graphics shows me the figures with a black background, but when they are saved in the folder I defined, they are saved with a white background - matlab-figure

Why at the time of graphing shows me the figures with a black background, but when they are saved in the folder I defined, they are saved with a white background?
i am using:
figure(1)
pcolor(X./1000,Y./1000,real(Var))
title(['RR [mm/h] - ', datestr(time(ii)), ' EL = ' ,num2str(elv)])
shading flat
caxis([0 30])
axis([-60 60 -60 60])
colorbar
colormap(jet)
set(gca,'Color','k')
path='A:\Documentos\IGP\Radar PX_1000\Plots\260218\';
gfile=[path,'R',datestr(time(ii),'ddmmyy_HHMMSS')]
print(gfile,'-dpng','-r300')

print does some funny things to figures when it saves them (I believe using a white background is one of them). If you're looking to replicate what the image looks like in final output, I'd recommend export_fig. From the documentation at the link:
Note that the background color and figure dimensions are reproduced (the latter approximately, and ignoring cropping & magnification) in the output file.

Related

How can I split an image into multiple files with an action in photoshop?

I use Stamps.com to print shipping labels that are 2.4" wide. Stamps.com unfortunately will only generate a pdf of this size label with 4 labels on the sheet. It is not paginated, and will not print sequentially. Their template assumes you will print it out on an 8.5" x 11" label sheet and peel off from there. Four Label 8.5x`11 sheet
I want to print on a thermal, continuous roll printer which cuts each label out automatically. To have this work I need each label to be one page, and the pdf with four labels split into four cropped files of 2.4" x 8.5". Any ideas?
I have failed so far in making an action in both acrobat, and photoshop. Should I be looking into solving this programmatically outside of photoshop?
I would be inclined to do that with ImageMagick which is installed on most Linux distros and is available for OSX and Windows.
Unfortunately, you haven't provided a sensible sample image, so I'll provide a fake one. I have made the border yellow intentionally so you can see it on StackOverflow's white page layout.
Just at the command line in the Terminal, you would want to set the default density so that when ImageMagick rasterises the image it retains its quality. The [0] refers to the first page of the PDF. Then you would want to trim off the border - whatever colour it is (+/- a small fuzz factor to allow for variations in image encoding) and then tile into 4 equal horizontal strips. So, your command would be:
convert -density 240 stamps.pdf[0] fuzz 20% -trim -crop x4# f-%d.jpg
and you will get 4 files out, called f-0.jpg, f-1.jpg, f-2.jpg and f-3.jpg

Matlab gui image incorrectly blue

I am creating a GUI containing an image using the following code:
try
Imagenamehere = imread('Imagenamehere.jpg');
axes(handles.Logo)
image(Imagenamehere)
set(gca,'xtick',[],'ytick',[])
catch
msgbox('Please download all contents from the zipped file into working directory.')
end
The image shows up but for some reason is completely coloured blue as if put through a blue filter. I don't think it would be wise to upload the image but it is a simple logo coloured black and white.
Anyone know what could be causing this?
Check the size, type (probably uint8) and range of your image. It sounds like for some reason your images are being displayed with colormap as jet (the default), and possibly also that your range is not what MATLAB expects (e.g. 0 to 1 not 0 to 255), resulting in all your values being relatively low (blue on the jet colormap).
"black and white" is just one way of interpreting an image file which contains only two colors. MATLAB makes several assumptions when you pass data into a display function like image. If you don't specify colormap and image data range, it will make a guess based off things like data type.
One possibility is that your logo file is an indexed image. In these cases you need to do:
[Imagenamehere map] = imread('Imagenamehere.jpg');
colormap(map);

