I am currently studying advanced data structures and I came across a weird data structure called Treap. I understand what Treap is but I can't seem to find it's utility in a valid use case scenario.
Why should you use such a data structure and in what type of problems/conditions treaps are best used?
I find myself much more into using either hash maps, min/max heaps, binary search tree or balanced binary search trees, but I can't tell on why should you use a treap.
They are easier to implement and more importantly, that makes them easier to modify/maintain into the future if you want to make slight variations on them or change them some way. They also allow for efficient parallel versions of set operations Union/Intersect/Difference which is extremely valuable. Using them simultaneously as a heap and binary tree isn't really very handy unless the stuff you use for priorities are coincidentally really nicely randomly distributed/permuted. I suppose there might be a case where that would be handy, but it seems really unlikely. Stuff so randomly distributed is usually more like a hash key which typically aren't useful as ordered data. How often do you want to pull people out in order of their SSNs? I guess it's possible but unlikely.
I have an object which calculates a (long) path. Two objects are equal if the calculates the same path. I previously tested if two objects were equal by just doing something like:
obj1.calculatePath() == obj2.calculatePath()
However, now this has become a performance bottleneck. I tried storing the path inside the object but since I have a lot of objects this became a memory issue instead.
I have estimated that a 64 bits hash should be enough to avoid collisions - assuming the hash is good (bijective).
So, since the usual fast hashes (Murmur etc.) do have collisions I would like to avoid them since it sounds like a headache when you can just use a hash like SHA-2. (it's much nicer if I can just trust the hash instead of doing additional checks in case the hashes of two objects match)
However, SHA is also "slow" compared to older hash functions (like the MD family) I wonder is it would be better to use something like MD5 or maybe even MD4.
So my question is: Assuming there are no evil hacker with a motive of creating collisions with specially crafted input - but only benign (random) inputs. Which hash function should I choose for a performance critical part of my code where I would like to avoid the added complexity of using an "insecure" hash like Murmur.
It's difficult to help without more information.
As it stands all anyone can recommend is a generic hash-function.
There's an element of give a few a go!
FNV-1a (http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function)
Is usually a not-too-shabby starting point.
It's (a) easy to implement, (b) not usually 'bad' , (c) is computationally cheap and so applicable to your 'long' path issue.
However what I want to know is:
What space are these paths in? Are the in (x,y,z,t) 'real' space-time (i.e. trajectories)? Are paths through some graph? Are they file paths? Something else?
It's difficult to say more without more context.
I am looking to implement my own collection class. The characteristics I want are:
Iterable - order is not important
Insertion - either at end or at iterator location, it does not matter
Random Deletion - this is the tricky one. I want to be able to have a reference to a piece of data which is guaranteed to be within the list, and remove it from the list in O(1) time.
I plan on the container only holding custom classes, so I was thinking a doubly linked list that required the components to implement a simple interface (or abstract class).
Here is where I am getting stuck. I am wondering whether it would be better practice to simply have the items in the list hold a reference to their node, or to build the node right into them. I feel like both would be fairly simple, but I am worried about coupling these nodes into a bunch of classes.
I am wondering if anyone has an idea as to how to minimize the coupling, or possibly know of another data structure that has the characteristics I want.
It'd be hard to beat a hash map.
Take a look at tries.
Apparently they can beat hashtables:
Unlike most other algorithms, tries have the peculiar feature that the time to insert, or to delete or to find is almost identical because the code paths followed for each are almost identical. As a result, for situations where code is inserting, deleting and finding in equal measure tries can handily beat binary search trees or even hash tables, as well as being better for the CPU's instruction and branch caches.
It may or may not fit your usage, but if it does, it's likely one of the best options possible.
In C++, this sounds like the perfect fit for std::unordered_set (that's std::tr1::unordered_set or boost::unordered_set to you if you have an older compiler). It's implemented as a hash set, which has the characteristics you describe.
Here's the interface documentation. Note that the hash containers actually offer two sets of iterators, the usual ones and local ones which only go through one bucket.
Many other languages have "hash sets" as well, certainly Java and C#.
Say you have a large collection with n objects on disk and each one has a variable-sized string. What are common practices of efficient ways to make an index of those objects with plain string comparison. Storing the whole strings on the index would be prohibitive in the long rundue to size and I/O, but since disks have a high latency storing only references isn't a good idea, either.
I've been thinking on using a B-Tree-like design with tries but can't find any database implementation using this approach. In fact, it's hard to find how major databases implement indexes for strings (it probably gets lost in the vast results for SQL-level information.)
TIA!
EDIT: changed title from "Efficient external sorting and searching of stored objects with large strings" to "Efficient storage of external index of strings."
