MapReduce sorting with heap - hadoop

I am trying to analyze the social network data which contains follower and followee pairs. I want to find the top 10 users who have the most followees using MapReduce.
I made pairs of userID and number_of_followee with one MapReduce step.
With this data, however, I am not sure how to sort them in distributed systems.
I am not sure how priority queue can be used in either of Mappers and Reducers since they have the distributed data.
Can someone explain me how I can use data structures to sort the massive data?
Thank you very much.

If you have big input file (files) of format user_id = number_of_followers, simple map-reduce algorithm to find top N users is:
each mapper processes its own input and finds top N users in its file, writes them to a single reducer
single reducer receives number_of_mappers * N rows and finds top N users among them

To Sort the data in descending order, you need another mapreduce job. The Mapper would emit "number of followers" as key and twitter handle as value.
class SortingMap extends Map<LongWritable, Text, LongWritable, Text> {
private Text value = new Text();
private LongWritable key = new LongWritable(0);
#Overwrite
public void map(LongWritable key, Text value, Context context) throws IOException {
String line = value.toString();
// Assuming that the input data is "TweeterId <number of follower>" separated by tab
String tokens[] = value.split(Pattern.quote("\t"));
if(tokens.length > 1) {
key.set(Long.parseLong(tokens[1]));
value.set(tokens[0]);
context.write(key, value);
}
}
}
For reducer, use IdentityReducer<K,V>
// SortedComparator Class
public class DescendingOrderKeyComparator extends WritableComparator {
#Override
public int compare(WritableComparable w1, WritableComparable w2) {
return -1 * w1.compareTo(w2);
}
}
In the Driver Class, set SortedComparator
job.setSortComparatorClass(DescendingOrderKeyComparator.class);

Related

Can we get all the column names from an HBase table?

Setup:
I have an HBase table, with 100M+ rows and 1 Million+ columns. Every row has data for only 2 to 5 columns. There is in just 1 Column Family.
Problem:
I want to find out all the distinct qualifiers (columns) in this column family. Is there a quick way to do that?
I can think of about scanning the whole table, then getting familyMap for each row, get qualifier and add it to a Set<>. But that would be awfully slow, as there are 100M+ rows.
Can we do any better?
You can use a mapreduce for this. In this case you don't need to install a custom libs for hbase as in case for coprocessor.
Below a code for creating a mapreduce task.
Job setup
Job job = Job.getInstance(config);
job.setJobName("Distinct columns");
Scan scan = new Scan();
scan.setBatch(500);
scan.addFamily(YOU_COLUMN_FAMILY_NAME);
scan.setFilter(new KeyOnlyFilter()); //scan only key part of KeyValue (raw, column family, column)
scan.setCacheBlocks(false); // don't set to true for MR jobs
TableMapReduceUtil.initTableMapperJob(
YOU_TABLE_NAME,
scan,
OnlyColumnNameMapper.class, // mapper
Text.class, // mapper output key
Text.class, // mapper output value
job);
job.setNumReduceTasks(1);
job.setReducerClass(OnlyColumnNameReducer.class);
job.setReducerClass(OnlyColumnNameReducer.class);
Mapper
public class OnlyColumnNameMapper extends TableMapper<Text, Text> {
#Override
protected void map(ImmutableBytesWritable key, Result value, final Context context) throws IOException, InterruptedException {
CellScanner cellScanner = value.cellScanner();
while (cellScanner.advance()) {
Cell cell = cellScanner.current();
byte[] q = Bytes.copy(cell.getQualifierArray(),
cell.getQualifierOffset(),
cell.getQualifierLength());
context.write(new Text(q),new Text());
}
}
}
Reducer
public class OnlyColumnNameReducer extends Reducer<Text, Text, Text, Text> {
#Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
context.write(new Text(key), new Text());
}
}
HBase can be visualised as a distributed NavigableMap<byte[], NavigableMap<byte[], NavigableMap<byte[], NavigableMap<Long, byte[]>>>>
There is no "metadata" (say something centrally stored in the master node) about the list of all qualifiers that's available in all region servers.
So if you have a one-time use-case, the only way for you would be to scan through the entire table and add the qualifier names in a Set<>, like you mentioned.
If this is a repeat use-case (plus if you have the discretion to add components to your tech stack), you may want to consider adding Redis. Set of qualifiers can be maintained in a distributed fashion using a Redis Set.
HBase Coprocessors can be used for this scenario. You can write custom EndPoint implementation which works like Stored Procedures in RDBMS. It executes your code on server side and get distinct columns for each region. On client you can get the distinct columns across all regions.
Performance Benefit: All columns are not transferred to the client which results in reduced network calls.