Matplotlib Plots Lose Transparency When Saving as .ps/.eps

I'm having an issue with attempting to save some plots with transparent ellipsoids on them if I attempt to save them with .ps/.eps extensions.
Here's the plot saved as a .png:
If I choose to save it as a .ps/.eps here is what it looks like:
How I got around this, was to use ImageMagick to convert the original png to a ps. The only problem is that the image in png format is about 90k, and it becomes just under 4M after conversion. This is not good since I have a lot of these images, and it will take too much time to compile my latex document. Does anyone have a solution to this?
The problem is that eps does not support transparencies natively.
There are few options:
rasterize the image and embed in a eps file (like #Molly suggests) or exporting to pdf and converting with some external tool (like gs) (which usually relies as well on rasterization)
'mimic' transparency, giving a colour that looks like the transparent one on a given background.
I discussed this for sure once on the matplotlib mailing list, and I got the suggestion to rasterize, which is not feasible as you get either pixellized or huge figures. And they don't scale very nicely when put into, e.g., a publication.
I personally use the second approach, and although not ideal, I found it good enough. I wrote a small python script that implements the algorithm from this SO post to obtain a solid RGB representation of a colour with a give transparency
EDIT
In the specific case of your plot try to use the zorder keyword to order the parts plotted. Try to use zorder=10 for the blue ellipse, zorder=11 for the green and zorder=12 for the hexbins.
This way the blue should be below everything, then the green ellipse and finally the hexbins. And the plot should be readable also with solid colors. And if you like the shades of blue and green that you have in png, you can try to play with mimic_alpha.py.
EDIT 2
If you are 100% sure that you have to use eps, there are a couple of workarounds that come to my mind (and that are definitely uglier than your plot):
Just draw the ellipse borders on top of the hexbins.
Get centre and amplitude of each hexagon, (possibly discard all zero bins) and make a scatter plot using the same colour map as in hexbin and adjusting the marker size and shape as you like. You might want to redraw the ellipses borders on top of that
Another alternative would be to save them to pdf
savefig('myfigure.pdf')
That works with pdflatex, if that was the reason why you needed to use eps and not svg.
You can rasterize the figure before saving it to preserve transparency in the eps file:
ax.set_rasterized(True)
plt.savefig('rasterized_fig.eps')
I had the same problem. To avoid rasterizing, you can save the image as a pdf and then run (on unixish systems at least) in a terminal:
pdftops -eps my.pdf my.eps
Which gives a .eps file as output.
I solved this by:
1) adding a set_rasterization_zorder(1) when defining the figure area:
fxsize=16
fysize=8
f = figure(num=None, figsize=(fxsize, fysize), dpi=180, facecolor='w',
edgecolor='k')
plt.subplots_adjust(
left = (18/25.4)/fxsize,
bottom = (13/25.4)/fysize,
right = 1 - (8/25.4)/fxsize,
top = 1 - (8/25.4)/fysize)
subplots_adjust(hspace=0,wspace=0.1)
#f.suptitle('An overall title', size=20)
gs0 = gridspec.GridSpec(1, 2)
gs11 = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs0[0])
ax110 = plt.Subplot(f, gs11[0,0])
f.add_subplot(ax110)
ax110.set_rasterization_zorder(1)
2) a zorder=0 in each alpha=anynumber in the plot:
ax110.scatter(xs1,ys1 , marker='o', color='gray' , s=1.5,zorder=0,alpha=0.3)#, label=label_bg)
and
3) finally a rasterized=True when saving:
P.savefig(str(PLOTFILENAME)+'.eps', rasterized=True)
Note that this may not work as expected with the transparent keyword to savefig because an RGBA colour with alpha<1 on transparent background will be rendered the same as the RGB colour with alpha=1.
As mentioned above, the best and easiest choice (if you do not want to loose resolution) is to rasterized the figure
f = plt.figure()
f.set_rasterized(True)
ax = f.add_subplot(111)
ax.set_rasterized(True)
f.savefig('figure_name.eps',rasterized=True,dpi=300)
This way, you can manage the size by dpi option as well. In fact, you can also play with the zorder below you want to apply the rasterization:
ax.set_rasterization_zorder(0)
Note: It is important to keep f.set_rasterized(True) when you use plt.subplot and plt.subplot2grid functions. Otherwise, label and tick area will not appear in the .eps file
My solution is to export the plot as .eps, load it up to Inkscape for example, then Ungroup the plot, select the object that I want to set the transparency and just edit the Opacity of the Fill in the "Fill and Stroke" tab.
You can save the file as .svg if you want to tweak it later, or export the image for a publication.
If you are writing the academic paper in latex, I would recommend you export the .pdf file rather than .eps. The .pdf format supports transparency perfectly and has good compression efficiency, and most importantly, can be easily edited in Adobe Illustrator.
If you wanna further edit the graph (NOT EDITING DATA! I MEAN, FOR GOOD-LOOKING), you could open the exported graph, in Adobe Acrobat - Edit - Copy elements into Adobe Illustrator. The two software can handle everything perfectly.
I work happily with this method. Everything clear, editable and small-size. Hope can help.

PostScript on a Dymo labelwriter

I'm trying to print a postscript file to a Dymo LabelWriter (tried a LabelWriter 450 and LabelWriter 330-Turbo), i'm getting it trough ok, but the margin seems to be way to high, 1/3 of the label isn't printable (see pic, the black square is supposed to cover the entire label over the width).
The label is 89mm on 39mm (so 252pt x 123pt)
I'm using a boundig box of 8 8 252 123 and the page orientation is set to portrait.
I even tested it with an eps-file generated from Gimp, it leaves the same area blank.
anyone has an idea why it isn't printing correctly?
EDIT:
The file can be viewed here : http://pastebin.com/c7YC5ftb
The command I use to print it on a Dymo LabelWriter is:
C:\ps\gswin32c.exe -sDEVICE=mswinpr2 -dNoCancel -dNOPAUSE -dSAFER -sOutputFile="%%printer%%DYMO LabelWriter 450" -q "C:\ps\dymo.ps" -c quit
Not without seeing the PostScript file, no. I don't see from the Dymo web site that the printer accepts PostScript input, so how are you sending the PostScript file to it ?
Added in response to edits in the question.
Well its not absolutely clear to me what you expect this to look like.
Your original comment refers to a black square, but the PostScript doesn't contain a black square, it draws a rectangle with an aspect ratio of 20:1. You have set the media up to be wider than it is long (252,123) but you then use the Orientation to rotate the content by 270 degrees. Its true this is portrait, but upside down. If you want portrait why not just set the media to be portrait ?
Simply put the origin is the corner directly above your thumb in the photograph, and I think the long and short sides of the print are reversed with respect to the actual label.
Note that the BoundingBox comment is a comment and is ignored by the PostScript interpreter so changing it has no effect.
Perhaps if you could explain what you are trying to achieve ?
Problem is solved, the printer wasn't set to accept this type of labels
If you ever have this problem go the advanced settings of your printer driver and set the label.

