Time complexity of naïve merge of two binary search trees - algorithm

I saw a very short algorithm for merging two binary search trees. I was surprised how easy and also very inefficient it is. But when I tried to guess its time complexity, I failed.
Lets have a two immutable binary search trees (not balanced) that contains integers and you want to merge them together with the following recursive algorithm in pseudo code. Function insert is auxiliary:
function insert(Tree t, int elem) returns Tree:
if elem < t.elem:
return new Tree(t.elem, insert(t.leftSubtree, elem), t.rightSubtree)
elseif elem > t.elem:
return new Tree(t.elem, t.leftSubtree, insert(t.rightSubtree, elem))
else
return t
function merge(Tree t1, Tree t2) returns Tree:
if t1 or t2 is Empty:
return chooseNonEmpty(t1, t2)
else
return insert(merge(merge(t1.leftSubtree, t1.rightSubtree), t2), t1.elem)
I guess its an exponencial algorithm but I cannot find an argument for that. What is the worst time complexity of this merge algorithm?

Let's consider the worst case:
At each stage every tree is in the maximally imbalanced state, i.e. each node has at least one sub-tree of size 1.
In this extremal case the complexity of insert is quite easily shown to be Ө(n) where n is the number of elements in the tree, as the height is ~ n/2.
Based on the above constraint, we can deduce a recurrence relation for the time complexity of merge:
where n, m are the sizes of t1, t2. It is assumed without loss of generality that the right sub-tree always contains a single element. The terms correspond to:
T(n - 2, 1): the inner call to merge on the sub-trees of t1
T(n - 1, m): the outer call to merge on t2
Ө(n + m): the final call to insert
To solve this, let's re-substitute the first term and observe a pattern:
We can solve this sum by stripping out the first term:
Where in step (*) we used a change-in-variable substitution i -> i + 1. The recursion stops when k = n:
T(1, m) is just the insertion of an element into a tree of size m, which is obviously Ө(m) in our assumed setup.
Therefore the absolute worst-case time complexity of merge is
Notes:
The order of the parameters matters. It is thus common to insert the smaller tree into the larger tree (in a manner of speaking).
Realistically you are extremely unlikely to have maximally imbalanced trees at every stage of the procedure. The average case will naturally involve semi-balanced trees.
The optimal case (i.e. always perfectly balanced trees) is much more complex (I am unsure that an analytical solution like the above exists; see gdelab's answer).
EDIT: How to evaluate the exponential sum
Suppose we want to compute the sum:
where a, b, c, n are positive constants. In the second step we changed the base to e (the natural exponential constant). With this substitution we can treat ln c as a variable x, differentiate a geometrical progression with respect to it, then set x = ln c:
But the geometrical progression has a closed-form solution (a standard formula which is not difficult to derive):
And so we can differentiate this result with respect to x by n times to obtain an expression for Sn. For the problem above we only need the first two powers:
So that troublesome term is given by:
which is exactly what Wolfram Alpha directly quoted. As you can see, the basic idea behind this was simple, although the algebra was incredibly tedious.

It's quite hard to compute exactly, but it looks like it's not polynomially bounded in the worst case (this is not a complete proof however, you'd need a better one):
insert has complexity O(h) at worst, where h is the height of the tree (i.e. at least log(n),possibly n).
The complexity of merge() could then be of the form: T(n1, n2) = O(h) + T(n1 / 2, n1 / 2) + T(n1 - 1, n2)
let's consider F(n) such that F(1)=T(1, 1) and F(n+1)=log(n)+F(n/2)+F(n-1). We can probably show that F(n) is smaller than T(n, n) (since F(n+1) contains T(n, n) instead of T(n, n+1)).
We have F(n)/F(n-1) = log(n)/F(n-1) + F(n/2) / F(n-1) + 1
Assume F(n)=Theta(n^k) for some k. Then F(n/2) / F(n-1) >= a / 2^k for some a>0 (that comes from the constants in the Theta).
Which means that (beyond a certain point n0) we always have F(n) / F(n-1) >= 1 + epsilon for some fixed epsilon > 0, which is not compatible with F(n)=O(n^k), hence a contradiction.
So F(n) is not a Theta(n^k) for any k. Intuitively, you can see that the problem is probably not the Omega part but the big-O part, hence it's probably not a O(n) (but technically we used the Omega part here to get a). Since T(n, n) should be even bigger than F(n), T(n, n) should not be polynomial, and is maybe exponential...
But then again, this is not rigorous at all, so maybe I'm actually dead wrong...

