Shared pointer to an array of shared pointers - c++11

I defined an array of shared pointers called table as follows; now I want to make this table a shared pointer as well. however I am not sure how to do that. I appropriate help with that.
class Reference {
public:
int ref;
Reference (int r)
{
ref = r;
}
~Reference ()
{
cout << "destructor " << endl;
}
};
class segment
{
public:
std::shared_ptr < Reference > *table;
segment ()
{
table = new std::shared_ptr < Reference >[SIZE];
for (int i = 0; i < SIZE; i++)
{
table[i] = std::make_shared < Reference > (i);
}
}
};

Well, I'd say that
You probably don't need shared pointers in class segment at all.
Your table field is an area of fixed size (SIZE). If you're worried about its lifetime - just think about the lifetime of instances of segment. You can instantiate segments with a shared pointer, i.e. my_segment = std::make_shared<segment>(), and then pass that around even after going out of scope
Now, as for the multiple shared pointers being the contents of table: You are creating them altogether and will likely get rid of them altogether when you destroy the segment. Unless you're thinking of segment as a sort of an "hors d'oeuvre" plate from which others will copy different shared pointers, then you throw the plate away; that's not the case, is it? Assuming it isn't, just have a Reference table[SIZE] member, and be done with it.
Notes:
Your code actually has table be a raw pointer to shared-ptrs, which is probably not what you meant, since that's not what make_shared gives you.
You didn't say much about what the Reference type is about. That may have impact on this answer too; I'm ignoring its suggestive name.

Related

Why should we initialize data members on declaration (not necessarily on constructor)?

Does anyone could explain me the reason of this coding recommendation ?
Since C++11, please initialize data members on declaration (not
necessary on constructor) :
class Limit
{
public:
Limit() = default;
private:
int32_t quantity = 0;
double price = 0.0;
};
Someone thinks (correctly) that this way the variable is always initialised. Which is a good thing if it is initialised with a meaningful value and bad if the value is not meaningful. For example a person’s year of birth is a number from say 1890 to 2021. Initialising it to 0 isn’t useful and can only prevent the compiler from warning you.
So do this if you have a value that is always a useful initialisation value. I wouldn’t do it for anything that is likely to be overwritten in a constructor or shortly after.
I found this answer from CppCoreGuidelines C-48 :
C.48: Prefer in-class initializers to member initializers in constructors for constant initializers
Reason
Makes it explicit that the same value is expected to be used in all constructors. Avoids repetition. Avoids maintenance problems. It leads to the shortest and most efficient code.
Example, bad
class X { // BAD
int i;
string s;
int j;
public:
X() :i{666}, s{"qqq"} { } // j is uninitialized
X(int ii) :i{ii} {} // s is "" and j is uninitialized
// ...
};
How would a maintainer know whether j was deliberately uninitialized (probably a bad idea anyway) and whether it was intentional to give s the default value "" in one case and qqq in another (almost certainly a bug)? The problem with j (forgetting to initialize a member) often happens when a new member is added to an existing class.
Example
class X2 {
int i {666};
string s {"qqq"};
int j {0};
public:
X2() = default; // all members are initialized to their defaults
X2(int ii) :i{ii} {} // s and j initialized to their defaults
// ...
};
Alternative: We can get part of the benefits from default arguments to constructors, and that is not uncommon in older code. However, that is less explicit, causes more arguments to be passed, and is repetitive when there is more than one constructor:
class X3 { // BAD: inexplicit, argument passing overhead
int i;
string s;
int j;
public:
X3(int ii = 666, const string& ss = "qqq", int jj = 0)
:i{ii}, s{ss}, j{jj} { } // all members are initialized to their defaults
// ...
};
Enforcement
(Simple) Every constructor should initialize every member variable (either explicitly, via a delegating ctor call or via default construction).
(Simple) Default arguments to constructors suggest an in-class initializer might be more appropriate.
There is also the guideline C-45 that explains it.

Problem of allocating memory for a global struct and free it

I am using a embedded board with FreeRTOS.
In a task, I defined two structs and use pvPortMalloc to allocate memory. (One struct is a member in the other)
Besides, I pass the address of struct to some functions.
