Getting the output from first command to exit in Bash - bash

Suppose I have a Bash script that takes one parameter (ie. port number) and performs some logic with either outcome
hangs for 1 second and exits with timeout error, or
succeeds within milliseconds and outputs a message such as "ON" or "OFF".
One way to find the parameter that results in outcome 2 would be run the script over loop on the possible values of the parameter, but this would take N seconds to find the parameter. Assume the output is consistent for simplicity (ie. if more than one instance results in outcome 2, their output message is the same).
Is there a way to run the N instances of the Bash script at the same time (within reasonable milliseconds) with each possible value of the parameter, and get the output message from the instance that finished fastest? This would result in getting the output in under 1 second.

To allow a reproducer, let's first create a function that behaves akin to your command:
try_or_wait() {
local argument=$1 # doesn't really matter for our purposes
if (( RANDOM % 10 == 0 )); then # 10% return a result immediately
if (( (RANDOM + argument) % 2 == 0 )); then
echo ON
else
echo OFF
fi
else # 90% hang, and then fail
sleep 10
exit 1
fi
}
...so, how can we use this?
declare -a pids=( )
mkfifo out.fifo
# start 20 processes, passing your port number to each
for ((i=0; i<20; ++i)); do
try_or_wait "$1" >out.fifo & pids+=( "$!" )
done
# read one result
read result <out.fifo
# kill all the remaining children
kill "${pids[#]}"
echo "Got the result: $result"
Not that this is the only approach. To have GNU xargs do the work of spawning subprocesses for you:
export -f try_or_wait # export shell functions so child processes can run it
read -r result < <(
for ((i=0; i<20; ++i)); do
printf '%s\0' "$1"
done | xargs -0 -n 1 -P 20 bash -c 'try_or_wait "$#"' _
)
Note that the above is safe because each instance does its writes all at once -- a single echo, short enough for the entire output to fit into a single syscall. If each instance of your program may have enough output to require multiple syscalls (or output split over multiple writes), you may require a tool that can perform collation for you instead.

With GNU Parallel it looks like this:
try_or_wait() {
local argument=$1 # doesn't really matter for our purposes
if (( RANDOM % 10 == 0 )); then # 10% return a result immediately
if (( (RANDOM + argument) % 2 == 0 )); then
echo ON
else
echo OFF
fi
else # 90% hang, and then fail
# Example showing child process having further child processes
# These should all be killed if try_or_wait is killed
sleep 97 &
( ( (sleep 100 &); sleep 99 &); sleep 98 &)
sleep 10
exit 1
fi
}
export -f try_or_wait
seq 100 | parallel -j0 --halt now,done=1 try_or_wait
It deals correctly by killing the grand children of try_or_wait and will also act correctly if the output of try_or_wait outputs more data than what fits in a single syscall (For more than you ever wanted to learn on this issue see: https://catern.com/posts/pipes.html).

Related

counter variable in file for bash script

I want to run several commands independently in different bash scripts. If they are all finished the computer should shut down. Therefor I created a counter, called "n" in a txt file, which goes up one number every time a script is executed and goes down one number after finishing. If the counter is not zero the script shouldn't shutdown my computer.
#!/bin/bash
source /home/user/bin/log/counter.txt
$n = $n + 1
echo "backup"
$n = $n -1
if [ "$n" == "0" ] ; then
echo "shutdown"
#shutdown -P now
else
exit 0
fi
The approach outlined in the question can’t work for multiple reasons:
It doesn’t update the counter file. Each script reads the counter value, then locally and independently increments and decrements it and has no effect on the other scripts.
To maintain a shared counter in a file, atomic updates to the file are necessary. Otherwise the well-known read → modify → write race condition will render the counter useless.
A possible implementation of increment and decrement operations using Bash and flock on the counter file itself:
#!/bin/bash
set -euo pipefail
_atomically_modify() {
local -r file_name="$1" # file name for descriptor 0
local -r operation="$2" # the transformation to perform
flock 0 # atomic from here until return
trap 'trap - return; flock -u 0' return
local after
after="$("$operation")" # read + modify
printf '%s' "$after" > "$file_name" # write
printf '%s' "$after" # fetch (for the caller to use)
}
_increment_operation() { printf '%d' "$(("$(< /dev/stdin)" + 1))"; }
_decrement_operation() { printf '%d' "$(("$(< /dev/stdin)" - 1))"; }
increment() { _atomically_modify "$1" '_increment_operation' < "$1"; }
decrement() { _atomically_modify "$1" '_decrement_operation' < "$1"; }
It’s good to torture-test this a bit. Let’s take n_processes (+1) parallel processes, each of which increments and decrements the counter n_rmw times before decrementing it one last time:
#!/bin/bash
set -euo pipefail
declare -ri n_processes=20
declare -ri n_rmw=30
declare -i i j counter
counter_file="$(mktemp)"
declare -r counter_file
trap 'rm "$counter_file"' exit
printf '%d' "$((n_processes + 1))" > "$counter_file"
for ((i = 0; i < n_processes; ++i)); do (
for ((j = 0; j < n_rmw; ++j)); do # play with the counter
increment "$counter_file" > /dev/null
decrement "$counter_file" > /dev/null
done
counter="$(decrement "$counter_file")" # work finished
((! counter)) && printf 'Process %d finished last.\n' "$i"
)& done
counter="$(decrement "$counter_file")" # track the starter process
((! counter)) && printf 'The starter process finished last.\n'
wait # only to check the counter
printf 'Final counter value: %d\n' "$(< "$counter_file")"
The final counter value is zero, as expected. Now try to run the same experiment with flock 0 and the following line removed. That (mostly) won’t work as expected.
Important facts to note:
The initial counter “increment” is performed by the “main” starter process (printf '%d' "$((n_processes + 1))" > "$counter_file"), not by the individual “worker” processes started later.
The “main” starter process also participates in the “counting”, which is the reason for n_processes + 1.
The two facts above combined make it possible to avoid two (closely related) and well-known questions:
When the “main” starter process sees a counter value of zero at the end, does it mean that all “worker” processes have finished or that no “worker” processes have started yet?
[The former. All “worker” processes have finished in that scenario.]
More generally, when any process sees a counter value of zero at the end, can it safely call shutdown (as mentioned in the question) or can it be the case that the “main” starter process has not finished starting all “worker” processes yet?
[The former. All processes, including the “main” starter process, have finished in that scenario.]
Decrementing content of a file causes a race condition between all actors that want to increment, because they need to open the file, calculate, then write to it. This requires locking and is hard to do.
This is a log directory. Consider a different design, where you do not care what the current state is. You only add to the state. Each script can create a separate file to notify it's done, or every script writes a line to a "done" file.
echo "$0" >> /home/user/bin/log/done.txt
lines=$(wc -l </home/user/bin/log/done.txt)
if ((lines == n)); then
echo "shutdown"
fi
For anything more, consider using a database mysql or other to store the state, or use Airflow or other scheduling system.
My first "solution" didn't go well, so I edited my answer and this is my current approach:
/home/bin/rsnapshot-custom.sh daily 1
The shell script /home/bin/rsnapshot-custom.sh:
#!/bin/bash
source /home/bin/log/counter.txt
frequence="$1"
pause="$2"
sleep $pause
n=$((n+1))
echo "n=$n" > /home/bin/log/counter.txt
/var/lib/openmediavault/cron.d/rsnapshot $frequence
source /home/bin/log/counter.txt
n=$((n-1))
echo "n=$n" > /home/bin/log/counter.txt
if [ $n == "0" ] ; then
shutdown -P now
else
exit 0
fi

