Prolog - partially ordered set - prolog

There is a partially ordered set relation le(X,Y), when Y mod X = 0
(so there are le(1,5), le(5,70), le(7,14) etc.)
I have to make predicates
max(X) is X maximum element
greatest(X) is X the greatest element
defining max(X) is simple, because
max(X) :- \+ le(X,A), le(B,X). (there isn't any greater element and X is in set)
But how about greatest(X)?

For the least upper bound (LUB), you need two sets. First the argument set S, that you are asking for the LUB, and then the partial order T where you are searching for the LUB. So input is as follows:
T the partial order
S the set, S subset T
The code is then very similar as for the max. Just use range restricted formulas, that search over the partial order. This works in ordinary Prolog for finite partial orders.
Here is your divisibility example:
?- [user].
ls(X,Y) :-
Y mod X =:= 0.
bound(M,Y) :-
\+ (member(X,M),
\+ls(X,Y)).
lub(S,T,Y) :-
member(Y,T), bound(S,Y),
\+ (member(Z,T), bound(S,Z),
\+ls(Y,Z)).
^D
And here are some example runs:
?- lub([3,2],[1,2,3,4,5,6,7,8,9,10],Y).
Y = 6 ;
false.
?- lub([5,3],[1,2,3,4,5,6,7,8,9,10],Y).
false.
?- lub([5,3],[1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20],Y).
Y = 15 ;
false.
The above very general algorithm is not the efficientest, it is of order m^2*n^2, where n is the size of S and m is the size of T. For infinite partial orders you would need to invent something with CLP(X).

Related

Recursion confuses me

I have understood the theory part of Recursion. I have seen exercises but I get confused. I've tried to solve some, some I understand and some I don't. This exercise is confusing me. I can't understand why, so I use comments to show you my weak points. I should have power (X,N,P) so P=X^N.
Some examples:
?- power(3,5,X).
X = 243
?- power(4,3,X).
X = 64
?- power(2,4,X).
X = 16
The solution of this exercise is: (See comments too)
power(X,0,1). % I know how works recursion,but those numbers 0 or 1 why?
power(X,1,X). % X,1,X i can't get it.
power(X,N,P) :- % X,N,P if only
N1 is N-1, % N1=N-1 ..ok i understand
power(X,N1,P1), % P1 is used to reach the the P
P is P1*X. % P = P1*X
What I know recursion, I use a different my example
related(X, Y) :-
parent(X, Z),
related(Z, Y).
Compare my example with the exercise. I could say that my first line, what I think. Please help me out with it is a lot of confusing.
related(X, Y) :- is similar to power(X,N,P) :- . Second sentence of my example parent(X, Z), is similar to N1 is N-1, and the third sentence is related(Z, Y). similar to power(X,N1,P1), and P is P1*X..
Let's go over the definition of the predicate step by step. First you have the fact...
power(X,0,1).
... that states: The 0th power of any X is 1. Then there is the fact...
power(X,1,X).
... that states: The 1st power of any X is X itself. Finally, you have a recursive rule that reads:
power(X,N,P) :- % P is the Nth power of X if
N1 is N-1, % N1 = N-1 and
power(X,N1,P1), % P1 is the N1th power of X and
P is P1*X. % P = P1*X
Possibly your confusion is due to the two base cases that are expressed by the two facts (one of those is actually superfluous). Let's consider the following queries:
?- power(5,0,X).
X = 1 ;
ERROR: Out of local stack
The answer 1 is certainly what we expect, but then the predicate loops until it runs out of stack. That's certainly not desirable. And this query...
?- power(5,1,X).
X = 5 ;
X = 5 ;
ERROR: Out of local stack
... yields the correct answer twice before running out of stack. The reason for the redundant answer is that the recursive rule can reduce any given N to zero and to one thus yielding the same answer twice. If you look at the structure of your recursive rule, it is obvious that the first base case is sufficient, so let's remove the second. The reason for looping out of stack is that, after N becomes zero, the recursive rule will search for other solutions (for N=-1, N=-2, N=-3,...) that do not exist. To avoid that, you can add a goal that prevents the recursive rule from further search, if N is equal to or smaller than zero. That leaves you with following definition:
power(X,0,1). % the 0th power of any X is 1
power(X,N,P) :- % P is the Nth power of X if
N > 0, % N > 0 and
N1 is N-1, % N1 = N-1 and
power(X,N1,P1), % P1 is the N1th power of X and
P is P1*X. % P = P1*X
Now the predicate works as expected:
?- power(5,0,X).
X = 1 ;
false.
?- power(5,1,X).
X = 5 ;
false.
?- power(5,3,X).
X = 125 ;
false.
I hope this alleviates some of your confusions.