However, there are some issues about freeing the memory using vPortFree.
The following is my code (test_task.c):
/* Struct definition */
typedef struct __attribute__((packed)) {
uint8_t num_parameter;
uint32_t member1;
uint8_t member2;
uint8_t *parameter;
}struct_member;
typedef struct __attribute__((packed)) {
uint16_t num_member;
uint32_t class;
struct_member *member;
}struct_master;
I define a global struct and an array below.
uint8_t *arr;
struct_master master:
Function definition:
void decode_func(struct_master *master, uint8_t *arr)
{
master->member = pvPortMalloc(master->num_member);
for(int i = 0; i < scr->num_command; ++i){
master->member[i].parameter = pvPortMalloc(master->member[i].num_parameter);
do_something();
}
}
The operation task is shown in the following.
At the end of task, I would like to free memory:
void test_task()
{
decode_func( &master, arr);
do_operation();
vPortFree(master.member);
for (int i = 0; i < master.num_member; ++i)
vPortFree(master.member[i].parameter);
hTest_task = NULL;
vTaskDelete(NULL);
}
It is ok to free master.member.
However, when the program tried free master.member[i].parameter,
it seems that freeing had been executed before and software just reset automatically.
Does anyone know why it happened like that?
At the very first glance, the way you allocate for members is wrong in the decode_func.
I assume that master->num_member indicates the number of struct members that master should contain.
master->member = pvPortMalloc(master->num_member);
should be corrected to,
master->member = pvPortMalloc(master->num_member * sizeof(struct_member));
Again, in the same function the loop seems a bit suspicious as well.
for(int i = 0; i < scr->num_command; ++i){
master->member[i].parameter = pvPortMalloc(master->member[i].num_parameter);
do_something();
}
I'm not sure what src->num_command indicates, but naturally I reckon the loop should execute until i < master->num_member. I assume your loop should be updated as follows as well,
for(int i = 0; i < master->num_member; ++i){
master->member[i].parameter = pvPortMalloc(master->member[i].num_parameter * sizeof(uint8_t));
do_something();
}
While doing the freeing of memory, make sure you free the contained members first before freeing the container structure. Therefore you should first free all the parameters and then the member, so change that order in test_task function as well.
Also make sure that before doing vTaskDelete(NULL); you must deallocate all the resources consumed by test_task, otherwise there will be a resource leak. vTaskDelete(NULL) will simply mark the TCB of that particular task as ready to be deleted so that at some time later the idle task will purge the TCB related resources.
Generally, when you free an object, the contents of the object are destroyed and you can't access them anymore. So when you want to free nested allocations like this, you need to free the inner allocations first and only free the outer (master) allocation afterwards. In other words:
for (int i = 0; i < master.num_member; ++i)
vPortFree(master.member[i].parameter);
vPortFree(master.member);
free the parameters first and then the containing member array.

How to design smart pointer of array type in C++11

This is a class which contains image data.
class MyMat
{
public:
int width, height, format;
uint8_t *data;
}
I want to design MyMat with automatic memory management. The image data could be shared among many objects.
Common APIs which I'm going to design:
+) C++ 11
+) Assignment : share data
MyMat a2(w, h, fmt);
.................
a2 = a1;
+) Accessing data should be simple and short.
Can use raw pointer directly.
In general, I want to design MyMat like as OpenCV cv::Mat
Could you suggest me a proper design ?
1) Using std::vector<uint8_t> data
I have to write some code to remove copy constructor and assignment operator because someone can call them and causes memory copy.
The compiler must support copy ellision and return value optimization.
Always using move assignment and passing by reference are inconvenient
a2 = std::move(a1)
void test(MyMat &mat)
std::queue<MyMat> lists;
lists.push_back(std::move(a1))
..............................
2) Use share_ptr<uint8_t> data
Following this guideline http://www.codingstandard.com/rule/17-3-4-do-not-create-smart-pointers-of-array-type/,
we shouldn't create smart pointers of array type.
3) Use share_ptr< std::vector<uint8_t> > data
To access data, use *(a1.data)[0], the syntax is very inconvenient
4) Use raw pointer, uint8_t *data
Write proper constructor and destructor for this class.