Hashmap in each mapper should be used in a single reducer

In one of my class im using HashMap.Im calling that class inside my mapper. So now each mapper has its own HashMap. Now can i use all the HashMaps into a single reducer? Actually my HashMap contains Key as my filename and value is the Set.So each HashMap contains a filename and a Set. Now i want to use all the HashMap caontaining same filename and want to club all the values(Sets) and then write that HashMap into my Hdfs file
Yes you can do that. If your mapper is giving an output in the form of hashmap then you can use Hadoop's MapWritable as your value of mapper.
For e.g.
public class MyMapper extends Mapper<LongWritable, Text, Text, MapWritable>
you have to convert your Hashmap into MapWritable format:
MapWritable mapWritable = new MapWritable();
for (Map.Entry<String,String> entry : yourHashMap.entrySet()) {
if(null != entry.getKey() && null != entry.getValue()){
mapWritable.put(new Text(entry.getKey()),new Text(entry.getValue()));
}
}
Then provide the mapwritable to your context:
ctx.write(new Text("my_key",mapWritable);
For Reducer class you have take MapWritable as your input value
public class MyReducer extends Reducer<Text, MapWritable, Text, Text>
public void reduce(Text key, Iterable<MapWritable> values, Context ctx) throws IOException, InterruptedException
Then iterate through the map and extract the values the way you want. For e.g:
for (MapWritable entry : values) {
for (Entry<Writable, Writable> extractData: entry.entrySet()) {
//your logic for the data will go here.
}
}

Use two Mappers on same file simultaneously in Hadoop

Assuming there is a file and two different independent mappers to be executed upon that file in parallel. To do that we require to use a copy of the file.
What I want to know is "Is it possible to use same file for the two mappers" which in turn will reduce the resources utilization and make the system time efficient.
Is there any research in this area or any existing tool in Hadoop which can help in overcoming this.
Assuming that both Mappers have the same K,V signature, you could use a delegating mapper and then call the map method of your two mappers:
public class DelegatingMapper extends Mapper<LongWritable, Text, Text, Text> {
public Mapper<LongWritable, Text, Text, Text> mapper1;
public Mapper<LongWritable, Text, Text, Text> mapper2;
protected void setup(Context context) {
mapper1 = new MyMapper1<LongWritable, Text, Text, Text>();
mapper1.setup(context);
mapper2 = new MyMapper1<LongWritable, Text, Text, Text>();
mapper2.setup(context);
}
public void map(LongWritable key, Text value, Context context) {
// your map methods will need to be public for each class
mapper1.map(key, value, context);
mapper2.map(key, value, context);
}
protected void cleanup(Context context) {
mapper1.cleanup(context);
mapper2.cleanup(context);
}
}
On a high level, there are 2 scenarios I could imagine with the question in hand.
Case 1:
If you are trying to write the SAME implementation in both Mapper classes to process the same input file with the sole aim of efficient resource utilization, this probably isn't the correct approach. Because, when a file is saved in the cluster it gets divided into blocks and replicated across data nodes.
This basically gives you the most efficient resource utilization as all the data blocks for the same input file are processed in PARALLEL.
Case 2:
If you are trying to write two DIFFERENT Mapper implementations (with their own business logic), for some particular workflow you want to execute based on your business requirements. Yes, you can pass the same input file to two different mappers using MultipleInputs class.
MultipleInputs.addInputPath(job, file1, TextInputFormat.class, Mapper1.class);
MultipleInputs.addInputPath(job, file1, TextInputFormat.class, Mapper2.class);
This could only be a workaround based on what you want to implement.
Thanks.

Hadoop Map Reduce , How to combine first reducer output and first map input , as input for second mapper?