Maximize distance between variables' value in SWI-Prolog(clpfd)

I want to maximize the difference between two variables:
:- use_module(library(clpfd)).
maximize(X) :-
X = [A,B],
X ins 1..5,
% I want to write a constraint to have maximum difference between A and B.
There is no constraint to express maximum difference. Nor any constraint to express a maximum1. To permit such a construct some form of quantification would be necessary. And/or problems with monotonicity would arise.
However, there is something related: you might want to generate values such that the largest value is produced first:
:- use_module(library(clpfd)).
maximize(Xs) :-
Xs = [A,B],
Xs ins 1..5,
labeling([max(abs(A-B))],Xs).
?- maximize(Xs).
Xs = [1,5]
; Xs = [5,1]
; Xs = [1,4]
; Xs = [2,5]
; Xs = [4,1]
; ... .
So it starts with the biggest distance and then lowers it one-by one.
At first this behavior might surprise you, but recall what the manual states
Labeling is always complete, always terminates, and yields no redundant solutions.
This is a very strong guarantee!
If you now want just the first solution, wrap a once/1 around labeling/2 but keep in mind that you then left the realm of pure, monotonic programs.
Footnote 1: It is possible to express the maximum of two variables max(X,Y) but this does not constrain the maximum to be the largest possible value! It will be only the largest value of X and Y.

Prolog Bubblesort

I'm trying to best understand everything about this code. This is how I currently perceive what's happening:
So I can see if X > Y we swap the elements, if not we recurse down the sublist until we find an X that X > Y, if we do not, then the list is sorted.
Problems I'm having is I don't really understand the base case, bubblesort(Sorted, Sorted). I thought you would need a base case for an empty list? I would really appreciate if someone could describe a sort of step by step description of this program.
bubblesort(List,Sorted) :-
swap(List,List1),
!,
bubblesort(List1,Sorted).
bubblesort(Sorted,Sorted).
swap([X,Y|Rest],[Y,X|Rest]) :- % swaps X with Y if gt(X,Y) is true.
gt(X,Y).
swap([Z|Rest],[Z|Rest1]) :- % calls swap on sublists excluding the heads.
swap(Rest,Rest1).
gt(X,Y) :- % true if X is greater than Y.
X > Y.