To make automatic memory management, use smart pointer.
share_ptr<MyMat> mat
std::queue< share_ptr<MyMat> > lists;
Matrix classes are normally expected to be a value type with deep copying. So, stick with std::vector<uint8_t> and let the user decide whether copy is expensive or not in their specific context.
Instead of raw pointers for arrays prefer std::unique_ptr<T[]> (note the square brackets).
std::array - fixed length in-place buffer (beautified array)
std::vector - variable length buffer
std::shared_ptr - shared ownership data
std::weak_ptr - expiring view on shared data
std::unique_ptr - unique ownership
std::string_view, std::span, std::ref, &, * - reference to data with no assumption of ownership
Simplest design is to have a single owner and RAII-forced life time ensuring everything that needs to be alive at certain time is alive and needs no other ownership, so generally I'd see if I could live std::unique_ptr<T> before complicating further (unless I can fit all my data on the stack, then I don't even need a unique_ptr).
On a side note - shared pointers are not free, they need dynamic memory allocation for the shared state (two allocations if done incorrectly :) ), whereas unique pointers are true "zero" overhead RAII.
Matrixes should use value semantics, and they should be nearly free to move.
Matrixes should support a view type as well.
There are two approaches for a basic Matrix that make sense.
First, a Matrix type that wraps a vector<T> with a stride field. This has an overhead of 3 instead of 2 pointers (or 1 pointer and a size) compared to a hand-rolled one. I don't consider that significant; the ease of debugging a vector<T> etc makes it more than worth that overhead.
In this case you'd want to write a separate MatrixView.
I'd use CRTP to create a common base class for both to implement operator[] and stride fields.
A distinct basic Matrix approach is to make your Matrix immutable. In this case, the Matrix wraps a std::shared_ptr<T const> and a std::shared_ptr<std::mutex> and (local, or stored with the mutex) width, height and stride field.
Copying such a Matrix just duplciates handles.
Modifying such a Matrix causes you to acquire the std::mutex, then check that shared_ptr<T const> has a use_count()==1. If it does, you cast-away const and modify the data referred to in the shared_ptr. If it does not, you duplicate the buffer, create a new mutex, and operate on the new state.
Here is a copy on write matrix buffer:
template<class T>
struct cow_buffer {
std::size_t rows() const { return m_rows; }
std::size_t cols() const { return m_cols; }
cow_buffer( T const* in, std::size_t rows, std::size_t cols, std::size_t stride ) {
copy_in( in, rows, cols, stride );
}
void copy_in( T const* in, std::size_t rows, std::size_t cols, std::size_t stride ) {
// note it isn't *really* const, this matters:
auto new_data = std::make_shared<T[]>( rows*cols );
for (std::size_t i = 0; i < rows; ++i )
std::copy( in+i*stride, in+i*m_stride+m_cols, new_data.get()+i*m_cols );
m_data = new_data;
m_rows = rows;
m_cols = cols;
m_stride = cols;
m_lock = std::make_shared<std::mutex>();
}
template<class F>
decltype(auto) read( F&& f ) const {
return std::forward<F>(f)( m_data.get() );
}
template<class F>
decltype(auto) modify( F&& f ) {
auto lock = std::unique_lock<std::mutex>(*m_lock);
if (m_data.use_count()==1) {
return std::forward<F>(f)( const_cast<T*>(m_data.get()) );
}
auto old_data = m_data;
copy_in( old_data.get(), m_rows, m_cols, m_stride );
return std::forward<F>(f)( const_cast<T*>(m_data.get()) );
}
explicit operator bool() const { return m_data && m_lock; }
private:
std::shared_ptr<T> m_data;
std::shared_ptr<std::mutex> m_lock;
std::size_t m_rows = 0, m_cols = 0, m_stride = 0;
};
something like that.
The mutex is required to ensure synchonization between multiple threads who are sole owners modifying m_data and the data from the previous write not being synchronzied with the current one.

What happens when a copy of a shared pointer is created whose object contains a unique pointer?