Related

Big O Recursive Method

I have a method called binary sum
Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i
if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)
Ignoring the fact of making a simple problem complicated I have been asked to find the Big O. Here is my thought process. For an array of size N I will be making 1 + 2 + 4 .. + N recursive calls. This is close to half the sum from 1 to N so I will say it is about N(N + 1)/4. After making this many calls now I need to add them together. So once again I need to perform N(N+1)/4 additions. Adding them together we are left with N^2 as the dominate term.
So would the big O of this algorithm be O(N^2)? Or am I doing something wrong. It feels strange to have binary recursion and not have a 2^n or log n in the final answer
There are in-fact 2^n and log n terms in the final result... sort of.
For each call to a sub-array of length n, two recursive calls are made to both halves of this array, plus a constant amount of work (if-statement, addition, pushing onto the call stack etc). Thus the recurrence relation is given by:
At this point we could just use the Master theorem to directly arrive at the final result - O(n). But let's instead derive it by repeated expansion:
The stopping condition n = 1 gives the maximum value of m (ignoring rounding):
In step (*) we used the standard formula for geometric series. So as you can see the answer does involve log n and 2^n terms in a sense, but they "cancel" out to give a simple linear term, which is the same as for a simple loop.

Understanding Big O notation - Cracking the coding interview example 9

I got stuck with this two codes.
Code 1
int f(int n){
if (n <= 1){
return 1;
}
return f(n-1) + f(n-1);
}
Code 2 (Balanced binary search tree)
int sum(Node node){
if(node == null){
return 0;
}
return sum(node.left) + node.value + sum(node.right);
}
the author says the runtime of Code 1 is O(2^n) and space complexity is O(n)
And Code 2 is O(N)
I have no idea what's different between those two codes. it looks like both are the same binary trees
Well there's a mistake because the first snippet runs in O(2^n) not O(n^2).
The explanation is:
In every step we decrement n but create twice the number of calls, so for n we'll call twice with f(n-1) and for each one of the calls of n-1 we'll call twice with f(n-2) - which is 4 calls, and if we'll go another level down we'll call 8 times with f(n-3): so the number of calls is: 2^1, then 2^2, then 2^3, 2^4, ..., 2^n.
The second snippet is doing one pass on a binary tree and reaches every node exactly once, so it's O(n).
First of all, it's important to understand what N is in both cases.
In the first example it's pretty obvious, because you see it directly in the code. For your first case, if you build the tree of f(i) calls, you'll see that it contains O(2^N) elements. Indeed,
f(N) // 1 node
/ \
f(N-1) f(N-1) // 2 nodes
/ \ / \
f(N-2) f(N-2) f(N-2) f(N-2) // 2^2 nodes
...
f(1) ........ f(1) // 2^(N-1) nodes
In the second case, N is (most likely) a number of elements in the tree. As you may see from the code, we walk through every element exactly once - you may realize it as you see that node.value is invoked once for each tree node. Hence O(N).
Note that in such tasks N normally means the size of the input, while what the input is depends on your problem. It can be just a number (like in your first problem), a one-dimensional array, a binary tree (like in your second problem), or even a matrix (although in the latter case you may expect to see explicit statement like "a matrix with a size M*N").
So your confusion probably comes from the fact that the "definition of N" differs between those two problems. In other words, I might say that n2 = 2^n1.
The first code is indeed O(2^n).
But the second code cannot be O(n), because there is no n there. That's a thing which many forget and usually they assume what n is without clarifying it.
In fact you can estimate growth speed of anything based on anything. Sometimes it's a size of input (which in the first code is O(1) or O(log n) depending on usage of big numbers), sometimes just on argument if it's numeric.
So when we start thinking about what time and memory depend on in the second code we can get these things:
time=O(number_of_nodes_in_tree)
time=O(2^height_of_tree)
additional_space=O(height_of_tree)
additional_space=O(log(number_of_nodes)) (if the tree is balanced)
All of them are correct at the same time - they just relate something to different things.
You’re confused between the “N” of the two cases. In the first case, the N refers to the input given. So for instance, if N=4, then the number of the functions being called is 2^4=16. You can draw the recursive map to illustrate. Hence O(2^N).
In the second case, the N refers to the number of nodes in the binary tree. So this N has no relation with the input but the amount of nodes that already exists in the binary tree. So when user calls the function, it visits every node exactly once. Hence O(N).
Code 1:
The if() statement runs n times according to whatever is passed into the parameter, but the the function call itself n-1 times. To simplify:
n * (n-1) = n^2 - n = O(n^2 - n) = O(n^2)
Code 2:
The search traverses every element of the tree only once, and the function itself doesn't have any for(). Since there are n items and they are visited only once, it is O(n).
For Code 2, to determine the Big O of a function, didn't we have to consider the cost of the recurrence and also how many times the recurrence was run?
If we use two approach to estimate the Big O using recursive tree and master theorem:
Recursive tree:
total cost in each level will be cn for each level as the number of recursive call and the fraction of input are equal, and the level of tree is lg(n) since it's a balanced binary search tree. So the run time should be nlg(n)?
Master Theorem:
This should be a case 2 since f(n) = n^logbase a (b). So according to the master theorem, it should be nlg(n) running time?
We can think of it as O(2^Depth).
In the first example: The depth is N, which happens to be the input of the problem mentioned in the book.
In the second example: It is a balanced binary search tree, hence, it has Log(N) levels (depth). Note: N is the number of elements in the tree.
=> Let's apply our O(2^Depth).. O(2^(Log(N)) = O(N) leaving us with O(N) complexity.
Reminder:
In computer science we usually refer to Log2(n) as Log(n).
The logarithm of x in base b is the exponent you put on b to get x as a result.
In the above complexity: O(2^(Log(N), we're raising the base 2 to Log2(N) which gives us N. (Check the two reminders)
This link can be useful.

