign a *package.Struct to it.
"It helps to decouple the client code from the package code"
Maybe. But unless you have a realistic expectation that you have multiple existent implementations of this type, then this is a form of premature optimization (and yes it does have consequences). Even if you do have multiple implementations of your interface, that's still not a good reason why you should actually return values of that interface. A majority of the time it is still more appropriate to just return the concrete type. To see what I mean, take a look at the image package from the standard library.
When is it actually useful?
The main realistic case where making a premature interface AND returning it might help clients, is this:
Your package introduces a second implementation of the interface
AND clients have statically and explicitly (not :=) used this data type in their functions or types
AND clients want to reuse those types or functions for the new implementation also.
Note that this wouldn't be a breaking API change even if you weren't returning the premature interface, as you're only adding a new type and constructor.
If you decided to only declare this premature interface, and still return concrete types (as done in the image package), then all the client would likely need to do to remedy this is spend a couple minutes using their IDE's refactor tool to replace *package.Struct with package.Interface.
It significantly hinders the usability of package documentation
Go has been blessed with a useful tool called Godoc. Godoc automatically generates documentation for a package from source. When you export a type in your package, Godoc shows you some useful things:
The type, all exported methods of that type, and all functions that return that type are organized together in the doc index.
The type and each of its methods has a dedicated section in the page where the signature is shown, along with a comment explaining it's usage.
Once you bubble-wrap your struct into an interface, your Godoc representation is hurt. The methods of your type are no longer shown in the package index, so the package index is no longer an accurate overview of the package as it is missing a lot of key information. Also, each of the methods no longer has its own dedicated space on the page, making it's documentation harder to both find and read. Finally it also means that you no longer have the ability to click the method name on the doc page to view the source code. It's also no coincidence that in many packages that employ this pattern, these de-emphasized methods are most often left without a doc comment, even when the rest of the package is well documented.
In the wild
https://pkg.go.dev/github.com/zserge/lorca
https://pkg.go.dev/github.com/googollee/go-socket.io
In both cases we see a misleading package overview, along with a majority of interface methods being undocumented.
(Please note I have nothing against any of these developers; obviously every package has it's faults and these examples are cherry picked. I'm also not saying that they had no justification to use this pattern, just that their package doc is hindered by it)
Examples from the standard library
If you are curious about how interfaces are "intended to be used", I would suggest looking through the docs for the standard library and taking note of where interfaces are declared, taken as parameters, and returned.
https://golang.org/pkg/net/http/
https://golang.org/pkg/io/
https://golang.org/pkg/crypto/
https://golang.org/pkg/image/
Here is the only standard library example I know of that is comparable to the "interface hiding" pattern. In this case, reflect is a very complex package and there are several implementations of reflect.Type internally. Also note that in this case, even though it is necessary, no one should be happy about it because the only real effect for clients is messier documentation.
https://golang.org/pkg/reflect/#Type
tl;dr
This pattern will hurt your documentation, while accomplishing nothing in the process, except you might make it slightly quicker in very specific cases for clients to use parallel implementations of this type that you may or may not introduce in the future.
These interface design principles are meant for the benefit of the client, right? Put yourself in the shoes of the client and ask: what have I really gained?
Not entirely sure if this is what you are looking for but you could try embedding the other interface in Card interface as shown below.
type Printer interface {
String() string
}
type Card interface {
Printer // embed printer interface
GetFace() string
GetSuit() string
}
Interface Card hasn't method String, it doesn't matter, that underlying type card have it, because method is hidden from you (unless you access it via reflection).
Adding String() string method to Card will solve problem:
type Card interface {
GetFace() string
GetSuit() string
String() string
}
The go language does not have subtype polymorsphism. Therefore, the pattern you want to achieve is not encouraged by the very foundations of the language. You may achieve this undesirable pattern by composing structs and interfaces, though.

How can I enforce correct construction whilst respecting the golang CodeReviewComments rule on interfaces?