Does pushing a block of code to background in Bash result in parallelization? [duplicate]

Lets say I have a loop in Bash:
for foo in `some-command`
do
do-something $foo
done
do-something is cpu bound and I have a nice shiny 4 core processor. I'd like to be able to run up to 4 do-something's at once.
The naive approach seems to be:
for foo in `some-command`
do
do-something $foo &
done
This will run all do-somethings at once, but there are a couple downsides, mainly that do-something may also have some significant I/O which performing all at once might slow down a bit. The other problem is that this code block returns immediately, so no way to do other work when all the do-somethings are finished.
How would you write this loop so there are always X do-somethings running at once?
Depending on what you want to do xargs also can help (here: converting documents with pdf2ps):
cpus=$( ls -d /sys/devices/system/cpu/cpu[[:digit:]]* | wc -w )
find . -name \*.pdf | xargs --max-args=1 --max-procs=$cpus pdf2ps
From the docs:
--max-procs=max-procs
-P max-procs
Run up to max-procs processes at a time; the default is 1.
If max-procs is 0, xargs will run as many processes as possible at a
time. Use the -n option with -P; otherwise chances are that only one
exec will be done.
With GNU Parallel http://www.gnu.org/software/parallel/ you can write:
some-command | parallel do-something
GNU Parallel also supports running jobs on remote computers. This will run one per CPU core on the remote computers - even if they have different number of cores:
some-command | parallel -S server1,server2 do-something
A more advanced example: Here we list of files that we want my_script to run on. Files have extension (maybe .jpeg). We want the output of my_script to be put next to the files in basename.out (e.g. foo.jpeg -> foo.out). We want to run my_script once for each core the computer has and we want to run it on the local computer, too. For the remote computers we want the file to be processed transferred to the given computer. When my_script finishes, we want foo.out transferred back and we then want foo.jpeg and foo.out removed from the remote computer:
cat list_of_files | \
parallel --trc {.}.out -S server1,server2,: \
"my_script {} > {.}.out"
GNU Parallel makes sure the output from each job does not mix, so you can use the output as input for another program:
some-command | parallel do-something | postprocess
See the videos for more examples: https://www.youtube.com/playlist?list=PL284C9FF2488BC6D1
maxjobs=4
parallelize () {
while [ $# -gt 0 ] ; do
jobcnt=(`jobs -p`)
if [ ${#jobcnt[#]} -lt $maxjobs ] ; then
do-something $1 &
shift
else
sleep 1
fi
done
wait
}
parallelize arg1 arg2 "5 args to third job" arg4 ...
Here an alternative solution that can be inserted into .bashrc and used for everyday one liner:
function pwait() {
while [ $(jobs -p | wc -l) -ge $1 ]; do
sleep 1
done
}
To use it, all one has to do is put & after the jobs and a pwait call, the parameter gives the number of parallel processes:
for i in *; do
do_something $i &
pwait 10
done
It would be nicer to use wait instead of busy waiting on the output of jobs -p, but there doesn't seem to be an obvious solution to wait till any of the given jobs is finished instead of a all of them.
Instead of a plain bash, use a Makefile, then specify number of simultaneous jobs with make -jX where X is the number of jobs to run at once.
Or you can use wait ("man wait"): launch several child processes, call wait - it will exit when the child processes finish.
maxjobs = 10
foreach line in `cat file.txt` {
jobsrunning = 0
while jobsrunning < maxjobs {
do job &
jobsrunning += 1
}
wait
}
job ( ){
...
}
If you need to store the job's result, then assign their result to a variable. After wait you just check what the variable contains.
If you're familiar with the make command, most of the time you can express the list of commands you want to run as a a makefile. For example, if you need to run $SOME_COMMAND on files *.input each of which produces *.output, you can use the makefile
INPUT = a.input b.input
OUTPUT = $(INPUT:.input=.output)
%.output : %.input
$(SOME_COMMAND) $< $#
all: $(OUTPUT)
and then just run
make -j<NUMBER>
to run at most NUMBER commands in parallel.
While doing this right in bash is probably impossible, you can do a semi-right fairly easily. bstark gave a fair approximation of right but his has the following flaws:
Word splitting: You can't pass any jobs to it that use any of the following characters in their arguments: spaces, tabs, newlines, stars, question marks. If you do, things will break, possibly unexpectedly.
It relies on the rest of your script to not background anything. If you do, or later you add something to the script that gets sent in the background because you forgot you weren't allowed to use backgrounded jobs because of his snippet, things will break.
Another approximation which doesn't have these flaws is the following:
scheduleAll() {
local job i=0 max=4 pids=()
for job; do
(( ++i % max == 0 )) && {
wait "${pids[#]}"
pids=()
}
bash -c "$job" & pids+=("$!")
done
wait "${pids[#]}"
}
Note that this one is easily adaptable to also check the exit code of each job as it ends so you can warn the user if a job fails or set an exit code for scheduleAll according to the amount of jobs that failed, or something.
The problem with this code is just that:
It schedules four (in this case) jobs at a time and then waits for all four to end. Some might be done sooner than others which will cause the next batch of four jobs to wait until the longest of the previous batch is done.
A solution that takes care of this last issue would have to use kill -0 to poll whether any of the processes have disappeared instead of the wait and schedule the next job. However, that introduces a small new problem: you have a race condition between a job ending, and the kill -0 checking whether it's ended. If the job ended and another process on your system starts up at the same time, taking a random PID which happens to be that of the job that just finished, the kill -0 won't notice your job having finished and things will break again.
A perfect solution isn't possible in bash.