Ternary search is worse than binary search?

People usually ask the opposite of this question (Is ternary search is better than binary search?).
I really think it's worse (not in terms of both run at complexity of O(log n)).
I'm really not good with the math, just pure intuition.
If we take an array of size n and use binary search, after the first comparison we have n/2 problem size, and after the 2nd comparison we have n/4 of the problem size.
With ternary search, the first loop run already makes 2 comparisons! And we're left with a problem size of n/3.
Am I right about this or am I missing something? The thing is in everything I read people usually take into account that the first loop run of ternary search is 1 compare which I think is wrong.
As a fun exercise, let's think about d-ary search, where you look at (d - 1) evenly-spaced elements of the array, then decide which of d different intervals to recursively descend into. If you use d-ary search, the size of the array remaining at each point will be n, n / d, n / d2, n / d3, ..., n / dk, ... . This means that there will be logd n layers in the recursion. At each layer, you make exactly d - 1 comparisons. This means that the total number of comparisons made is (d - 1) logd n. For any fixed value of d, this is O(log n), though the constant factor will be different.
With binary search, d = 2, and the number of comparisons will be (roughly) (2 - 1) log2 n = log2 n. For simplicity, let's write that as a natural logarithm by writing it as ln n / ln 2 = 1.443 ln n.
With ternary search, d = 3, and the number of comparisons will be (roughly) (3 - 1) log3 n = 2 log3 n. Writing this as a natural log, we get that this is 2 ln n / ln 3 = 1.820 ln n. Therefore, the number of comparisons in ternary search is indeed bigger than the number of comparisons in binary search, so you'd expect it to be slower than binary search. Indeed, as this article points out, that's what happens in practice.
Hope this helps!