A "prefix B-tree" or "simple prefix B-tree" would probably be helpful here.
A "simple prefix B-tree" is a bit simpler, just storing the shortest prefix that separates two items, without trying to eliminate redundancy within those prefixes (e.g. for 'astronomy' and 'azimuth', it would store just 'as' and 'az', but not try to keep from duplicating the 'a').
A "prefix B-tree" is close to what you've described -- something like a trie, but in a B-tree structure to give good characteristics when stored primarily on disk. Nonetheless, it's intended to remove (most of) the redundancy within the prefixes that form the index.
There is one other question: do you really need to traverse the records in order, or do you just need to look up a specified record quickly? If the latter is adequate, you might be able to use extendible hashing instead. Extendible hashing has been around (in a number of different forms) for a few decades, and still works pretty well. The general idea is fairly simple: hash the strings to create keys of fixed length, then create some sort of tree of those fixed-length pseudo-keys. As with (almost) any hash, you have to be prepared to deal with collisions. As with other hash tables, the details of the hashing and collision resolution vary (though probably not quite as much with extendible hashing as in-memory hashing).
As for real use, major DBMS and DBMS-like systems use all of the above. B-tree variants are probably the most common in the general purpose DBMS market (e.g. Oracle or MS SQL Server). Extendible hashing is used in a fair number of more-specialized products (e.g., Lotus Domino Server).
What are you doing with the objects?
If you're running a large system that needs low latency to handle lots of concurrent requests, then I'd store the objects in a database and have it take care of the sorting and indexing. This would be much simpler than implementing B-tree from scratch and possibly having it be buggy.
DBMSs also have caching and various other features that might make your life easier.
Start by being clear what you want. Do you want to sort them or index them? Sorting is likely to require moving at least some of the items on disk, but indexing would likely leave them where they are.
If you really want to sort them, Knuth's "The Art of Computer Programming" volume three covers sorting and searching in about as much details as you're likely to want.
Every programmer is taught that binary search is a good, fast way to search an ordered list of data. There are many toy textbook examples of using binary search, but what about in real programming: where is binary search actually used in real-life programs?
Binary search is used everywhere. Take any sorted collection from any language library (Java, .NET, C++ STL and so on) and they all will use (or have the option to use) binary search to find values. While true that you have to implement it rarely, you still have to understand the principles behind it to take advantage of it.
Binary search can be used to access ordered data quickly when memory space is tight. Suppose you want to store a set of 100.000 32-bit integers in a searchable, ordered data structure but you are not going to change the set often. You can trivially store the integers in a sorted array of 400.000 bytes, and you can use binary search to access it fast. But if you put them e.g. into a B-tree, RB-tree or whatever "more dynamic" data structure, you start to incur memory overhead. To illustrate, storing the integers in any kind of tree where you have left child and right child pointers would make you consume at least 1.200.000 bytes of memory (assuming 32-bit memory architecture). Sure, there are optimizations you can do, but that's how it works in general.
Because it is very slow to update an ordered array (doing insertions or deletions), binary search is not useful when the array changes often.
Here some practical examples where I have used binary search:
Implementing a "switch() ... case:" construct in a virtual machine where the case labels are individual integers. If you have 100 cases, you can find the correct entry in 6 to 7 steps using binary search, where as sequence of conditional branches takes on average 50 comparisons.
Doing fast substring lookup using suffix arrays, which contain all the suffixes of the set of searchable strings in lexiographic ordering (I wanted to conserve memory and keep the implementation simple)
Finding numerical solutions to an equation (when you are lazy and do not mind to implement Newton's method)
Every programmer needs to know how to use binary search when debugging.
When you have a program, and you know that a bug is visible at a particular point
during the execution of the program, you can use binary search to pin-point the
place where it actually happens. This can be much faster than single-stepping through
large parts of the code.
Binary search is a good and fast way!
Before the arrival of STL and .NET framework, etc, you rather often could bump into situations where you needed to roll your own customized collection classes. Whenever a sorted array would be a feasible place of storing the data, binary search would be the way of locating entries in that array.
I'm quite sure binary search is in widespread use today as well, although it is taken care of "under the hood" by the library for your convenience.
I've implemented binary searches in BTree implementations.
The BTree search algorithms were used for finding the next node block to read but, within the 4K block itself (which contained a number of keys based on the key size), binary search was used for find either the record number (for a leaf node) or the next block (for a non-leaf node).
Blindingly fast compared to sequential search since, like balanced binary trees, you remove half the remaining search space with every check.