The Interfaces rule in the official Go Code Review Comments document says that packages should return concrete types rather than interfaces. The motivation for this is so that:
...new methods can be added to implementations without requiring extensive refactoring.
which I accept could be a good thing.
But what if a type I'm writing has a dependency without which it cannot serve its purpose? If I export the concrete type, developers will be able to instantiate instances without that dependency. To code defensively for the missing dependency, I then have to check for it in every method implementation and return errors if it is absent. If the developer missed any hints not to do this in my documentation, she or he won't learn about the problem until run time.
On the other hand, if I declare and return an interface with the methods the client needs, I can unexport the concrete type and enforce the use of a factory method which accepts the dependency as an argument and returns the interface plus an error. This seems like a better way to ensure correct use of the package.
Am I somehow not properly getting into the go spirit by thinking like this? Is the ethic of the language that it's okay to have a less-than-perfect encapsulation to give more flexibility to developers?
You may expect developers to read the doc you provide, and you may rely on them following the rules you set. Yes, lazy developers will bump their head from time to time, but the process of developing isn't without having to learn. Everything cannot be made explicit or enforced, and that's all right.
If you have an exported struct type Example and you provide a constructor function NewExample(), that's a clear indication that NewExample() should be used to construct values of Example. Anyone attempting to construct Example manually is expected to know what fields must be set for it to be "operational". The aim is always to make the zero value fully functional, but if that can't be achieved, the constructor function is the idiomatic way to go.
This isn't uncommon, there are countless examples in the standard library, e.g. http.Request, json.Encoder, json.Decoder, io.SectionReader, template.Template.
What you must ensure is that if your package returns values of your structs, they must (should) be properly initialized. And also if others are expected to pass values of your structs created by them, you must provide an easy way for them to create valid values of your structs (constructor function). Whether the custom struct values other developers create themselves are "valid", that shouldn't be of your concern.

Swift: Do protocols even have a real purpose?

I'm wondering why protocols are used in swift. In every case I've had to use one so far (UICollectionViewDelegate, UICollectionViewDataSource) I've noted that they don't even have to be added to the class declaration for my code to work. All they do is make it such that your class needs to have certain methods in it so that it can compile. Beats me why this is useful other then as a little post it note to help you keep track of what your classes do.
I'm assuming I'm wrong though. Would anyone care to point out why to me please?
A protocol defines a blueprint of methods, properties, and other requirements that suit a particular task or piece of functionality. The protocol doesn’t actually provide an implementation for any of these requirements—it only describes what an implementation will look like.
So it's basically an interface, right?
You use an interface when you want to define a "contract" for your code. In most cases, the purpose of this is to enable multiple implementations of that contract. For example, you can provide a real implementation, and a fake one for testing.
Further Reading
Protocols
What is the point of an Interface?
It allows flexible linkage between parts of code. Once the protocol is defined it can be used by code that doesn't need to know what will be done when the methods are called or exactly what object (or struct or enum) is actually being used. An alternative approach could be setting callbacks or blocks but by using a protocol as complete set of behaviours can be grouped and documented.
Some other code will typically create the concrete instance and pass it to the code expecting the protocol (sometimes the concrete instance will pass itself). In some cases neither the implementation of the code using it need to be aware of each other and it can all be set up by some other code to keep it reusable and testable.
It might be possible to do this in some languages by duck typing which is to say that a runtime inspection could allow a object to act in such a context without particular declaration but this is probably not possible to do at compile time in all cases and it could also be error prone if worked out implicitly.

Why can't Go method Receiving Types be interfaces?