Embedding matlab plot in pdf for printing: Sizes

I'm currently creating my figures in matlab to embed themvia latex into a pdf for later printing. I save the figures and save them via the script export_fig! Now I wonder which is the best way to go:
Which size of the matlab figure window to chose
Which -m option to take for the script? It will change the resolution and the size of the image...
I'm wondering about those points in regards to the following two points:
When chosing the figure-size bigger, there are more tickmarks shown and the single point markers are better visible
When using a small figure and using a big -m option, I still have only some tickmarks
When I generate a image which is quite huge (e.g. resolution 300 and still 2000*2000px) and than embed it into the document: Does this than look ugly? Will this be embedded in a nice scaling mode or is it the same ugliness as if you upload a 1000*1000px image onto a homepage and embed it via the widht and height tags in html -> the browser displays it quite ugly because the browser doesn't do a real resize. So it looks unsharp and ugly.
Thanks in advance!
The MATLAB plots are internally described as vector graphics, and PDF files are also described using vector graphics. Rendering the plot to a raster format is a bad idea, because you end up having to choose resolution and end up with bigger files.
Just save the plot to EPS format, which can be directly embedded into a PDF file using latex. I usually save my MATLAB plots for publication using:
saveas(gcf, 'plot.eps', 'epsc');
and embed them directly into my latex file using:
\includegraphics[width=0.7\linewidth]{plot.eps}
Then, you only need to choose the proportion of the line the image is to take (in this case, 70%).
Edit: IrfanView and others (XnView) don't display EPS very well. You can open them in Adobe Illustrator to get a better preview of what it looks like. I always insert my plots this way and they always look exactly the same in the PDF as in MATLAB.
One bonus you also get with EPS is that you can actually specify a font size so that the text is readable even when you resize the image in the document.
As for the number of ticks, you can look at the axes properties in the MATLAB documentation. In particular, the XTick and YTick properties are very useful manually controlling how many ticks appear no matter what the window resolution is.
Edit (again): If you render the image to a raster format (such as PNG), it is preferable to choose the exact same resolution as the one used in the document. Rendering a large image (by using a big window size) and making it small in the PDF will yield bad results mainly because the size of the text will scale directly with the size of the image. Rendering a small image will obviously make for a very bad effect because of stretching.
That is why you should use a vector image format. However, the default MATLAB settings for figures produce some of the same problems as raster images: text size is not specified as a font size and the number of ticks varies with the window size.
To produce optimal plots in the final render, follow the given steps:
Set the figure's font size to a decent setting (e.g. 11pt)
Render the plot
Decide on number of ticks to get a good effect and set the ticks manually
Render the image to color EPS
In MATLAB code, this should look somewhat like the following:
function [] = nice_figure ( render )
%
% invisible figure, good for batch renders.
f = figure('Visible', 'Off');
% make plots look nice in output PDF.
set(f, ...
'DefaultAxesFontSize', 11, ...
'DefaultAxesLineWidth', 0.7, ...
'DefaultLineLineWidth', 0.8, ...
'DefaultPatchLineWidth', 0.7);
% actual plot to render.
a = axes('Parent', f);
% show whatever it is we need to show.
render(a);
% save file.
saveas(f, 'plot.eps', 'epsc');
% collect garbarge.
close(f);
end
Then, you can draw some fancy plot using:
function [] = some_line_plot ( a )
%
% render data.
x = -3 : 0.001 : +3;
y = expm1(x) - x - x.^2;
plot(a, x, y, 'g:');
title('f(x)=e^x-1-x-x^2');
xlabel('x');
ylabel('f(x)');
% force use of 'n' ticks.
n = 5;
xlimit = get(a, 'XLim');
ylimit = get(a, 'YLim');
xticks = linspace(xlimit(1), xlimit(2), n);
yticks = linspace(ylimit(1), ylimit(2), n);
set(a, 'XTick', xticks);
set(a, 'YTick', yticks);
end
And render the final output using:
nice_figure(#some_line_plot);
With such code, you don't need to worry about the window size at all. Notice that I haven't even showed the window for you to play with its size. Using this code, I always get beautiful output and small EPS and PDF file sizes (much smaller than when using PNG).
The only thing this solution does not address is adding more ticks when the plot is made larger in the latex code, but that can't be done anyways.

Resources