Maybe try a parallelizing utility instead rewriting the loop? I'm a big fan of xjobs. I use xjobs all the time to mass copy files across our network, usually when setting up a new database server.
http://www.maier-komor.de/xjobs.html
function for bash:
parallel ()
{
awk "BEGIN{print \"all: ALL_TARGETS\\n\"}{print \"TARGET_\"NR\":\\n\\t#-\"\$0\"\\n\"}END{printf \"ALL_TARGETS:\";for(i=1;i<=NR;i++){printf \" TARGET_%d\",i};print\"\\n\"}" | make $# -f - all
}
using:
cat my_commands | parallel -j 4
Really late to the party here, but here's another solution.
A lot of solutions don't handle spaces/special characters in the commands, don't keep N jobs running at all times, eat cpu in busy loops, or rely on external dependencies (e.g. GNU parallel).
With inspiration for dead/zombie process handling, here's a pure bash solution:
function run_parallel_jobs {
local concurrent_max=$1
local callback=$2
local cmds=("${#:3}")
local jobs=( )
while [[ "${#cmds[#]}" -gt 0 ]] || [[ "${#jobs[#]}" -gt 0 ]]; do
while [[ "${#jobs[#]}" -lt $concurrent_max ]] && [[ "${#cmds[#]}" -gt 0 ]]; do
local cmd="${cmds[0]}"
cmds=("${cmds[#]:1}")
bash -c "$cmd" &
jobs+=($!)
done
local job="${jobs[0]}"
jobs=("${jobs[#]:1}")
local state="$(ps -p $job -o state= 2>/dev/null)"
if [[ "$state" == "D" ]] || [[ "$state" == "Z" ]]; then
$callback $job
else
wait $job
$callback $job $?
fi
done
}
And sample usage:
function job_done {
if [[ $# -lt 2 ]]; then
echo "PID $1 died unexpectedly"
else
echo "PID $1 exited $2"
fi
}
cmds=( \
"echo 1; sleep 1; exit 1" \
"echo 2; sleep 2; exit 2" \
"echo 3; sleep 3; exit 3" \
"echo 4; sleep 4; exit 4" \
"echo 5; sleep 5; exit 5" \
)
# cpus="$(getconf _NPROCESSORS_ONLN)"
cpus=3
run_parallel_jobs $cpus "job_done" "${cmds[#]}"
The output:
1
2
3
PID 56712 exited 1
4
PID 56713 exited 2
5
PID 56714 exited 3
PID 56720 exited 4
PID 56724 exited 5
For per-process output handling $$ could be used to log to a file, for example:
function job_done {
cat "$1.log"
}
cmds=( \
"echo 1 \$\$ >\$\$.log" \
"echo 2 \$\$ >\$\$.log" \
)
run_parallel_jobs 2 "job_done" "${cmds[#]}"
Output:
1 56871
2 56872
The project I work on uses the wait command to control parallel shell (ksh actually) processes. To address your concerns about IO, on a modern OS, it's possible parallel execution will actually increase efficiency. If all processes are reading the same blocks on disk, only the first process will have to hit the physical hardware. The other processes will often be able to retrieve the block from OS's disk cache in memory. Obviously, reading from memory is several orders of magnitude quicker than reading from disk. Also, the benefit requires no coding changes.
This might be good enough for most purposes, but is not optimal.
#!/bin/bash
n=0
maxjobs=10
for i in *.m4a ; do
# ( DO SOMETHING ) &
# limit jobs
if (( $(($((++n)) % $maxjobs)) == 0 )) ; then
wait # wait until all have finished (not optimal, but most times good enough)
echo $n wait
fi
done
Here is how I managed to solve this issue in a bash script:
#! /bin/bash
MAX_JOBS=32
FILE_LIST=($(cat ${1}))
echo Length ${#FILE_LIST[#]}
for ((INDEX=0; INDEX < ${#FILE_LIST[#]}; INDEX=$((${INDEX}+${MAX_JOBS})) ));
do
JOBS_RUNNING=0
while ((JOBS_RUNNING < MAX_JOBS))
do
I=$((${INDEX}+${JOBS_RUNNING}))
FILE=${FILE_LIST[${I}]}
if [ "$FILE" != "" ];then
echo $JOBS_RUNNING $FILE
./M22Checker ${FILE} &
else
echo $JOBS_RUNNING NULL &
fi
JOBS_RUNNING=$((JOBS_RUNNING+1))
done
wait
done
You can use a simple nested for loop (substitute appropriate integers for N and M below):
for i in {1..N}; do
(for j in {1..M}; do do_something; done & );
done
This will execute do_something N*M times in M rounds, each round executing N jobs in parallel. You can make N equal the number of CPUs you have.
My solution to always keep a given number of processes running, keep tracking of errors and handle ubnterruptible / zombie processes:
function log {
echo "$1"
}
# Take a list of commands to run, runs them sequentially with numberOfProcesses commands simultaneously runs
# Returns the number of non zero exit codes from commands
function ParallelExec {
local numberOfProcesses="${1}" # Number of simultaneous commands to run
local commandsArg="${2}" # Semi-colon separated list of commands
local pid
local runningPids=0
local counter=0
local commandsArray
local pidsArray
local newPidsArray
local retval
local retvalAll=0
local pidState
local commandsArrayPid
IFS=';' read -r -a commandsArray <<< "$commandsArg"
log "Runnning ${#commandsArray[#]} commands in $numberOfProcesses simultaneous processes."
while [ $counter -lt "${#commandsArray[#]}" ] || [ ${#pidsArray[#]} -gt 0 ]; do
while [ $counter -lt "${#commandsArray[#]}" ] && [ ${#pidsArray[#]} -lt $numberOfProcesses ]; do
log "Running command [${commandsArray[$counter]}]."
eval "${commandsArray[$counter]}" &
pid=$!
pidsArray+=($pid)
commandsArrayPid[$pid]="${commandsArray[$counter]}"
counter=$((counter+1))
done
newPidsArray=()
for pid in "${pidsArray[#]}"; do
# Handle uninterruptible sleep state or zombies by ommiting them from running process array (How to kill that is already dead ? :)
if kill -0 $pid > /dev/null 2>&1; then
pidState=$(ps -p$pid -o state= 2 > /dev/null)
if [ "$pidState" != "D" ] && [ "$pidState" != "Z" ]; then
newPidsArray+=($pid)
fi
else
# pid is dead, get it's exit code from wait command
wait $pid
retval=$?
if [ $retval -ne 0 ]; then
log "Command [${commandsArrayPid[$pid]}] failed with exit code [$retval]."
retvalAll=$((retvalAll+1))
fi
fi
done
pidsArray=("${newPidsArray[#]}")
# Add a trivial sleep time so bash won't eat all CPU
sleep .05
done
return $retvalAll
}
Usage:
cmds="du -csh /var;du -csh /tmp;sleep 3;du -csh /root;sleep 10; du -csh /home"
# Execute 2 processes at a time
ParallelExec 2 "$cmds"
# Execute 4 processes at a time
ParallelExec 4 "$cmds"
$DOMAINS = "list of some domain in commands"
for foo in some-command
do
eval `some-command for $DOMAINS` &
job[$i]=$!
i=$(( i + 1))
done
Ndomains=echo $DOMAINS |wc -w
for i in $(seq 1 1 $Ndomains)
do
echo "wait for ${job[$i]}"
wait "${job[$i]}"
done
in this concept will work for the parallelize. important thing is last line of eval is '&'
which will put the commands to backgrounds.