I have been messing about with SFML, figuring out how a simple 2D game could be built. I just noticed this behaviour and couldn't figure out what's going on. Sample code for what is confusing me:
struct Unique {};
class Shared {
public:
Shared() {
p = make_unique<Unique>();
}
unique_ptr<Unique> p;
};
void SharedCopyTest() {
Shared foo;
//Shared copy = foo; // Error: function "Shared::Shared(const Shared &)"
// (declared implicitly) cannot be referenced
// -- it is a deleted function
shared_ptr<Shared> sharedPtr = make_shared<Shared>();
shared_ptr<Shared> ptrCopy = sharedPtr; // No error
}
At this point, &sharedPtr->p == &ptrCopy->p; but how is it possible, if p is of type unique_ptr<T>?
The semantics of std::shared_ptr is that no copies are made of the pointed-to object. Instead it's the std::shared_ptr object itself that is copied, and it increases the use-counter of the shared pointer.
That why it works, because you're not actually making a copy of the Shared object.
This can be easily verified by using the shared pointers get function to get the "raw" pointer:
sharedPtr.get() == ptrCopy.get()

When is std::weak_ptr useful?

I started studying smart pointers of C++11 and I don't see any useful use of std::weak_ptr. Can someone tell me when std::weak_ptr is useful/necessary?
std::weak_ptr is a very good way to solve the dangling pointer problem. By just using raw pointers it is impossible to know if the referenced data has been deallocated or not. Instead, by letting a std::shared_ptr manage the data, and supplying std::weak_ptr to users of the data, the users can check validity of the data by calling expired() or lock().
You could not do this with std::shared_ptr alone, because all std::shared_ptr instances share the ownership of the data which is not removed before all instances of std::shared_ptr are removed. Here is an example of how to check for dangling pointer using lock():
#include <iostream>
#include <memory>
int main()
{
// OLD, problem with dangling pointer
// PROBLEM: ref will point to undefined data!
int* ptr = new int(10);
int* ref = ptr;
delete ptr;
// NEW
// SOLUTION: check expired() or lock() to determine if pointer is valid
// empty definition
std::shared_ptr<int> sptr;
// takes ownership of pointer
sptr.reset(new int);
*sptr = 10;
// get pointer to data without taking ownership
std::weak_ptr<int> weak1 = sptr;
// deletes managed object, acquires new pointer
sptr.reset(new int);
*sptr = 5;
// get pointer to new data without taking ownership
std::weak_ptr<int> weak2 = sptr;
// weak1 is expired!
if(auto tmp = weak1.lock())
std::cout << "weak1 value is " << *tmp << '\n';
else
std::cout << "weak1 is expired\n";
// weak2 points to new data (5)
if(auto tmp = weak2.lock())
std::cout << "weak2 value is " << *tmp << '\n';
else
std::cout << "weak2 is expired\n";
}
Output
weak1 is expired
weak2 value is 5
A good example would be a cache.
For recently accessed objects, you want to keep them in memory, so you hold a strong pointer to them. Periodically, you scan the cache and decide which objects have not been accessed recently. You don't need to keep those in memory, so you get rid of the strong pointer.
But what if that object is in use and some other code holds a strong pointer to it? If the cache gets rid of its only pointer to the object, it can never find it again. So the cache keeps a weak pointer to objects that it needs to find if they happen to stay in memory.
This is exactly what a weak pointer does -- it allows you to locate an object if it's still around, but doesn't keep it around if nothing else needs it.
Another answer, hopefully simpler. (for fellow googlers)
Suppose you have Team and Member objects.
Obviously it's a relationship : the Team object will have pointers to its Members. And it's likely that the members will also have a back pointer to their Team object.
Then you have a dependency cycle. If you use shared_ptr, objects will no longer be automatically freed when you abandon reference on them, because they reference each other in a cyclic way. This is a memory leak.
You break this by using weak_ptr. The "owner" typically use shared_ptr and the "owned" use a weak_ptr to its parent, and convert it temporarily to shared_ptr when it needs access to its parent.