Prolog - sequence in list

We want to build a predicate that gets a list L and a number N and is true if N is the length of the longest sequence of list L.
For example:
?- ls([1,2,2,4,4,4,2,3,2],3).
true.
?- ls([1,2,3,2,3,2,1,7,8],3).
false.
For this I built -
head([X|S],X). % head of the list
ls([H|T],N) :- head(T,X),H=X, NN is N-1 , ls(T,NN) . % if the head equal to his following
ls(_,0) :- !. % get seq in length N
ls([H|T],N) :- head(T,X) , not(H=X) ,ls(T,N). % if the head doesn't equal to his following
The concept is simply - check if the head equal to his following , if so , continue with the tail and decrement the N .
I checked my code and it works well (ignore cases which N = 1) -
ls([1,2,2,4,4,4,2,3,2],3).
true ;
false .
But the true answer isn't finite and there is more answer after that , how could I make it to return finite answer ?
Prolog-wise, you have a few problems. One is that your predicate only works when both arguments are instantiated, which is disappointing to Prolog. Another is your style—head/2 doesn't really add anything over [H|T]. I also think this algorithm is fundamentally flawed. I don't think you can be sure that no sequence of longer length exists in the tail of the list without retaining an unchanged copy of the guessed length. In other words, the second thing #Zakum points out, I don't think there will be a simple solution for it.
This is how I would have approached the problem. First a helper predicate for getting the maximum of two values:
max(X, Y, X) :- X >= Y.
max(X, Y, Y) :- Y > X.
Now most of the work sequence_length/2 does is delegated to a loop, except for the base case of the empty list:
sequence_length([], 0).
sequence_length([X|Xs], Length) :-
once(sequence_length_loop(X, Xs, 1, Length)).
The call to once/1 ensures we only get one answer. This will prevent the predicate from usefully generating lists with sequences while also making the predicate deterministic, which is something you desired. (It has the same effect as a nicely placed cut).
Loop's base case: copy the accumulator to the output parameter:
sequence_length_loop(_, [], Length, Length).
Inductive case #1: we have another copy of the same value. Increment the accumulator and recur.
sequence_length_loop(X, [X|Xs], Acc, Length) :-
succ(Acc, Acc1),
sequence_length_loop(X, Xs, Acc1, Length).
Inductive case #2: we have a different value. Calculate the sequence length of the remainder of the list; if it is larger than our accumulator, use that; otherwise, use the accumulator.
sequence_length_loop(X, [Y|Xs], Acc, Length) :-
X \= Y,
sequence_length([Y|Xs], LengthRemaining),
max(Acc, LengthRemaining, Length).
This is how I would approach this problem. I don't know if it will be useful for you or not, but I hope you can glean something from it.
How about adding a break to the last rule?
head([X|S],X). % head of the list
ls([H|T],N) :- head(T,X),H=X, NN is N-1 , ls(T,NN) . % if the head equal to his following
ls(_,0) :- !. % get seq in length N
ls([H|T],N) :- head(T,X) , not(H=X) ,ls(T,N),!. % if the head doesn't equal to his following
Works for me, though I'm no Prolog expert.
//EDIT: btw. try
14 ?- ls([1,2,2,4,4,4,2,3,2],2).
true ;
false.
Looks false to me, there is no check whether N is the longest sequence. Or did I get the requirements wrong?
Your code is checking if there is in list at least a sequence of elements of specified length. You need more arguments to keep the state of the search while visiting the list:
ls([E|Es], L) :- ls(E, 1, Es, L).
ls(X, N, [Y|Ys], L) :-
( X = Y
-> M is N+1,
ls(X, M, Ys, L)
; ls(Y, 1, Ys, M),
( M > N -> L = M ; L = N )
).
ls(_, N, [], N).

prolog function returning memory locations instead of values

just started programming with prolog and I'm having a few issues. The function I have is supposed to take a value X and copy it N number of times into M. My function returns a list of N number of memory locations. Here's the code, any ideas?
duple(N,_,M):- length(M,Q), N is Q.
duple(N,X,M):- append(X,M,Q), duple(N,X,Q).
Those are not memory adresses. Those are free variables. What you see is their internal names in your prolog system of choice. Then, as #chac pointed out (+1 btw), the third clause is not really making sense! Maybe you can try to tell us what you meant so that we can bring light about how to do it correctly.
I'm going to give you two implementations of your predicate to try to show you correct Prolog syntax:
duple1(N, X, L) :-
length(L, N),
maplist(=(X), L).
Here, in your duple1/3 predicate, we tell prolog that the length of the resulting list L is N, and then we tell it that each element of L should be unified with X for the predicate to hold.
Another to do that would be to build the resulting list "manually" through recursion:
duple2(0, _X, []).
duple2(N, X, [X|L]) :-
N > 0,
NewN is N - 1,
duple1(NewN, X, L).
Though, note that because we use >/2, is and -/2, ie arithmetic, we prevent prolog from using this predicate in several ways, such as:
?- duple1(X, Y, [xyz, xyz]).
X = 2,
Y = xyz.
This worked before, in our first predicate!
Hope this was of some help.
I suppose you call your predicate, for instance, in this way:
?- duple(3,xyz,L).
and you get
L = [_G289, _G292, _G295] ;
ERROR: Out of global stack
If you try
?- length(X,Y).
X = [],
Y = 0 ;
X = [_G299],
Y = 1 ;
X = [_G299, _G302],
Y = 2 ;
X = [_G299, _G302, _G305],
Y = 3 ;
X = [_G299, _G302, _G305, _G308],
Y = 4 .
...
you can see what's happening:
your query will match the specified *M*, displaying a list of M uninstantiated variables (memory locations), then continue backtracking and generating evee longer lists 'til there is stack space. Your second rule will never fire (and I don't really understand its purpose).
A generator is easier to write in this way:
duple(N,X,M) :- findall(X,between(1,N,_),M).
test:
?- duple(3,xyz,L).
L = [xyz, xyz, xyz].

Resources