How to retry a command in Bash?

I have a command that should take less than 1 minute to execute, but for some reason has an extremely long built-in timeout mechanism. I want some bash that does the following:
success = False
try(my_command)
while(!(success))
wait 1 min
if my command not finished
retry(my_command)
else
success = True
end while
How can I do this in Bash?
Look at the GNU timeout command. This kills the process if it has not completed in a given time; you'd simply wrap a loop around this to wait for the timeout to complete successfully, with delays between retries as appropriate, etc.
while timeout -k 70 60 -- my_command; [ $? = 124 ]
do sleep 2 # Pause before retry
done
If you must do it in pure bash (which is not really feasible - bash uses lots of other commands), then you are in for a world of pain and frustration with signal handlers and all sorts of issues.
Please expand on your answer a little. -k 70 is --kill-after= 70 seconds, 124 exit on timeout; what is the 60?
The linked documentation does explain the command; I don't really plan to repeat it all here. The synopsis is timeout [options] duration command [arg]...; one of the options is -k duration. The -k duration says "if the command does not die after the SIGTERM signal is sent at 60 seconds, send a SIGKILL signal at 70 seconds" (and the command should die then). There are a number of documented exit statuses; 124 indicates that the command timed out; 137 that it died after being sent the SIGKILL signal, and so on. You can't tell if the command itself exits with one of the documented statuses.
I found a script from:
http://fahdshariff.blogspot.com/2014/02/retrying-commands-in-shell-scripts.html
#!/bin/bash
# Retries a command on failure.
# $1 - the max number of attempts
# $2... - the command to run
retry() {
local -r -i max_attempts="$1"; shift
local -i attempt_num=1
until "$#"
do
if ((attempt_num==max_attempts))
then
echo "Attempt $attempt_num failed and there are no more attempts left!"
return 1
else
echo "Attempt $attempt_num failed! Trying again in $attempt_num seconds..."
sleep $((attempt_num++))
fi
done
}
# example usage:
retry 5 ls -ltr foo
I liked #Jonathan's answer, but tried to make it more straight forward for future use:
until timeout 1 sleep 2
do
echo "Happening after 1s of sleep"
done
Adapting #Shin's answer to use kill -0 rather than jobs so that this should work even with classic Bourne shell, and allow for other background jobs. You may have to experiment with kill and wait depending on how my_command responds to those.
while true ; do
my_command &
sleep 60
if kill -0 $! 2>/dev/null; then
# Job took too long
kill $!
else
echo "Job is done"
# Reap exit status
wait $!
break
fi
done
You can run a command and retain control with the & background operator. Run your command in the background, sleep for as long as you wish in the foreground, and then, if the background job hasn't terminated, kill it and start over.
while true ; do
my_command &
sleep 60
if [[ $(jobs -r) == "" ]] ; then
echo "Job is done"
break
fi
# Job took too long
kill -9 $!
done
# Retries a given command given number of times and outputs to given variable
# $1 : Command to be passed : handles both simple, piped commands
# $2 : Final output of the command(if successfull)
# $3 : Number of retrial attempts[Default 5]
function retry_function() {
echo "Command to be executed : $1"
echo "Final output variable : $2"
echo "Total trials [Default:5] : $3"
counter=${3:-5}
local _my_output_=$2 #make sure passed variable is not same as this
i=1
while [ $i -le $counter ]; do
local my_result=$(eval "$1")
# this tests if output variable is populated and accordingly retries,
# Not possible to provide error status/logs(STDIN,STDERR)-owing to subshell execution of command
# if error logs are needed, execute the same code, outside function in same shell
if test -z "$my_result"
then
echo "Trial[$i/$counter]: Execution failed"
else
echo "Trial[$i/$counter]: Successfull execution"
eval $_my_output_="'$my_result'"
break
fi
let i+=1
done
}
retry_function "ping -c 4 google.com | grep \"min/avg/max\" | awk -F\"/\" '{print \$5}'" avg_rtt_time
echo $avg_rtt_time
- To pass in a lengthy command, pass a method echoing the content. Take care of method expansion accordingly in a subshell at appropriate place.
- Wait time can be added too - just before the increment!
- For a complex command, youll have to take care of stringifying it(Good luck)

