time range overlap by one php function and report - time

I need to write one php function that checks whether four different time ranges are overlapping and, in the case if some of them are, to put the notice in a browser that : 'range#1' intersects with 'range#2'. Any idea?Thx in advance.

Related

Grafana difference between two datapoints

In a Graphana dashboard with several datapoints, how can I get the difference between the last value and the previouse one for the same metric?
Perhaps the tricky part is that the tiem between 2 datapoins for the same metric is not know.
so the desired result is the <metric>.$current_value - <metric>.$previouse_value for each point in the metricstring.
Edit:
The metrics are stored in graphite/Carbon DB.
thanks
You need to use the derivative function
This is the opposite of the integral function. This is useful for taking a running total metric and calculating the delta between subsequent data points.
This function does not normalize for periods of time, as a true derivative would. Instead see the perSecond() function to calculate a rate of change over time.
Together with the keepLastValue
Takes one metric or a wildcard seriesList, and optionally a limit to the number of ‘None’ values to skip over.
Continues the line with the last received value when gaps (‘None’ values) appear in your data, rather than breaking your line.
Like this
derivative(keepLastValue(your_mteric))
A good example can be found here http://www.perehospital.cat/blog/graphite-getting-derivative-to-work-with-empty-data-points

Fill all connected grid squares of the same type

Foreword: I am aware there is another question like this, however mine has very specific restrictions. I have done my best to make this question applicable to many, as it is a generic grid issue, but if it still does not belong here, then I am sorry, and please be nice about it. I have found in the past stackoverflow to be a very picky and hostile environment to question askers, but I'm hoping that was just a bad couple people.
Goal(abstract): Check all connected grid squares in a 3D grid that are of the same type and touching on one face.
Goal(specific/implementation): Create a "fill bucket" tool in Minecraft with command blocks.
Knowledge of Minecraft not really necessary to answer, this is more of an algorithm question, and I will be staying away from Minecraft specifics.
Restrictions: I can do this in code with recursive functions, but in Minecraft there are some limitations I am wondering if are possible to get around. 1: no arrays(data structure) permitted. In Minecraft I can store an integer variable and do basic calculations with it (+,-,*,/,%(mod),=,==), but that's it. I cannot dynamically create variables or have the program create anything with a name that I did not set out ahead of time. I can do "IF" and "OR" statements, and everything that derives from them. I CANNOT have multiple program pointers - that is, I can't have things like recursive functions, which require a program to stop executing, execute itself from beginning to end, and then resume executing where it was - I have minimal control over the program flow. I can use loops and conditional exits (so FOR loops). I can have a marker on the grid in 3D space that can move regardless of the presence of blocks (I'm using an armour stand, for those who know), and I can test grid squares relative to that marker.
So say my grid is full of empty spaces only. There are separate clusters of filled squares in opposite corners, not touching each other. If I "use" my fillbucket tool on one block / filled grid square, I want it to use a single marker to check and identify all the connected grid squares - basically, I need to be sure that it traverses the entire shape, all the nooks and crannies, but not the squares that are not connected to that shape. So in the end, one of the two clusters, from me only selecting a single square of it, will be erased/replaced by another kind of block, without affecting the other blocks around it.
Again, apologies if this doesn't belong here. And only answer this if you WANT to tackle the challenge - it's not important or anything, I just want to do this. You don't have to answer it if you don't want to. Or if you can solve this problem for a 2D grid, that would be helpful as well, as I could possibly extend that to work for 3D.
Thank you, and if I get nobody degrading me for how I wrote this post or the fact that I did, then I will consider this a success :)
With help from this and other sources, I figured it out! It turns out that, since all recursive functions (or at least most of them) can be written as FOR loops, that I can make a recursive function in Minecraft. So I did, and the general idea of it is as follows:
For explaining the program, you may assuming the situation is a largely empty grid with a grouping of filled squares in one part of it, and the goal is to replace the kind of block that that grouping is made of with a different block. We'll say the grouping currently consists of red blocks, and we want to change them to blue blocks.
Initialization:
IDs - A objective (data structure) for holding each marker's ID (score)
numIDs - An integer variable for holding number of IDs/markers active
Create one marker at selected grid position with ID [1] (aka give it a score of 1 in the "IDs" objective). This grid position will be a filled square from which to start replacing blocks.
Increment numIDs
Main program:
FOR loop that goes from 1 to numIDs
{
at marker with ID [1], fill grid square with blue block
step 1. test block one to the +x for a red block
step 2. if found, create marker there with ID [numIDs]
step 3. increment numIDs
[//repeat steps 1 2 and 3 for the other five adjacent grid squares: +z, -x, -z, +y, and -y]
delete stand[1]
numIDs -= 1
subtract 1 from every marker's ID's, so that the next marker to evaluate, which was [2], now has ID [1].
} (end loop)
So that's what I came up with, and it works like a charm. Sorry if my explanation is hard to understand, I'm trying to explain in a way that might make sense to both coders and Minecraft players, and maybe achieving neither :P