Store a weak ptr :
weak_ptr<Parent> parentWeakPtr_ = parentSharedPtr; // automatic conversion to weak from shared
then use it when needed
shared_ptr<Parent> tempParentSharedPtr = parentWeakPtr_.lock(); // on the stack, from the weak ptr
if( !tempParentSharedPtr ) {
// yes, it may fail if the parent was freed since we stored weak_ptr
} else {
// do stuff
}
// tempParentSharedPtr is released when it goes out of scope
Here's one example, given to me by #jleahy: Suppose you have a collection of tasks, executed asynchronously, and managed by an std::shared_ptr<Task>. You may want to do something with those tasks periodically, so a timer event may traverse a std::vector<std::weak_ptr<Task>> and give the tasks something to do. However, simultaneously a task may have concurrently decided that it is no longer needed and die. The timer can thus check whether the task is still alive by making a shared pointer from the weak pointer and using that shared pointer, provided it isn't null.
When using pointers it's important to understand the different types of pointers available and when it makes sense to use each one. There are four types of pointers in two categories as follows:
Raw pointers:
Raw Pointer [ i.e. SomeClass* ptrToSomeClass = new SomeClass(); ]
Smart pointers:
Unique Pointers [ i.e. std::unique_ptr<SomeClass> uniquePtrToSomeClass ( new SomeClass() ); ]
Shared Pointers [ i.e. std::shared_ptr<SomeClass> sharedPtrToSomeClass ( new SomeClass() ); ]
Weak Pointers [ i.e. std::weak_ptr<SomeClass> weakPtrToSomeWeakOrSharedPtr ( weakOrSharedPtr ); ]
Raw pointers (sometimes referred to as "legacy pointers", or "C pointers") provide 'bare-bones' pointer behavior and are a common source of bugs and memory leaks. Raw pointers provide no means for keeping track of ownership of the resource and developers must call 'delete' manually to ensure they are not creating a memory leak. This becomes difficult if the resource is shared as it can be challenging to know whether any objects are still pointing to the resource. For these reasons, raw pointers should generally be avoided and only used in performance-critical sections of the code with limited scope.
Unique pointers are a basic smart pointer that 'owns' the underlying raw pointer to the resource and is responsible for calling delete and freeing the allocated memory once the object that 'owns' the unique pointer goes out of scope. The name 'unique' refers to the fact that only one object may 'own' the unique pointer at a given point in time. Ownership may be transferred to another object via the move command, but a unique pointer can never be copied or shared. For these reasons, unique pointers are a good alternative to raw pointers in the case that only one object needs the pointer at a given time, and this alleviates the developer from the need to free memory at the end of the owning object's lifecycle.
Shared pointers are another type of smart pointer that are similar to unique pointers, but allow for many objects to have ownership over the shared pointer. Like unique pointer, shared pointers are responsible for freeing the allocated memory once all objects are done pointing to the resource. It accomplishes this with a technique called reference counting. Each time a new object takes ownership of the shared pointer the reference count is incremented by one. Similarly, when an object goes out of scope or stops pointing to the resource, the reference count is decremented by one. When the reference count reaches zero, the allocated memory is freed. For these reasons, shared pointers are a very powerful type of smart pointer that should be used anytime multiple objects need to point to the same resource.
Finally, weak pointers are another type of smart pointer that, rather than pointing to a resource directly, they point to another pointer (weak or shared). Weak pointers can't access an object directly, but they can tell whether the object still exists or if it has expired. A weak pointer can be temporarily converted to a shared pointer to access the pointed-to object (provided it still exists). To illustrate, consider the following example:
You are busy and have overlapping meetings: Meeting A and Meeting B
You decide to go to Meeting A and your co-worker goes to Meeting B
You tell your co-worker that if Meeting B is still going after Meeting A ends, you will join
The following two scenarios could play out:
Meeting A ends and Meeting B is still going, so you join
Meeting A ends and Meeting B has also ended, so you can't join
In the example, you have a weak pointer to Meeting B. You are not an "owner" in Meeting B so it can end without you, and you do not know whether it ended or not unless you check. If it hasn't ended, you can join and participate, otherwise, you cannot. This is different than having a shared pointer to Meeting B because you would then be an "owner" in both Meeting A and Meeting B (participating in both at the same time).
The example illustrates how a weak pointer works and is useful when an object needs to be an outside observer, but does not want the responsibility of sharing ownership. This is particularly useful in the scenario that two objects need to point to each other (a.k.a. a circular reference). With shared pointers, neither object can be released because they are still 'strongly' pointed to by the other object. When one of the pointers is a weak pointer, the object holding the weak pointer can still access the other object when needed, provided it still exists.