how to write a process-pool bash shell

I have more than 10 tasks to execute, and the system restrict that there at most 4 tasks can run at the same time.
My task can be started like:
myprog taskname
How can I write a bash shell script to run these task. The most important thing is that when one task finish, the script can start another immediately, making the running tasks count remain 4 all the time.
Use xargs:
xargs -P <maximum-number-of-process-at-a-time> -n <arguments-per-process> <command>
Details here.
I chanced upon this thread while looking into writing my own process pool and particularly liked Brandon Horsley's solution, though I couldn't get the signals working right, so I took inspiration from Apache and decided to try a pre-fork model with a fifo as my job queue.
The following function is the function that the worker processes run when forked.
# \brief the worker function that is called when we fork off worker processes
# \param[in] id the worker ID
# \param[in] job_queue the fifo to read jobs from
# \param[in] result_log the temporary log file to write exit codes to
function _job_pool_worker()
{
local id=$1
local job_queue=$2
local result_log=$3
local line=
exec 7<> ${job_queue}
while [[ "${line}" != "${job_pool_end_of_jobs}" && -e "${job_queue}" ]]; do
# workers block on the exclusive lock to read the job queue
flock --exclusive 7
read line <${job_queue}
flock --unlock 7
# the worker should exit if it sees the end-of-job marker or run the
# job otherwise and save its exit code to the result log.
if [[ "${line}" == "${job_pool_end_of_jobs}" ]]; then
# write it one more time for the next sibling so that everyone
# will know we are exiting.
echo "${line}" >&7
else
_job_pool_echo "### _job_pool_worker-${id}: ${line}"
# run the job
{ ${line} ; }
# now check the exit code and prepend "ERROR" to the result log entry
# which we will use to count errors and then strip out later.
local result=$?
local status=
if [[ "${result}" != "0" ]]; then
status=ERROR
fi
# now write the error to the log, making sure multiple processes
# don't trample over each other.
exec 8<> ${result_log}
flock --exclusive 8
echo "${status}job_pool: exited ${result}: ${line}" >> ${result_log}
flock --unlock 8
exec 8>&-
_job_pool_echo "### _job_pool_worker-${id}: exited ${result}: ${line}"
fi
done
exec 7>&-
}
You can get a copy of my solution at Github. Here's a sample program using my implementation.
#!/bin/bash
. job_pool.sh
function foobar()
{
# do something
true
}
# initialize the job pool to allow 3 parallel jobs and echo commands
job_pool_init 3 0
# run jobs
job_pool_run sleep 1
job_pool_run sleep 2
job_pool_run sleep 3
job_pool_run foobar
job_pool_run foobar
job_pool_run /bin/false
# wait until all jobs complete before continuing
job_pool_wait
# more jobs
job_pool_run /bin/false
job_pool_run sleep 1
job_pool_run sleep 2
job_pool_run foobar
# don't forget to shut down the job pool
job_pool_shutdown
# check the $job_pool_nerrors for the number of jobs that exited non-zero
echo "job_pool_nerrors: ${job_pool_nerrors}"
Hope this helps!
Using GNU Parallel you can do:
cat tasks | parallel -j4 myprog
If you have 4 cores, you can even just do:
cat tasks | parallel myprog
From http://git.savannah.gnu.org/cgit/parallel.git/tree/README:
Full installation
Full installation of GNU Parallel is as simple as:
./configure && make && make install
Personal installation
If you are not root you can add ~/bin to your path and install in
~/bin and ~/share:
./configure --prefix=$HOME && make && make install
Or if your system lacks 'make' you can simply copy src/parallel
src/sem src/niceload src/sql to a dir in your path.
Minimal installation
If you just need parallel and do not have 'make' installed (maybe the
system is old or Microsoft Windows):
wget http://git.savannah.gnu.org/cgit/parallel.git/plain/src/parallel
chmod 755 parallel
cp parallel sem
mv parallel sem dir-in-your-$PATH/bin/
Test the installation
After this you should be able to do:
parallel -j0 ping -nc 3 ::: foss.org.my gnu.org freenetproject.org
This will send 3 ping packets to 3 different hosts in parallel and print
the output when they complete.
Watch the intro video for a quick introduction:
https://www.youtube.com/playlist?list=PL284C9FF2488BC6D1
I would suggest writing four scripts, each one of which executes a certain number of tasks in series. Then write another script that starts the four scripts in parallel. For instance, if you have scripts, script1.sh, script2.sh, script3.sh, and script4.sh, you could have a script called headscript.sh like so.
#!/bin/sh
./script1.sh &
./script2.sh &
./script3.sh &
./script4.sh &
I found the best solution proposed in A Foo Walks into a Bar... blog using build-in functionality of well know xargs tool
First create a file commands.txt with list of commands you want to execute
myprog taskname1
myprog taskname2
myprog taskname3
myprog taskname4
...
myprog taskname123
and then pipe it to xargs like this to execute in 4 processes pool:
cat commands.txt | xargs -I CMD --max-procs=4 bash -c CMD
you can modify no of process
Following #Parag Sardas' answer and the documentation linked here's a quick script you might want to add on your .bash_aliases.
Relinking the doc link because it's worth a read
#!/bin/bash
# https://stackoverflow.com/a/19618159
# https://stackoverflow.com/a/51861820
#
# Example file contents:
# touch /tmp/a.txt
# touch /tmp/b.txt
if [ "$#" -eq 0 ]; then
echo "$0 <file> [max-procs=0]"
exit 1
fi
FILE=${1}
MAX_PROCS=${2:-0}
cat $FILE | while read line; do printf "%q\n" "$line"; done | xargs --max-procs=$MAX_PROCS -I CMD bash -c CMD
I.e.
./xargs-parallel.sh jobs.txt 4 maximum of 4 processes read from jobs.txt
You could probably do something clever with signals.
Note this is only to illustrate the concept, and thus not thoroughly tested.
#!/usr/local/bin/bash
this_pid="$$"
jobs_running=0
sleep_pid=
# Catch alarm signals to adjust the number of running jobs
trap 'decrement_jobs' SIGALRM
# When a job finishes, decrement the total and kill the sleep process
decrement_jobs()
{
jobs_running=$(($jobs_running - 1))
if [ -n "${sleep_pid}" ]
then
kill -s SIGKILL "${sleep_pid}"
sleep_pid=
fi
}
# Check to see if the max jobs are running, if so sleep until woken
launch_task()