Back propagation algorithm when we have two outputs

I have a big problem I want to implement my neuronal neutwork with 2 neurons outputs. Sth like that :
And I want to use backpropagation algorithm, but I don't know how to calculate a error, because I have a output with 2 neurons, when I have a only one neuron on a output that's very easy to use a backpropagation algorithm from one exit error, but with two neurons? I thinking about calculate error for every output seperately but then I must calculate seperately back propagation for 2 cases and I get "two different hidden layers" (For every neuron in hidden layer I have a weights for two cases). Mayby anyone knows some better solutions?
I will be very gratefull for any help.
Logically thinking, the first layer of weights should give you a representation (the hidden layer) that is useful for predicting both outputs. So, this layer should be updated based on the error made in both outputs. But the next layer of weights are separate for each output node, so should get separate weight updates.
So, on second layer weights, the weight updates will be calculated separately based on the respective outputs. For the first layer of weights, I would first calculate error derivatives backpropagating from each output separately and then simply combine them to get the final error derivative. Then apply learning rate to get the weight updates.
Watch out for the dynamic range of your outputs. For example, if one output is producing some real value of range [0,10] and another is producing values in range [-1000,1000] then your updates will be dominated by the one with larger range. You can
add a preprocessing step that would change your data set to have same dynamic range in both outputs. Also, add a postprocessing step to restore the actual range.
formulate the error functions for each output so that they produce error values of same dynamic range.

Algorithm for animating elements running across a scene

I'm not sure if the title is right but...
I want to animate (with html + canvas + javascript) a section of a road with a given density/flow/speed configuration. For that, I need to have a "source" of vehicles in one end, and a "sink" in the other end. Then, a certain parameter would determine how many vehicles per time unit are created, and their (constant) speed. Then, I guess I should have a "clock" loop, to increment the position of the vehicles at a given frame-rate. Preferrably, a user could change some values in a form, and the running animation would update accordingly.
The end result should be a (much more sophisticated, hopefully) variation of this (sorry for the blinking):
Actually this is a very common problem, there are thousands of screen-savers that use this effect, most notably the "star field", which has parameters for star generation and star movement. So, I believe there must be some "design pattern", or more widespread form (maybe even a name) for this algoritm. What would solve my problem would be some example or tutorial on how to achieve this with common control flows (loops, counters, ifs).
Any idea is much appreciated!
I'm not sure of your question, this doesn't seem an algorithm question, more like programming advice. I have a game which needs exactly this (for monsters not cars), this is what I did. It is in a sort of .Net psuedocode but similar stuff exists in other environments.
If you are running an animation by hand, you essentially need a "game-loop".
while (noinput):
timenow = getsystemtime();
timedelta = timenow - timeprevious;
update_object_positions(timedelta);
draw_stuff_to_screen();
timeprevious = timenow;
noinput = check_for_input()
The update_object_positions(timedelta) moves everything along timedelta, which is how long since this loop last executed. It will run flat-out redrawing every timedelta. If you want it to run at a constant speed, say once every 20 mS, you can stick in a thread.sleep(20-timedelta) to pad out the time to 20mS.
Returning to your question. I had a car class that included its speed, lane, type etc as well as the time it appears. I had a finite number of "cars" so these were pre-generated. I held these in a list which I sorted by the time they appeared. Then in the update_object_position(time) routine, I saw if the next car had a start time before the current time, and if so I popped cars off the list until the first (next) car had a start time in the future.
You want (I guess) an infinite number of cars. This requires only a slight variation. Generate the first car for each lane, record its start time. When you call update_object_position(), if you start a car, find the next car for that lane and its time and make that the next car. If you have patterns that you want to repeat, generate the whole pattern in one go into a list, and then generate a new pattern when that list is emptied. This would also work well in terms of letting users specify variable pattern flows.
Finally, have you looked at what happens in real traffic flows as the volume mounts? Random small braking activities cause cars behind to slightly over-react, and as the slight over-reactions accumulate it turns into cars completely stopping a kilometre back up the road. Its quite strange, and so might be a great effect in your wallpaper/screensaver whatever as well as being a proper simulation.