They are useful with Boost.Asio when you are not guaranteed that a target object still exists when an asynchronous handler is invoked. The trick is to bind a weak_ptr into the asynchonous handler object, using std::bind or lambda captures.
void MyClass::startTimer()
{
std::weak_ptr<MyClass> weak = shared_from_this();
timer_.async_wait( [weak](const boost::system::error_code& ec)
{
auto self = weak.lock();
if (self)
{
self->handleTimeout();
}
else
{
std::cout << "Target object no longer exists!\n";
}
} );
}
This is a variant of the self = shared_from_this() idiom often seen in Boost.Asio examples, where a pending asynchronous handler will not prolong the lifetime of the target object, yet is still safe if the target object is deleted.
shared_ptr : holds the real object.
weak_ptr : uses lock to connect to the real owner or returns a NULL shared_ptr otherwise.
Roughly speaking, weak_ptr role is similar to the role of housing agency. Without agents, to get a house on rent we may have to check random houses in the city. The agents make sure that we visit only those houses which are still accessible and available for rent.
weak_ptr is also good to check the correct deletion of an object - especially in unit tests. Typical use case might look like this:
std::weak_ptr<X> weak_x{ shared_x };
shared_x.reset();
BOOST_CHECK(weak_x.lock());
... //do something that should remove all other copies of shared_x and hence destroy x
BOOST_CHECK(!weak_x.lock());
Apart from the other already mentioned valid use cases std::weak_ptr is an awesome tool in a multithreaded environment, because
It doesn't own the object and so can't hinder deletion in a different thread
std::shared_ptr in conjunction with std::weak_ptr is safe against dangling pointers - in opposite to std::unique_ptr in conjunction with raw pointers
std::weak_ptr::lock() is an atomic operation (see also About thread-safety of weak_ptr)
Consider a task to load all images of a directory (~10.000) simultaneously into memory (e.g. as a thumbnail cache). Obviously the best way to do this is a control thread, which handles and manages the images, and multiple worker threads, which load the images. Now this is an easy task. Here's a very simplified implementation (join() etc is omitted, the threads would have to be handled differently in a real implementation etc)
// a simplified class to hold the thumbnail and data
struct ImageData {
std::string path;
std::unique_ptr<YourFavoriteImageLibData> image;
};
// a simplified reader fn
void read( std::vector<std::shared_ptr<ImageData>> imagesToLoad ) {
for( auto& imageData : imagesToLoad )
imageData->image = YourFavoriteImageLib::load( imageData->path );
}
// a simplified manager
class Manager {
std::vector<std::shared_ptr<ImageData>> m_imageDatas;
std::vector<std::unique_ptr<std::thread>> m_threads;
public:
void load( const std::string& folderPath ) {
std::vector<std::string> imagePaths = readFolder( folderPath );
m_imageDatas = createImageDatas( imagePaths );
const unsigned numThreads = std::thread::hardware_concurrency();
std::vector<std::vector<std::shared_ptr<ImageData>>> splitDatas =
splitImageDatas( m_imageDatas, numThreads );
for( auto& dataRangeToLoad : splitDatas )
m_threads.push_back( std::make_unique<std::thread>(read, dataRangeToLoad) );
}
};
But it becomes much more complicated, if you want to interrupt the loading of the images, e.g. because the user has chosen a different directory. Or even if you want to destroy the manager.
You'd need thread communication and have to stop all loader threads, before you may change your m_imageDatas field. Otherwise the loaders would carry on loading until all images are done - even if they are already obsolete. In the simplified example, that wouldn't be too hard, but in a real environment things can be much more complicated.
The threads would probably be part of a thread pool used by multiple managers, of which some are being stopped, and some aren't etc. The simple parameter imagesToLoad would be a locked queue, into which those managers push their image requests from different control threads with the readers popping the requests - in an arbitrary order - at the other end. And so the communication becomes difficult, slow and error-prone. A very elegant way to avoid any additional communication in such cases is to use std::shared_ptr in conjunction with std::weak_ptr.