{
if [ ${jobs_running} -gt 3 ]
then
(
while true
do
sleep 999
done
) &
sleep_pid=$!
wait ${sleep_pid}
fi
# Launch the requested task, signalling the parent upon completion
(
"$#"
kill -s SIGALRM "${this_pid}"
) &
jobs_running=$((${jobs_running} + 1))
}
# Launch all of the tasks, this can be in a loop, etc.
launch_task task1
launch_task tast2
...
launch_task task99
This tested script runs 5 jobs at a time and will restart a new job as soon as it does (due to the kill of the sleep 10.9 when we get a SIGCHLD. A simpler version of this could use direct polling (change the sleep 10.9 to sleep 1 and get rid of the trap).
#!/usr/bin/bash
set -o monitor
trap "pkill -P $$ -f 'sleep 10\.9' >&/dev/null" SIGCHLD
totaljobs=15
numjobs=5
worktime=10
curjobs=0
declare -A pidlist
dojob()
{
slot=$1
time=$(echo "$RANDOM * 10 / 32768" | bc -l)
echo Starting job $slot with args $time
sleep $time &
pidlist[$slot]=`jobs -p %%`
curjobs=$(($curjobs + 1))
totaljobs=$(($totaljobs - 1))
}
# start
while [ $curjobs -lt $numjobs -a $totaljobs -gt 0 ]
do
dojob $curjobs
done
# Poll for jobs to die, restarting while we have them
while [ $totaljobs -gt 0 ]
do
for ((i=0;$i < $curjobs;i++))
do
if ! kill -0 ${pidlist[$i]} >&/dev/null
then
dojob $i
break
fi
done
sleep 10.9 >&/dev/null
done
wait
Other answer about 4 shell scripts does not fully satisfies me as it assumes that all tasks take approximatelu the same time and because it requires manual set up. But here is how I would improve it.
Main script will create symbolic links to executables following certain namimg convention. For example,
ln -s executable1 ./01-task.01
first prefix is for sorting and suffix identifies batch (01-04).
Now we spawn 4 shell scripts that would take batch number as input and do something like this
for t in $(ls ./*-task.$batch | sort ; do
t
rm t
done
Look at my implementation of job pool in bash: https://github.com/spektom/shell-utils/blob/master/jp.sh
For example, to run at most 3 processes of cURL when downloading from a lot of URLs, you can wrap your cURL commands as follows:
./jp.sh "My Download Pool" 3 curl http://site1/...
./jp.sh "My Download Pool" 3 curl http://site2/...
./jp.sh "My Download Pool" 3 curl http://site3/...
...
Here is my solution. The idea is quite simple. I create a fifo as a semaphore, where each line stands for an available resource. When reading the queue, the main process blocks if there is nothing left. And, we return the resource after the task is done by simply echoing anything to the queue.
function task() {
local task_no="$1"
# doing the actual task...
echo "Executing Task ${task_no}"
# which takes a long time
sleep 1
}
function execute_concurrently() {
local tasks="$1"
local ps_pool_size="$2"
# create an anonymous fifo as a Semaphore
local sema_fifo
sema_fifo="$(mktemp -u)"
mkfifo "${sema_fifo}"
exec 3<>"${sema_fifo}"
rm -f "${sema_fifo}"
# every 'x' stands for an available resource
for i in $(seq 1 "${ps_pool_size}"); do
echo 'x' >&3
done
for task_no in $(seq 1 "${tasks}"); do
read dummy <&3 # blocks util a resource is available
(
trap 'echo x >&3' EXIT # returns the resource on exit
task "${task_no}"
)&
done
wait # wait util all forked tasks have finished
}
execute_concurrently 10 4
The script above will run 10 tasks and 4 each time concurrently. You can change the $(seq 1 "${tasks}") sequence to the actual task queue you want to run.
I made my modifications based on methods introduced in this Writing a process pool in Bash.
#!/bin/bash
#set -e # this doesn't work here for some reason
POOL_SIZE=4 # number of workers running in parallel
#######################################################################
# populate jobs #
#######################################################################
declare -a jobs
for (( i = 1988; i < 2019; i++ )); do
jobs+=($i)
done
echo '################################################'
echo ' Launching jobs'
echo '################################################'
parallel() {
local proc procs jobs cur
jobs=("$#") # input jobs array
declare -a procs=() # processes array
cur=0 # current job idx
morework=true
while $morework; do
# if process array size < pool size, try forking a new proc
if [[ "${#procs[#]}" -lt "$POOL_SIZE" ]]; then
if [[ $cur -lt "${#jobs[#]}" ]]; then
proc=${jobs[$cur]}
echo "JOB ID = $cur; JOB = $proc."
###############
# do job here #
###############
sleep 3 &
# add to current running processes
procs+=("$!")
# move to the next job
((cur++))
else
morework=false
continue
fi
fi
for n in "${!procs[#]}"; do
kill -0 "${procs[n]}" 2>/dev/null && continue
# if process is not running anymore, remove from array
unset procs[n]
done
done
wait
}
parallel "${jobs[#]}"
xargs with -P and -L options does the job.
You can extract the idea from the example below:
#!/usr/bin/env bash
workers_pool_size=10
set -e
function doit {
cmds=""
for e in 4 8 16; do
for m in 1 2 3 4 5 6; do
cmd="python3 ./doit.py --m $m -e $e -m $m"
cmds="$cmd\n$cmds"
done
done
echo -e "All commands:\n$cmds"
echo "Workers pool size = $workers_pool_size"
echo -e "$cmds" | xargs -t -P $workers_pool_size -L 1 time > /dev/null
}
doit
#! /bin/bash
doSomething() {
<...>
}
getCompletedThreads() {
_runningThreads=("$#")
removableThreads=()
for pid in "${_runningThreads[#]}"; do
if ! ps -p $pid > /dev/null; then
removableThreads+=($pid)
fi
done
echo "$removableThreads"
}
releasePool() {
while [[ ${#runningThreads[#]} -eq $MAX_THREAD_NO ]]; do
echo "releasing"
removableThreads=( $(getCompletedThreads "${runningThreads[#]}") )
if [ ${#removableThreads[#]} -eq 0 ]; then
sleep 0.2
else
for removableThread in "${removableThreads[#]}"; do
runningThreads=( ${runningThreads[#]/$removableThread} )
done
echo "released"
fi
done
}
waitAllThreadComplete() {
while [[ ${#runningThreads[#]} -ne 0 ]]; do
removableThreads=( $(getCompletedThreads "${runningThreads[#]}") )
for removableThread in "${removableThreads[#]}"; do
runningThreads=( ${runningThreads[#]/$removableThread} )
done
if [ ${#removableThreads[#]} -eq 0 ]; then
sleep 0.2
fi
done
}
MAX_THREAD_NO=10
runningThreads=()
sequenceNo=0
for i in {1..36}; do
releasePool
((sequenceNo++))
echo "added $sequenceNo"
doSomething &
pid=$!
runningThreads+=($pid)
done
waitAllThreadComplete