Algorithm for optimizing the order of actions with cooldowns

I can choose from a list of "actions" to perform one once a second. Each action on the list has a numerical value representing how much it's worth, and also a value representing its "cooldown" -- the number of seconds I have to wait before using that action again. The list might look something like this:
Action A has a value of 1 and a cooldown of 2 seconds
Action B has a value of 1.5 and a cooldown of 3 seconds
Action C has a value of 2 and a cooldown of 5 seconds
Action D has a value of 3 and a cooldown of 10 seconds
So in this situation, the order ABA would have a total value of (1+1.5+1) = 3.5, and it would be acceptable because the first use of A happens at 1 second and the final use of A happens at 3 seconds, and then difference between those two is greater than or equal to the cooldown of A, 2 seconds. The order AAB would not work because you'd be doing A only a second apart, less than the cooldown.
My problem is trying to optimize the order in which the actions are used, maximizing the total value over a certain number of actions. Obviously the optimal order if you're only using one action would be to do Action D, resulting in a total value of 3. The maximum value from two actions would come from doing CD or DC, resulting in a total value of 5. It gets more complicated when you do 10 or 20 or 100 total actions. I can't find a way to optimize the order of actions without brute forcing it, which gives it complexity exponential on the total number of actions you want to optimize the order for. That becomes impossible past about 15 total.
So, is there any way to find the optimal time with less complexity? Has this problem ever been researched? I imagine there could be some kind of weighted-graph type algorithm that works on this, but I have no idea how it would work, let alone how to implement it.
Sorry if this is confusing -- it's kind of weird conceptually and I couldn't find a better way to frame it.
EDIT: Here is a proper solution using a highly modified Dijkstra's Algorithm:
Dijkstra's algorithm is used to find the shortest path, given a map (of a Graph Abstract), which is a series of Nodes(usually locations, but for this example let's say they are Actions), which are inter-connected by arcs(in this case, instead of distance, each arc will have a 'value')
Here is the structure in essence.
Graph{//in most implementations these are not Arrays, but Maps. Honestly, for your needs you don't a graph, just nodes and arcs... this is just used to keep track of them.
node[] nodes;
arc[] arcs;
}
Node{//this represents an action
arc[] options;//for this implementation, this will always be a list of all possible Actions to use.
float value;//Action value
}
Arc{
node start;//the last action used
node end;//the action after that
dist=1;//1 second
}
We can use this datatype to make a map of all of the viable options to take to get the optimal solution, based on looking at the end-total of each path. Therefore, the more seconds ahead you look for a pattern, the more likely you are to find a very-optimal path.
Every segment of a road on the map has a distance, which represents it's value, and every stop on the road is a one-second mark, since that is the time to make the decision of where to go (what action to execute) next.
For simplicity's sake, let's say that A and B are the only viable options.
na means no action, because no actions are avaliable.
If you are travelling for 4 seconds(the higher the amount, the better the results) your choices are...
A->na->A->na->A
B->na->na->B->na
A->B->A->na->B
B->A->na->B->A
...
there are more too, but I already know that the optimal path is B->A->na->B->A, because it's value is the highest. So, the established best-pattern for handling this combination of actions is (at least after analyzing it for 4 seconds) B->A->na->B->A