Finding time complexity of partition by quick sort metod

Here is an algorithm for finding kth smallest number in n element array using partition algorithm of Quicksort.
small(a,i,j,k)
{
if(i==j) return(a[i]);
else
{
m=partition(a,i,j);
if(m==k) return(a[m]);
else
{
if(m>k) small(a,i,m-1,k);
else small(a,m+1,j,k);
}
}
}
Where i,j are starting and ending indices of array(j-i=n(no of elements in array)) and k is kth smallest no to be found.
I want to know what is the best case,and average case of above algorithm and how in brief. I know we should not calculate termination condition in best case and also partition algorithm takes O(n). I do not want asymptotic notation but exact mathematical result if possible.
First of all, I'm assuming the array is sorted - something you didn't mention - because that code wouldn't otherwise work. And, well, this looks to me like a regular binary search.
Anyway...
The best case scenario is when either the array is one element long (you return immediately because i == j), or, for large values of n, if the middle position, m, is the same as k; in that case, no recursive calls are made and it returns immediately as well. That makes it O(1) in best case.
For the general case, consider that T(n) denotes the time taken to solve a problem of size n using your algorithm. We know that:
T(1) = c
T(n) = T(n/2) + c
Where c is a constant time operation (for example, the time to compare if i is the same as j, etc.). The general idea is that to solve a problem of size n, we consume some constant time c (to decide if m == k, if m > k, to calculate m, etc.), and then we consume the time taken to solve a problem of half the size.
Expanding the recurrence can help you derive a general formula, although it is pretty intuitive that this is O(log(n)):
T(n) = T(n/2) + c = T(n/4) + c + c = T(n/8) + c + c + c = ... = T(1) + c*log(n) = c*(log(n) + 1)
That should be the exact mathematical result. The algorithm runs in O(log(n)) time. An average case analysis is harder because you need to know the conditions in which the algorithm will be used. What is the typical size of the array? The typical size of k? What is the mos likely position for k in the array? If it's in the middle, for example, the average case may be O(1). It really depends on how you use this.

Why is the runtime of the selection algorithm O(n)?