// a simplified reader fn
void read( std::vector<std::weak_ptr<ImageData>> imagesToLoad ) {
for( auto& imageDataWeak : imagesToLoad ) {
std::shared_ptr<ImageData> imageData = imageDataWeak.lock();
if( !imageData )
continue;
imageData->image = YourFavoriteImageLib::load( imageData->path );
}
}
// a simplified manager
class Manager {
std::vector<std::shared_ptr<ImageData>> m_imageDatas;
std::vector<std::unique_ptr<std::thread>> m_threads;
public:
void load( const std::string& folderPath ) {
std::vector<std::string> imagePaths = readFolder( folderPath );
m_imageDatas = createImageDatas( imagePaths );
const unsigned numThreads = std::thread::hardware_concurrency();
std::vector<std::vector<std::weak_ptr<ImageData>>> splitDatas =
splitImageDatasToWeak( m_imageDatas, numThreads );
for( auto& dataRangeToLoad : splitDatas )
m_threads.push_back( std::make_unique<std::thread>(read, dataRangeToLoad) );
}
};
This implementation is nearly as easy as the first one, doesn't need any additional thread communication, and could be part of a thread pool/queue in a real implementation. Since the expired images are skipped, and non-expired images are processed, the threads never would have to be stopped during normal operation.
You could always safely change the path or destroy your managers, since the reader fn checks, if the owning pointer isn't expired.
I see a lot of interesting answers that explain reference counting etc., but I am missing a simple example that demonstrates how you prevent memory leak using weak_ptr. In first example I use shared_ptr in cyclically referenced classes. When the classes go out of scope they are NOT destroyed.
#include<iostream>
#include<memory>
using namespace std;
class B;
class A
{
public:
shared_ptr<B>bptr;
A() {
cout << "A created" << endl;
}
~A() {
cout << "A destroyed" << endl;
}
};
class B
{
public:
shared_ptr<A>aptr;
B() {
cout << "B created" << endl;
}
~B() {
cout << "B destroyed" << endl;
}
};
int main()
{
{
shared_ptr<A> a = make_shared<A>();
shared_ptr<B> b = make_shared<B>();
a->bptr = b;
b->aptr = a;
}
// put breakpoint here
}
If you run the code snippet you will see as classes are created, but not destroyed:
A created
B created
Now we change shared_ptr's to weak_ptr:
class B;
class A
{
public:
weak_ptr<B>bptr;
A() {
cout << "A created" << endl;
}
~A() {
cout << "A destroyed" << endl;
}
};
class B
{
public:
weak_ptr<A>aptr;
B() {
cout << "B created" << endl;
}
~B() {
cout << "B destroyed" << endl;
}
};
int main()
{
{
shared_ptr<A> a = make_shared<A>();
shared_ptr<B> b = make_shared<B>();
a->bptr = b;
b->aptr = a;
}
// put breakpoint here
}
This time, when using weak_ptr we see proper class destruction:
A created
B created
B destroyed
A destroyed
I see std::weak_ptr<T> as a handle to a std::shared_ptr<T>: It allows me
to get the std::shared_ptr<T> if it still exists, but it will not extend its
lifetime. There are several scenarios when such point of view is useful:
// Some sort of image; very expensive to create.
std::shared_ptr< Texture > texture;
// A Widget should be able to quickly get a handle to a Texture. On the
// other hand, I don't want to keep Textures around just because a widget
// may need it.
struct Widget {
std::weak_ptr< Texture > texture_handle;
void render() {
if (auto texture = texture_handle.get(); texture) {
// do stuff with texture. Warning: `texture`
// is now extending the lifetime because it
// is a std::shared_ptr< Texture >.
} else {
// gracefully degrade; there's no texture.
}
}
};
Another important scenario is to break cycles in data structures.