I need to implement a functionality using map reduce.
Requirement is mentioned below.
Input for the mapper is a file containing two columns productId , Salescount
Reducers output , sum of salescount
Requirement is I need to calculate salescount / sum(salescount).
For this I am planing to use nested map reduce.
But for the second mapper I need to use first reducers output and first map's input.
How Can I implement this. Or is there any alternate way ?
Regards
Vinu
You can use ChainMapper and ChainReducer to PIPE Mappers and Reducers the way you want. Please have a look at here
The following will be similar to the code snippet you would need to implement
JobConf mapBConf = new JobConf(false);
JobConf reduceConf = new JobConf(false);
ChainMapper.addMapper(conf, FirstMapper.class, FirstMapperInputKey.class, FirstMapperInputValue.class,
FirstMapperOutputKey.class, FirstMapperOutputValue.class, false, mapBConf);
ChainReducer.setReducer(conf, FirstReducer.class, FirstMapperOutputKey.class, FirstMapperOutputValue.class,
FirstReducerOutputKey.class, FirstReducerOutputValue.class, true, reduceConf);
ChainReducer.addMapper(conf, SecondMapper.class, FirstReducerOutputKey.class, FirstReducerOutputValue.class,
SecondMapperOutputKey.class, SecondMapperOutputValue.class, false, null);
ChainReducer.setReducer(conf, SecondReducer.class, SecondMapperOutputKey.class, SecondMapperOutputValue.class, SecondReducerOutputKey.class, SecondReducerOutputValue.class, true, reduceConf);
or if you don't want to use multiple Mappers and Reducers you can do the following
public static class ProductIndexerMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, LongWritable> {
private static Text productId = new Text();
private static LongWritable salesCount = new LongWritable();
#Override
public void map(LongWritable key, Text value,
OutputCollector<Text, LongWritable> output, Reporter reporter)
throws IOException {
String[] values = value.toString().split("\t");
productId.set(values[0]);
salesCount.set(Long.parseLong(values[1]));
output.collect(productId, salesCount);
}
}
public static class ProductIndexerReducer extends MapReduceBase implements Reducer<Text, LongWritable, Text, LongWritable> {
private static LongWritable productWritable = new LongWritable();
#Override
public void reduce(Text key, Iterator<LongWritable> values,
OutputCollector<Text, LongWritable> output, Reporter reporter)
throws IOException {
List<LongWritable> items = new ArrayList<LongWritable>();
long total = 0;
LongWritable item = null;
while(values.hasNext()) {
item = values.next();
total += item.get();
items.add(item);
}
Iterator<LongWritable> newValues = items.iterator();
while(newValues.hasNext()) {
productWritable.set(newValues.next().get()/total);
output.collect(key, productWritable);
}
}
}
`
With the usecase in hand, I believe we don't need two different mappers/mapreduce jobs to achieve this. (As an extension to the answer given in above comments)
Lets assume you have a very large input file split into multiple blocks in HDFS. When you trigger a MapReduce job with this file as input, multiple mappers(equal to the number of input blocks) will start execution in parallel.
In your mapper implementation, read each line from input and write the productId as key and the saleCount as value to context. This data is passed to the Reducer.
We know that, in a MR job all the data with the same key is passed to the same reducer. Now, in your reducer implementation you can calculate the sum of all saleCounts for a particular productId.
Note: I'm not sure about the value 'salescount' in your numerator.
Assuming that its the count of number of occurrences of a particular product, please use a counter to add and get the total sales count in the same for loop where you are calculating the SUM(saleCount). So, we have
totalCount -> Count of number of occurrences of a product
sumSaleCount -> Sum of saleCount value for each product.
Now, you can directly divide the above values: totalCount/sumSaleCount.
Hope this helps! Please let me know if you have a different use case in mind.

Hadoop - composite key

Suppose I have a tab delimited file containing user activity data formatted like this:
timestamp user_id page_id action_id
I want to write a hadoop job to count user actions on each page, so the output file should look like this:
user_id page_id number_of_actions
I need something like composite key here - it would contain user_id and page_id. Is there any generic way to do this with hadoop? I couldn't find anything helpful. So far I'm emitting key like this in mapper:
context.write(new Text(user_id + "\t" + page_id), one);
It works, but I feel that it's not the best solution.
Just compose your own Writable. In your example a solution could look like this:
public class UserPageWritable implements WritableComparable<UserPageWritable> {
private String userId;
private String pageId;
#Override
public void readFields(DataInput in) throws IOException {
userId = in.readUTF();
pageId = in.readUTF();
}
#Override
public void write(DataOutput out) throws IOException {
out.writeUTF(userId);
out.writeUTF(pageId);
}
#Override
public int compareTo(UserPageWritable o) {
return ComparisonChain.start().compare(userId, o.userId)
.compare(pageId, o.pageId).result();
}
}
Although I think your IDs could be a long, here you have the String version. Basically just the normal serialization over the Writable interface, note that it needs the default constructor so you should always provide one.
The compareTo logic tells obviously how to sort the dataset and also tells the reducer what elements are equal so they can be grouped.
ComparisionChain is a nice util of Guava.
Don't forget to override equals and hashcode! The partitioner will determine the reducer by the hashcode of the key.
You could write your own class that implements Writable and WritableComparable that would compare your two fields.
Pierre-Luc Bertrand

Resources