According to Wikipedia, partition-based selection algorithms such as quickselect have runtime of O(n), but I am not convinced by it. Can anyone explain why it is O(n)?
In the normal quick-sort, the runtime is O(n log n). Every time we partition the branch into two branches (greater than the pivot and lesser than the pivot), we need to continue the process in both branches, whereas quickselect only needs to process one branch. I totally understand these points.
However, if you think in the Binary Search algorithm, after we chose the middle element, we are also searching only one side of the branch. So does that make the algorithm O(1)? No, of course, the Binary Search Algorithm is still O(log N) instead of O(1). This is also the same thing as the search element in a Binary Search Tree. We only search for one side, but we still consider O(log n) instead of O(1).
Can someone explain why in quickselect, if we continue the search in one side of pivot, it is considered O(1) instead of O(log n)? I consider the algorithm to be O(n log n), O(N) for the partitioning, and O(log n) for the number of times to continue finding.
There are several different selection algorithms, from the much simpler quickselect (expected O(n), worst-case O(n2)) to the more complex median-of-medians algorithm (Θ(n)). Both of these algorithms work by using a quicksort partitioning step (time O(n)) to rearrange the elements and position one element into its proper position. If that element is at the index in question, we're done and can just return that element. Otherwise, we determine which side to recurse on and recurse there.
Let's now make a very strong assumption - suppose that we're using quickselect (pick the pivot randomly) and on each iteration we manage to guess the exact middle of the array. In that case, our algorithm will work like this: we do a partition step, throw away half of the array, then recursively process one half of the array. This means that on each recursive call we end up doing work proportional to the length of the array at that level, but that length keeps decreasing by a factor of two on each iteration. If we work out the math (ignoring constant factors, etc.) we end up getting the following time:
Work at the first level: n
Work after one recursive call: n / 2
Work after two recursive calls: n / 4
Work after three recursive calls: n / 8
...
This means that the total work done is given by
n + n / 2 + n / 4 + n / 8 + n / 16 + ... = n (1 + 1/2 + 1/4 + 1/8 + ...)
Notice that this last term is n times the sum of 1, 1/2, 1/4, 1/8, etc. If you work out this infinite sum, despite the fact that there are infinitely many terms, the total sum is exactly 2. This means that the total work is
n + n / 2 + n / 4 + n / 8 + n / 16 + ... = n (1 + 1/2 + 1/4 + 1/8 + ...) = 2n
This may seem weird, but the idea is that if we do linear work on each level but keep cutting the array in half, we end up doing only roughly 2n work.
An important detail here is that there are indeed O(log n) different iterations here, but not all of them are doing an equal amount of work. Indeed, each iteration does half as much work as the previous iteration. If we ignore the fact that the work is decreasing, you can conclude that the work is O(n log n), which is correct but not a tight bound. This more precise analysis, which uses the fact that the work done keeps decreasing on each iteration, gives the O(n) runtime.
Of course, this is a very optimistic assumption - we almost never get a 50/50 split! - but using a more powerful version of this analysis, you can say that if you can guarantee any constant factor split, the total work done is only some constant multiple of n. If we pick a totally random element on each iteration (as we do in quickselect), then on expectation we only need to pick two elements before we end up picking some pivot element in the middle 50% of the array, which means that, on expectation, only two rounds of picking a pivot are required before we end up picking something that gives a 25/75 split. This is where the expected runtime of O(n) for quickselect comes from.
A formal analysis of the median-of-medians algorithm is much harder because the recurrence is difficult and not easy to analyze. Intuitively, the algorithm works by doing a small amount of work to guarantee a good pivot is chosen. However, because there are two different recursive calls made, an analysis like the above won't work correctly. You can either use an advanced result called the Akra-Bazzi theorem, or use the formal definition of big-O to explicitly prove that the runtime is O(n). For a more detailed analysis, check out "Introduction to Algorithms, Third Edition" by Cormen, Leisserson, Rivest, and Stein.
Let me try to explain the difference between selection & binary search.
Binary search algorithm in each step does O(1) operations. Totally there are log(N) steps and this makes it O(log(N))
Selection algorithm in each step performs O(n) operations. But this 'n' keeps on reducing by half each time. There are totally log(N) steps.
This makes it N + N/2 + N/4 + ... + 1 (log(N) times) = 2N = O(N)
For binary search it is 1 + 1 + ... (log(N) times) = O(logN)
In Quicksort, the recursion tree is lg(N) levels deep and each of these levels requires O(N) amount of work. So the total running time is O(NlgN).
In Quickselect, the recurision tree is lg(N) levels deep and each level requires only half the work of the level above it. This produces the following:
N * (1/1 + 1/2 + 1/4 + 1/8 + ...)
or
N * Summation(1/i^2)
1 < i <= lgN
The important thing to note here is that i goes from 1 to lgN, but not from 1 to N and also not from 1 to infinity.
The summation evaluates to 2. Hence Quickselect = O(2N).
Quicksort does not have a big-O of nlogn - it's worst case runtime is n^2.
I assume you're asking about Hoare's Selection Algorithm (or quickselect) not the naive selection algorithm that is O(kn). Like quicksort, quickselect has a worst case runtime of O(n^2) (if bad pivots are chosen), not O(n). It can run in expectation time n because it's only sorting one side, as you point out.
Because for selection, you're not sorting, necessarily. You can simply count how many items there are which have any given value. So an O(n) median can be performed by counting how many times each value comes up, and picking the value that has 50% of items above and below it. It's 1 pass through the array, simply incrementing a counter for each element in the array, so it's O(n).
For example, if you have an array "a" of 8 bit numbers, you can do the following:
int histogram [ 256 ];
for (i = 0; i < 256; i++)
{
histogram [ i ] = 0;
}
for (i = 0; i < numItems; i++)
{
histogram [ a [ i ] ]++;
}
i = 0;
sum = 0;
while (sum < (numItems / 2))
{
sum += histogram [ i ];
i++;
}
At the end, the variable "i" will contain the 8-bit value of the median. It was about 1.5 passes through the array "a". Once through the entire array to count the values, and half through it again to get the final value.

Resources