I once implemented it (without even knowing that this was indeed binary search) for a GUI control showing two-dimensional data in a graph. Clicking with the mouse should set the data cursor to the point with the closest x value. When dealing with large numbers of points (several 1000, this was way back when x86 was only beginning to get over 100 MHz CPU frequency) this was not really usable interactively - I was doing a linear search from the start. After some thinking it occurred to me that I could approach this in a divide and conquer fashion. Took me some time to get it working under all edge cases.
It was only some time later that I learned that this is indeed a fundamental CS algorithm...
One example is the stl set. The underlying data structure is a balanced binary search tree which supports look-up, insertion, and deletion in O(log n) due to binary search.
Another example is an integer division algorithm that runs in log time.
We still use it heavily in our code to search thousands of ACLS many thousands of times a second. It's useful because the ACLs are static once they come in from file, and we can suffer the expense of growing the array as we add to it at bootup. Blazingly fast once its running too.
When you can search a 255 element array in at most 7 compare/jumps (511 in 8, 1023 in 9, etc) you can see that binary search is about as fast as you can get.
Well, binary search is now used in 99% of 3D games and applications. Space is divided into a tree structure and a binary search is used to retrieve which subdivisions to display according to a 3D position and camera.
One of its first greatest showcase was Doom. Binary trees and associated search enhanced the rendering.
Answering your question with hands-on example.
In R programming language there is a package data.table. It is known from C-implemented, short syntax, high performance extension for data transformation. It uses binary search. Even without binary search it scales better than competitors.
You can find benchmark vs python pandas and vs R dplyr in project wiki grouping 2E9 - random order data.
There is also nice benchmark vs databases vs bigdata benchm-databases.
In recent data.table version (1.9.6) binary search was extended and now can be used as index on any atomic column.
I just found a nice summary with which I totally agree - see.
Anyone doing R comparisons should use data.table instead of data.frame. More so for benchmarks. data.table is the best data structure/query language I have found in my career. It's leading the way in The R world, and in my way, in all the data-focused languages.
So yes, binary search is being used and world is much better place thanks to it.
Binary search can be used to debug with Git. It's called git bisect.
Amongst other places, I have an interpreter with a table of command names and a pointer to the function to interpret that command. There are about 60 commands. It would not be incredibly onerous to use a linear search - but I use a binary search.
Semiconductor test programs used for measuring digital timing or analog levels make extensive use of binary search. Automatic Test Equipment (ATE) from Advantest, Teradyne, Verigy and the like can be thought of as truth table blasters, applying input logic and verifying output states of a digital part.
Think of a simple gate, with the input logic changing at time = 0 of each cycle, and transitioning X ns after the input logic changes. If you strobe the output before T=X,the logic does not match expected value. Strobe later than time T=X, and the logic does match expected value. Binary search is used to find the threshold between the latest value that the logic does not match, and the earliest part where it does.(A Teradyne FLEX system resolves timing to 39pS resolution, other testers are comparable). That's a simple way to measure transition time. Same technique can be used to solve for setup time, hold time, operable power supply levels, power supply vs. delay,etc.
Any kind of microprocessor, memory, FPGA, logic, and many analog mixed signal circuits use binary search in test and characterization.
-- mike
I had a program that iterated through a collection to perform some calculations. I thought that this was inefficient so I sorted the collection and then used a single binary search to find an item of interest. I returned this item and its matching neighbours. I had in-effect filtered the collection.
Doing this was actually slower than iterating the entire collection and fishing out matching items.
I continued to add items to the collection knowing that the sorting and searching performance would eventually catch up with the iteration. It took a collection of about 600 objects until the speed was identical. 1000 objects had a clear performance benefit.
I would also consider the type of data you are working with, the duplicates and spread. This will have an effect on the sorting and searching.
My answer is to try both methods and time them.
It's the basis for hg bisect
Binary sort is useful in adjusting fonts to size of text with constant dimension of textbox
Finding roots of an equation is probably one of those very easy things you want to do with a very easy algorithm like binary search.
Delphi uses can enjoy binary search while searching string in sorted TStringList.
I believe that the .NET SortedDictionary uses a binary tree behind the scenes (much like the STL map)... so a binary search is used to access elements in the SortedDictionary
Python'slist.sort() method uses Timsort which (AFAIK) uses binary search to locate the positions of elements.
Binary search offers a feature that many readymade map/dictionary implementations don't: finding non-exact matches.
For example, I've used binary search to implement geotagging of photos based on GPS logs: put all GPS waypoints in an array sorted by timestamp, and use binary search to identify the waypoint that lies closest in time to each photo's timestamp.
If you have a set of elements to find in an array you can either search for each of them linearly or sort the array and then use binary search with the same comparison predicate. The latter is much faster.