Parallelize Bash script with maximum number of processes

Lets say I have a loop in Bash:
for foo in `some-command`
do
do-something $foo
done
do-something is cpu bound and I have a nice shiny 4 core processor. I'd like to be able to run up to 4 do-something's at once.
The naive approach seems to be:
for foo in `some-command`
do
do-something $foo &
done
This will run all do-somethings at once, but there are a couple downsides, mainly that do-something may also have some significant I/O which performing all at once might slow down a bit. The other problem is that this code block returns immediately, so no way to do other work when all the do-somethings are finished.
How would you write this loop so there are always X do-somethings running at once?
Depending on what you want to do xargs also can help (here: converting documents with pdf2ps):
cpus=$( ls -d /sys/devices/system/cpu/cpu[[:digit:]]* | wc -w )
find . -name \*.pdf | xargs --max-args=1 --max-procs=$cpus pdf2ps
From the docs:
--max-procs=max-procs
-P max-procs
Run up to max-procs processes at a time; the default is 1.
If max-procs is 0, xargs will run as many processes as possible at a
time. Use the -n option with -P; otherwise chances are that only one
exec will be done.
With GNU Parallel http://www.gnu.org/software/parallel/ you can write:
some-command | parallel do-something
GNU Parallel also supports running jobs on remote computers. This will run one per CPU core on the remote computers - even if they have different number of cores:
some-command | parallel -S server1,server2 do-something
A more advanced example: Here we list of files that we want my_script to run on. Files have extension (maybe .jpeg). We want the output of my_script to be put next to the files in basename.out (e.g. foo.jpeg -> foo.out). We want to run my_script once for each core the computer has and we want to run it on the local computer, too. For the remote computers we want the file to be processed transferred to the given computer. When my_script finishes, we want foo.out transferred back and we then want foo.jpeg and foo.out removed from the remote computer:
cat list_of_files | \
parallel --trc {.}.out -S server1,server2,: \
"my_script {} > {.}.out"
GNU Parallel makes sure the output from each job does not mix, so you can use the output as input for another program:
some-command | parallel do-something | postprocess
See the videos for more examples: https://www.youtube.com/playlist?list=PL284C9FF2488BC6D1
maxjobs=4
parallelize () {
while [ $# -gt 0 ] ; do
jobcnt=(`jobs -p`)
if [ ${#jobcnt[#]} -lt $maxjobs ] ; then
do-something $1 &
shift
else
sleep 1
fi
done
wait
}
parallelize arg1 arg2 "5 args to third job" arg4 ...
Here an alternative solution that can be inserted into .bashrc and used for everyday one liner:
function pwait() {
while [ $(jobs -p | wc -l) -ge $1 ]; do
sleep 1
done
}
To use it, all one has to do is put & after the jobs and a pwait call, the parameter gives the number of parallel processes:
for i in *; do
do_something $i &
pwait 10
done
It would be nicer to use wait instead of busy waiting on the output of jobs -p, but there doesn't seem to be an obvious solution to wait till any of the given jobs is finished instead of a all of them.
Instead of a plain bash, use a Makefile, then specify number of simultaneous jobs with make -jX where X is the number of jobs to run at once.
Or you can use wait ("man wait"): launch several child processes, call wait - it will exit when the child processes finish.
maxjobs = 10
foreach line in `cat file.txt` {
jobsrunning = 0
while jobsrunning < maxjobs {
do job &
jobsrunning += 1
}
wait
}
job ( ){
...
}
If you need to store the job's result, then assign their result to a variable. After wait you just check what the variable contains.
If you're familiar with the make command, most of the time you can express the list of commands you want to run as a a makefile. For example, if you need to run $SOME_COMMAND on files *.input each of which produces *.output, you can use the makefile
INPUT = a.input b.input
OUTPUT = $(INPUT:.input=.output)
%.output : %.input
$(SOME_COMMAND) $< $#
all: $(OUTPUT)
and then just run
make -j<NUMBER>
to run at most NUMBER commands in parallel.
While doing this right in bash is probably impossible, you can do a semi-right fairly easily. bstark gave a fair approximation of right but his has the following flaws:
Word splitting: You can't pass any jobs to it that use any of the following characters in their arguments: spaces, tabs, newlines, stars, question marks. If you do, things will break, possibly unexpectedly.
It relies on the rest of your script to not background anything. If you do, or later you add something to the script that gets sent in the background because you forgot you weren't allowed to use backgrounded jobs because of his snippet, things will break.
Another approximation which doesn't have these flaws is the following:
scheduleAll() {
local job i=0 max=4 pids=()
for job; do
(( ++i % max == 0 )) && {
wait "${pids[#]}"
pids=()
}
bash -c "$job" & pids+=("$!")
done
wait "${pids[#]}"
}
Note that this one is easily adaptable to also check the exit code of each job as it ends so you can warn the user if a job fails or set an exit code for scheduleAll according to the amount of jobs that failed, or something.
The problem with this code is just that:
It schedules four (in this case) jobs at a time and then waits for all four to end. Some might be done sooner than others which will cause the next batch of four jobs to wait until the longest of the previous batch is done.
A solution that takes care of this last issue would have to use kill -0 to poll whether any of the processes have disappeared instead of the wait and schedule the next job. However, that introduces a small new problem: you have a race condition between a job ending, and the kill -0 checking whether it's ended. If the job ended and another process on your system starts up at the same time, taking a random PID which happens to be that of the job that just finished, the kill -0 won't notice your job having finished and things will break again.
A perfect solution isn't possible in bash.