From the Go documentation on method declarations:
The receiver type must be of the form T or *T where T is a type name. T is called the receiver base type or just base type. The base type must not be a pointer or interface type and must be declared in the same package as the method.
Can anyone give me some insight on why this might be? Are there any other (statically typed) languages that would allow this? I really want to define methods on an interface so I can treat any instance of a given interface type as another. For example (stealing the example from the Wikipedia article on the Template Method Pattern) if the following was valid:
type Game interface {
PlayOneGame(playersCount int)
}
type GameImplementation interface {
InitializeGame()
MakePlay(player int)
EndOfGame() bool
PrintWinner()
}
func (game *GameImplementation) PlayOneGame(playersCount int) {
game.InitializeGame()
for j := 0; !game.EndOfGame(); j = (j + 1) % playersCount {
game.MakePlay(j)
}
game.PrintWinner()
}
I could use any instance implementing "GameImplementation" as a "Game" without any conversion:
var newGame Game
newGame = NewMonopolyGame() // implements GameImplementation
newGame.PlayOneGame(2)
UPDATE: the purpose of this was to try and achieve all the benefits of abstract base classes without all the coupling that goes with an explicit hierarchy. If I wanted to define a new behaviour PlayBestOfThreeGames, abstract base classes would require me to change the base class itself - whereas here I just define one more method on top of the GameImplementation interface
It's probably for the same reason you can't define methods on interfaces in Java.
An interface is meant to be a description of a part of, or the whole of, the external interface for a set of objects and not how they implement the underlying behavior. In Java you would probably use an abstract class if you need parts of the behavior to be pre-defined but I think the only way to do that in Go is to use functions rather than methods.
I believe that for your example the more Go idiomatic code would be something like this:
type GameImplementation interface {
InitializeGame()
MakePlay(player int)
EndOfGame() bool
PrintWinner()
}
func PlayOneGame(game GameImplementation, playersCount int) {
game.InitializeGame()
for j := 0; !game.EndOfGame(); j = (j + 1) % playersCount {
game.MakePlay(j)
}
game.PrintWinner()
}
Where PlayOneGame and any specific game implementation are probably living in different packages.
Here is some discussion on golang-nuts
In answer to your question of whether there are other statically typed languages that allow this: yes, most. Any language with multiple inheritance allows classes to have arbitrary mixes of abstract and concrete methods. Also, see Scala's traits, which are like Java's interfaces but can have concrete methods. Scala also has structural types, which are really all that Go's interfaces are.
What you're describing as in Interface is really what might elsewhere be referred to as an abstract class -- that is, a class with some methods defined but not all, which must be subclassed in order to be instantiated.
However, Go doesn't have any concept of a class hierarchy -- the whole type structure is flat. Each method on a class is defined for that class specifically, not on any parent class or subclass or interface. This was a conscious design decision, not an omission.
In Go, an Interface is therefore not a component of a type hierarchy (as there is no such thing). Instead, it is simply an ad-hoc specification of the set of methods which must be implemented for a given purpose. That's all. They're a stand-in for dynamic typing whereby you can declare ahead of time which functions on a given type you'll be using -- then any variable who's type satisfies those requirements can be used.
This makes it impossible to use patterns like Generics with Go, and Rob Pike has said at a conference that this might be changed in the future if someone can come with a an elegant implementation and a compelling use case. But that remains yet to be seen.
First, it's important to notice that types implement interfaces implicitly — that is, interfaces are "duck types". Any type that provides the methods required by the interface is assignable to a variable of the interface type, without any cooperation from the original type. This is different from, say, Java or C# where a class that implements an interface has to declare its intention to implement the interface, in addition to actually providing the methods.
Go also has a pretty strong tendency against "action at a distance". For example, even though methods are declared separately from types, it's illegal to declare a method in a different package from its receiver type. You can't just go adding methods to os.File.
If interfaces could provide methods (making them traits/roles) then any type that implemented an interface would gain a bunch of new methods out of nowhere. Someone reading the code and seeing those methods used probably have a hard time figuring out where they came from.
There's a problem with fragility — change the signature of a method that's required by an interface, and a bunch of other methods appear or disappear. In the case where they disappeared, it's not obvious where they "would have" come from. If types had to declare their intention to implement an interface then breaking the contract would prompt an error (and "accidentally" implementing an interface does nothing), but when interfaces are satisfied implicitly things are trickier.
Worse, there could be name conflicts — an interface provides a method with the same name as a method provided by a type that implements that interface, or two interfaces both provide a method with the same name, and some type happens to implement both of those interfaces. Resolving that conflict is the kind of complication that Go really likes to avoid, and in a lot of cases there is no satisfying resolution.
Basically, it would be really cool if interfaces could provide methods — roles as composable units of behavior are cool, and mesh well with Go's composition-over-inheritance philosophy — but actually doing it would be too complicated and too action-at-a-distance-y for Go to contemplate.