This will actually be quite an easy recursive algorithm.
/*
cur is the current action that you are at, it is a Node. In this example, every other action is seen as a viable option, so it's as if every 'place' on the map has a path going to every other path.
numLeft is the amount of seconds left to run the simulation. The higher the initial value, the more desirable the results.
This won't work as written, but will give you a good idea of how the algorithm works.
*/
function getOptimal(cur,numLeft,path){
if(numLeft==0){
var emptyNode;//let's say, an empty node wiht a value of 0.
return emptyNode;
}
var best=path;
path.add(cur);
for(var i=0;i<cur.options.length;i++){
var opt=cur.options[i];//this is a COPY
if(opt.timeCooled<opt.cooldown){
continue;
}
for(var i2=0;i2<opt.length;i2++){
opt[i2].timeCooled+=1;//everything below this in the loop is as if it is one second ahead
}
var potential=getOptimal(opt[i],numLeft-1,best);
if(getTotal(potential)>getTotal(cur)){best.add(potential);}//if it makes it better, use it! getTotal will sum up the values of an array of nodes(actions)
}
return best;
}
function getOptimalExample(){
log(getOptimal(someNode,4,someEmptyArrayOfNodes));//someNode will be A or B
}
End edit.
I'm a bit confused on the question but...
If you have a limited amount of actions, and that's it, then always pick the action with the most value, unless the cooldown hasn't been met yet.
Sounds like you want something like this (in pseudocode):
function getOptimal(){
var a=[A,B,C,D];//A,B,C, and D are actions
a.sort()//(just pseudocode. Sort the array items by how much value they have.)
var theBest=null;
for(var i=0;i<a.length;++i){//find which action is the most valuable
if(a[i].timeSinceLastUsed<a[i].cooldown){
theBest=a[i];
for(...){//now just loop through, and add time to each OTHER Action for their timeSinceLastUsed...
//...
}//That way, some previously used, but more valuable actions will be freed up again.
break;
}//because a is worth the most, and you can use it now, so why not?
}
}
EDIT: After rereading your problem a bit more, I see that the weighted scheduling algorithm would need to be tweaked to fit your problem statement; in our case we only want to take those overlapping actions out of the set that match the class of the action we selected, and those that start at the same point in time. IE if we select a1, we want to remove a2 and b1 from the set but not b2.
This looks very similar to the weighted scheduling problem which is discussed in depth in this pdf. In essence, the weights are your action's values and the intervals are (starttime,starttime+cooldown). The dynamic programming solution can be memoized which makes it run in O(nlogn) time. The only difficult part will be modifying your problem such that it looks like the weighted interval problem which allows us to then utilize the predetermined solution.
Because your intervals don't have set start and end times (IE you can choose when to start a certain action), I'd suggest enumerating all possible start times for all given actions assuming some set time range, then using these static start/end times with the dynamic programming solution. Assuming you can only start an action on a full second, you could run action A for intervals (0-2,1-3,2-4,...), action B for (0-3,1-4,2-5,...), action C for intervals (0-5,1-6,2-7,...) etc. You can then use union the action's sets to get a problem space that looks like the original weighted interval problem:
|---1---2---3---4---5---6---7---| time
|{--a1--}-----------------------| v=1
|---{--a2---}-------------------| v=1
|-------{--a3---}---------------| v=1
|{----b1----}-------------------| v=1.5
|---{----b2-----}---------------| v=1.5
|-------{----b3-----}-----------| v=1.5
|{--------c1--------}-----------| v=2
|---{--------c2---------}-------| v=2
|-------{-------c3----------}---| v=2
etc...
Always choose the available action worth the most points.

Resources