Maybe try a parallelizing utility instead rewriting the loop? I'm a big fan of xjobs. I use xjobs all the time to mass copy files across our network, usually when setting up a new database server.
http://www.maier-komor.de/xjobs.html
function for bash:
parallel ()
{
awk "BEGIN{print \"all: ALL_TARGETS\\n\"}{print \"TARGET_\"NR\":\\n\\t#-\"\$0\"\\n\"}END{printf \"ALL_TARGETS:\";for(i=1;i<=NR;i++){printf \" TARGET_%d\",i};print\"\\n\"}" | make $# -f - all
}
using:
cat my_commands | parallel -j 4
Really late to the party here, but here's another solution.
A lot of solutions don't handle spaces/special characters in the commands, don't keep N jobs running at all times, eat cpu in busy loops, or rely on external dependencies (e.g. GNU parallel).
With inspiration for dead/zombie process handling, here's a pure bash solution:
function run_parallel_jobs {
local concurrent_max=$1
local callback=$2
local cmds=("${#:3}")
local jobs=( )
while [[ "${#cmds[#]}" -gt 0 ]] || [[ "${#jobs[#]}" -gt 0 ]]; do
while [[ "${#jobs[#]}" -lt $concurrent_max ]] && [[ "${#cmds[#]}" -gt 0 ]]; do
local cmd="${cmds[0]}"
cmds=("${cmds[#]:1}")
bash -c "$cmd" &
jobs+=($!)
done
local job="${jobs[0]}"
jobs=("${jobs[#]:1}")
local state="$(ps -p $job -o state= 2>/dev/null)"
if [[ "$state" == "D" ]] || [[ "$state" == "Z" ]]; then
$callback $job
else
wait $job
$callback $job $?
fi
done
}
And sample usage:
function job_done {
if [[ $# -lt 2 ]]; then
echo "PID $1 died unexpectedly"
else
echo "PID $1 exited $2"
fi
}
cmds=( \
"echo 1; sleep 1; exit 1" \
"echo 2; sleep 2; exit 2" \
"echo 3; sleep 3; exit 3" \
"echo 4; sleep 4; exit 4" \
"echo 5; sleep 5; exit 5" \
)
# cpus="$(getconf _NPROCESSORS_ONLN)"
cpus=3
run_parallel_jobs $cpus "job_done" "${cmds[#]}"
The output:
1
2
3
PID 56712 exited 1
4
PID 56713 exited 2
5
PID 56714 exited 3
PID 56720 exited 4
PID 56724 exited 5
For per-process output handling $$ could be used to log to a file, for example:
function job_done {
cat "$1.log"
}
cmds=( \
"echo 1 \$\$ >\$\$.log" \
"echo 2 \$\$ >\$\$.log" \
)
run_parallel_jobs 2 "job_done" "${cmds[#]}"
Output:
1 56871
2 56872
The project I work on uses the wait command to control parallel shell (ksh actually) processes. To address your concerns about IO, on a modern OS, it's possible parallel execution will actually increase efficiency. If all processes are reading the same blocks on disk, only the first process will have to hit the physical hardware. The other processes will often be able to retrieve the block from OS's disk cache in memory. Obviously, reading from memory is several orders of magnitude quicker than reading from disk. Also, the benefit requires no coding changes.
This might be good enough for most purposes, but is not optimal.
#!/bin/bash
n=0
maxjobs=10
for i in *.m4a ; do
# ( DO SOMETHING ) &
# limit jobs
if (( $(($((++n)) % $maxjobs)) == 0 )) ; then
wait # wait until all have finished (not optimal, but most times good enough)
echo $n wait
fi
done
Here is how I managed to solve this issue in a bash script:
#! /bin/bash
MAX_JOBS=32
FILE_LIST=($(cat ${1}))
echo Length ${#FILE_LIST[#]}
for ((INDEX=0; INDEX < ${#FILE_LIST[#]}; INDEX=$((${INDEX}+${MAX_JOBS})) ));
do
JOBS_RUNNING=0
while ((JOBS_RUNNING < MAX_JOBS))
do
I=$((${INDEX}+${JOBS_RUNNING}))
FILE=${FILE_LIST[${I}]}
if [ "$FILE" != "" ];then
echo $JOBS_RUNNING $FILE
./M22Checker ${FILE} &
else
echo $JOBS_RUNNING NULL &
fi
JOBS_RUNNING=$((JOBS_RUNNING+1))
done
wait
done
You can use a simple nested for loop (substitute appropriate integers for N and M below):
for i in {1..N}; do
(for j in {1..M}; do do_something; done & );
done
This will execute do_something N*M times in M rounds, each round executing N jobs in parallel. You can make N equal the number of CPUs you have.
My solution to always keep a given number of processes running, keep tracking of errors and handle ubnterruptible / zombie processes:
function log {
echo "$1"
}
# Take a list of commands to run, runs them sequentially with numberOfProcesses commands simultaneously runs
# Returns the number of non zero exit codes from commands
function ParallelExec {
local numberOfProcesses="${1}" # Number of simultaneous commands to run
local commandsArg="${2}" # Semi-colon separated list of commands
local pid
local runningPids=0
local counter=0
local commandsArray
local pidsArray
local newPidsArray
local retval
local retvalAll=0
local pidState
local commandsArrayPid
IFS=';' read -r -a commandsArray <<< "$commandsArg"
log "Runnning ${#commandsArray[#]} commands in $numberOfProcesses simultaneous processes."
while [ $counter -lt "${#commandsArray[#]}" ] || [ ${#pidsArray[#]} -gt 0 ]; do
while [ $counter -lt "${#commandsArray[#]}" ] && [ ${#pidsArray[#]} -lt $numberOfProcesses ]; do
log "Running command [${commandsArray[$counter]}]."
eval "${commandsArray[$counter]}" &
pid=$!
pidsArray+=($pid)
commandsArrayPid[$pid]="${commandsArray[$counter]}"
counter=$((counter+1))
done
newPidsArray=()
for pid in "${pidsArray[#]}"; do
# Handle uninterruptible sleep state or zombies by ommiting them from running process array (How to kill that is already dead ? :)
if kill -0 $pid > /dev/null 2>&1; then
pidState=$(ps -p$pid -o state= 2 > /dev/null)
if [ "$pidState" != "D" ] && [ "$pidState" != "Z" ]; then
newPidsArray+=($pid)
fi
else
# pid is dead, get it's exit code from wait command
wait $pid
retval=$?
if [ $retval -ne 0 ]; then
log "Command [${commandsArrayPid[$pid]}] failed with exit code [$retval]."
retvalAll=$((retvalAll+1))
fi
fi
done
pidsArray=("${newPidsArray[#]}")
# Add a trivial sleep time so bash won't eat all CPU
sleep .05
done
return $retvalAll
}
Usage:
cmds="du -csh /var;du -csh /tmp;sleep 3;du -csh /root;sleep 10; du -csh /home"
# Execute 2 processes at a time
ParallelExec 2 "$cmds"
# Execute 4 processes at a time
ParallelExec 4 "$cmds"
$DOMAINS = "list of some domain in commands"
for foo in some-command
do
eval `some-command for $DOMAINS` &
job[$i]=$!
i=$(( i + 1))
done
Ndomains=echo $DOMAINS |wc -w
for i in $(seq 1 1 $Ndomains)
do
echo "wait for ${job[$i]}"
wait "${job[$i]}"
done
in this concept will work for the parallelize. important thing is last line of eval is '&'
which will put the commands to backgrounds.

Resources