Which error code to return when a passed object doesn't implement a necessary interface?

In COM when I have a well-known interface that I can't change:
interface IWellKnownInterface {
HRESULT DoStuff( IUnknown* );
};
and my implementation of IWellKnownInterface::DoStuff() can only work when the passed object implements some specific interface how do I handle this situation?
HRESULT CWellKnownInterfaceImpl::DoStuff( IUnknown* param )
{
//this will QI for the specific interface
ATL::CComQIPtr<ISpecificInterface> object( param );
if( object == 0 )
//clearly the specifil interface is not supported
return E_INVALIDARG;
}
// proceed with implementation
}
In case the specific interface is not supported which error code should I return? Is returning E_INVALIDARG appropriate?
E_INVALIDARG is a fine choice, but the most important thing is to ensure that the precise conditions for each return code that you use are well documented.
Additionally, you could consider implementing ISupportErrorInfo and then returning rich error information via CreateErrorInfo and SetErrorInfo. This is especially useful in cases where you think callers may benefit from having a custom error message generated at the point of failure, with all of the relevant context contained therein. In your case, this might be to identify specifically which argument is invalid and which interface was unimplemented for it to be so. Even though such a message is unlikely to be of value to an end user, it could be invaluable to a developer if it shows up in a log file or the event viewer.
Yes. At least, that is what I've learned to expect a microsoft API call to return in such a case.
I beg to differ with #nobugz. E_NOINTERFACE has the very specific meaning that your object does not support a certain interface that your client has just requested.
In general, you should only return E_NOINTERFACE from your own IUnknown::QueryInterface(). Returning E_NOINTERFACE from DoStuff() would surprise end users and tools alike. If I saw E_NOINTERFACE coming from anywhere other than QueryInterface(), my immediate thought would be "abstraction leak!".
At first sight, E_INVALIDARG looks like the best options available -- after all, you were passed an argument that doesn't work for you. But in my view there is a subtlety here, so I'm not sure if I can make a universal rule out of that.
In an ideal world, the error codes returned by a COM method are more about the Interface than about the object. Concretely, IWellKnownInterface::DoStuff() doesn't define (necessarily) that the object being passed in must implement ISpecificInterface, or it would have a different argument type. So, technically you're cheating potential users of your object by not quite fully implementing the semantics of your interface. Of course, in the real world, it's very hard to create a meaningful open system if you make that into an absolute rule and interfaces are that rigid.
So: if you can provide reduced functionality that still meets the interface semantics even if your argument doesn't implement ISpecificInterface, you should consider doing that.
Assuming that you must return in error: if this is a well-know, well documented (well designed?) interface, I would probably glance at the interface documentation first, to see if they give you any guidance. Lacking that, I would probably go ahead and use E_INVALIDARG.
#Phil Booth has some nice recommendations about how to provide more information to your user about the nature of the error.
Obviously, if you had the chance you would want to change the interface to take a ISpecificInterface* param instead.
Here's another possibilty you might or might not like better.
In Visual Basic 6, there are many objects with methods that take a VARIANT argument and look for several alternative interfaces they can use (e.g. the DataSource member of data-bound controls). That looks a lot like your situation. Those objects return DISP_E_TYPEMISMATCH, which is a well understood return value by most people.
On the other hand, I totally understand if you don't want to return a DISP_xxxx error code from non-IDISPATCH based interfaces. There is a strong argument for saying that DISP_xxxx error codes are intened for VARIANT parameters only, and a method that takes an IUnknown* should not be returning error them.
I'm on the fence on this one.

Resources