// Asking for trouble because a node owns the next node, and the next node owns
// the previous node: memory leak; no destructors automatically called.
struct Node {
std::shared_ptr< Node > next;
std::shared_ptr< Node > prev;
};
// Asking for trouble because a parent owns its children and children own their
// parents: memory leak; no destructors automatically called.
struct Node {
std::shared_ptr< Node > parent;
std::shared_ptr< Node > left_child;
std::shared_ptr< Node > right_child;
};
// Better: break dependencies using a std::weak_ptr (but not best way to do it;
// see Herb Sutter's talk).
struct Node {
std::shared_ptr< Node > next;
std::weak_ptr< Node > prev;
};
// Better: break dependencies using a std::weak_ptr (but not best way to do it;
// see Herb Sutter's talk).
struct Node {
std::weak_ptr< Node > parent;
std::shared_ptr< Node > left_child;
std::shared_ptr< Node > right_child;
};
Herb Sutter has an excellent talk that explains the best use of language
features (in this case smart pointers) to ensure Leak Freedom by Default
(meaning: everything clicks in place by construction; you can hardly screw it
up). It is a must watch.
http://en.cppreference.com/w/cpp/memory/weak_ptr
std::weak_ptr is a smart pointer that holds a non-owning ("weak") reference to an object that is managed by std::shared_ptr. It must be converted to std::shared_ptr in order to access the referenced object.
std::weak_ptr models temporary ownership: when an object needs to be accessed only if it exists, and it may be deleted at any time by someone else, std::weak_ptr is used to track the object, and it is converted to std::shared_ptr to assume temporary ownership. If the original std::shared_ptr is destroyed at this time, the object's lifetime is extended until the temporary std::shared_ptr is destroyed as well.
In addition, std::weak_ptr is used to break circular references of std::shared_ptr.
There is a drawback of shared pointer:
shared_pointer can't handle the parent-child cycle dependency. Means if the parent class uses the object of child class using a shared pointer, in the same file if child class uses the object of the parent class. The shared pointer will be failed to destruct all objects, even shared pointer is not at all calling the destructor in cycle dependency scenario. basically shared pointer doesn't support the reference count mechanism.
This drawback we can overcome using weak_pointer.
When we does not want to own the object:
Ex:
class A
{
shared_ptr<int> sPtr1;
weak_ptr<int> wPtr1;
}
In the above class wPtr1 does not own the resource pointed by wPtr1. If the resource is got deleted then wPtr1 is expired.
To avoid circular dependency:
shard_ptr<A> <----| shared_ptr<B> <------
^ | ^ |
| | | |
| | | |
| | | |
| | | |
class A | class B |
| | | |
| ------------ |
| |
-------------------------------------
Now if we make the shared_ptr of the class B and A, the use_count of the both pointer is two.
When the shared_ptr goes out od scope the count still remains 1 and hence the A and B object does not gets deleted.
class B;
class A
{
shared_ptr<B> sP1; // use weak_ptr instead to avoid CD
public:
A() { cout << "A()" << endl; }
~A() { cout << "~A()" << endl; }
void setShared(shared_ptr<B>& p)
{
sP1 = p;
}
};
class B
{
shared_ptr<A> sP1;
public:
B() { cout << "B()" << endl; }
~B() { cout << "~B()" << endl; }
void setShared(shared_ptr<A>& p)
{
sP1 = p;
}
};
int main()
{
shared_ptr<A> aPtr(new A);
shared_ptr<B> bPtr(new B);
aPtr->setShared(bPtr);
bPtr->setShared(aPtr);
return 0;
}
output:
A()
B()
As we can see from the output that A and B pointer are never deleted and hence memory leak.
To avoid such issue just use weak_ptr in class A instead of shared_ptr which makes more sense.
Inspired by #offirmo's response I wrote this code and then ran the visual studio diagnostic tool:
#include <iostream>
#include <vector>
#include <memory>
using namespace std;
struct Member;
struct Team;
struct Member {
int x = 0;
Member(int xArg) {
x = xArg;
}
shared_ptr<Team> teamPointer;
};
struct Team {
vector<shared_ptr<Member>> members;
};
void foo() {
auto t1 = make_shared<Team>();
for (int i = 0; i < 1000000; i++) {
t1->members.push_back(make_shared<Member>(i));
t1->members.back()->teamPointer = t1;
}
}
int main() {
foo();
while (1);
return 0;
}
When the member pointer to the team is shared_ptr teamPointer the memory is not free after foo() is done, i.e. it stays at around 150 MB.
But if it's changed to weak_ptr teamPointer in the diagnostic tool you'll see a peak and then memory usage returns to about 2MB.

Resources