Micro-services architecture, need advise - microservices

We are working on a system that is supposed to 'run' jobs on distributed systems.
When jobs are accepted they need to go through a pipeline before they can be executed on the end system.
We've decided to go with a micro-services architecture but there one thing that bothers me and i'm not sure what would be the best practice.
When a job is accepted it will first be persisted into a database, then - each micro-service in the pipeline will do some additional work to prepare the job for execution.
I want the persisted data to be updated on each such station in the pipeline to reflect the actual state of the job, or the its status in the pipeline.
In addition, while a job is being executed on the end system - its status should also get updated.
What would be the best practice in sense of updating the database (job's status) in each station:
Each such station (micro-service) in the pipeline accesses the database directly and updates the job's status
There is another micro-service that exposes the data (REST) and serves as DAL, each micro-service in the pipeline updates the job's status through this service
Other?....
Help/advise would be highly appreciated.
Thanx a lot!!

To add to what was said by #Anunay and #Mohamed Abdul Jawad
I'd consider writing the state from the units of work in your pipeline to a view (table/cache(insert only)), you can use messaging or simply insert a row into that view and have the readers of the state pick up the correct state based on some logic (date or state or a composite key). as this view is not really owned by any domain service it can be available to any readers (read-only) to consume...

Consider also SAGA Pattern
A Saga is a sequence of local transactions where each transaction updates data within a single service. The first transaction is initiated by an external request corresponding to the system operation, and then each subsequent step is triggered by the completion of the previous one.
http://microservices.io/patterns/data/saga.html
https://dzone.com/articles/saga-pattern-how-to-implement-business-transaction
https://medium.com/#tomasz_96685/saga-pattern-and-microservices-architecture-d4b46071afcf

If you would like to code the workflow:
Micorservice A which accepts the Job and command for update the job
Micorservice B which provide read model for the Job
Based on JobCreatedEvents use some messaging queue and process and update the job through queue pipelines and keep updating JobStatus through every node in pipeline.
I am assuming you know things about queues and consumers.
Myself new to Camunda(workflow engine), that might be used not completely sure

accessing some shared database between microservices is highly not recommended as this will violate the basic rule of microservices architecture.
microservice must be autonomous and keep it own logic and data
also to achive a good microservice design you should losely couple your microservices

Multiple microservices accessing the database is not recommended. Here you have the case where each of the service needs to be triggered, then they update the data and then some how call the next service.
You really need a mechanism to orchestrate the services. A workflow engine might fit the bill.
I would however suggest an event driven system. I might be going beyond with a limited knowledge of the data that you have. Have one service that gives you basic crud on data and other services that have logic to change the data (I would at this point would like to ask why you want different services to change the state, if its a biz req, its fine) Once you get the data written just create an event to which services can subscribe and react to it.
This will allow you to easily add more states to your pipeline in future.
You will need a service to manage the event queue.
As far as logging the state of the event was concerned it can be done easily by logging the events.
If you opt for workflow route you may use Amazon SWF or Camunda or really there quite a few options out there.
If going for the event route you need to look into event driven system in mciroservies.

Related

Should we store Events in a database? (Event Driven Design)

We have several services that publishes and subscribes to Domain Events. What we usually do is log events whenever we publish and log events whenever we process events. We basically use this to apply choreography pattern.
We are not doing Event Sourcing in these systems, and there's no programmatic use for them after publishing/processing. That's the main driver we opted not to store these in a durable container, like a database or event store.
Question is, are we missing some fundamental thing by doing this?
Is storing Events a must?
I consider queued messages as system messages, even if they represent some domain event in an event-driven architecture (pub/sub messaging).
There is absolutely no hard-and-fast rule about their storage. If you would like to keep them around you could have your messaging mechanism forward them to some auditing endpoint for storage and then remove them after some time (if necessary).
You are not missing anything fundamental by not storing them.
You're definitely not missing out on anything (but there is a catch) especially if that's not a need by the business. An Event-Sourced System would definitely store all the events generated by the system into a database (or any other event-store)
The main use of an event store is to be able to restore the state of the system to the current state in case of a failure by replaying messages. To make this process of recovery faster we have snapshots.
In your case since these events are just are only relevant until the process is completed, it would not make sense to store them until you have a failure. (this is the catch) especially in a Distributed Transaction case scenario.
What I would suggest?
Don't store the event themselves but log the relevant details about these events and maybe use an ELK stack or Grafana to store these logs.
Use either the Saga Pattern or the Routing Slip pattern in case of a Distributed Transaction and log them as well.
In case a failure occurs while processing an event, put that event into an exception queue and handle it. If it's a part of a distributed transaction make sure either they all have the same TransactionId or they have a CorrelationId so you can lookup for logs and save your system.
For reliably performing your business transactions in a distributed archicture you somehow need to make sure that your events are published at least once.
So a service that publishes events needs to persist such an event within the same transaction that causes it to get created.
Considering you are publishing an event via infrastructure services (e.g. a messaging service) you can not rely on it being available all the time.
Also, your own service instance could go down after persisting your newly created or changed aggregate but before it had the chance to publish the event via, for instance, a messaging service.
Question is, are we missing some fundamental thing by doing this? Is storing Events a must?
It doesn't matter that you are not doing event sourcing. Unless it is okay from the business perspective to sometimes lose an event forever you need to temporarily persist your event with your local transaction until it got published.
You can look into the Transactional Outbox Pattern to achieve reliable event publishing.
Note: Logging/tracking your events somehow for monitoring or later analyzing/reporting purpose is a different thing and has another motivation.

Microservice failure Scenario

I am working on Microservice architecture. One of my service is exposed to source system which is used to post the data. This microservice published the data to redis. I am using redis pub/sub. Which is further consumed by couple of microservices.
Now if the other microservice is down and not able to process the data from redis pub/sub than I have to retry with the published data when microservice comes up. Source can not push the data again. As source can not repush the data and manual intervention is not possible so I tohught of 3 approaches.
Additionally Using redis data for storing and retrieving.
Using database for storing before publishing. I have many source and target microservices which use redis pub/sub. Now If I use this approach everytime i have to insert the request in DB first than its response status. Now I have to use shared database, this approach itself adding couple of more exception handling cases and doesnt look very efficient to me.
Use kafka inplace if redis pub/sub. As traffic is low so I used Redis pub/sub and not feasible to change.
In both of the above cases, I have to use scheduler and I have a duration before which I have to retry else subsequent request will fail.
Is there any other way to handle above cases.
For the point 2,
- Store the data in DB.
- Create a daemon process which will process the data from the table.
- This Daemon process can be configured well as per our needs.
- Daemon process will poll the DB and publish the data, if any. Also, it will delete the data once published.
Not in micro service architecture, But I have seen this approach working efficiently while communicating 3rd party services.
At the very outset, as you mentioned, we do indeed seem to have only three possibilities
This is one of those situations where you want to get a handshake from the service after pushing and after processing. In order to accomplish the same, using a middleware queuing system would be a right shot.
Although a bit more complex to accomplish, what you can do is use Kafka for streaming this. Configuring producer and consumer groups properly can help you do the job smoothly.
Using a DB to store would be a overkill, considering the situation where you "this data is to be processed and to be persisted"
BUT, alternatively, storing data to Redis and reading it in a cron-job/scheduled job would make your job much simpler. Once the job is run successfully, you may remove the data from cache and thus save Redis Memory.
If you can comment further more on the architecture and the implementation, I can go ahead and update my answer accordingly. :)

Difficulty Understanding Event Sourcing Microservice Event Receiving/Communication

I've been aware of event sourcing, CQRS, DDD and micro services for a little while and I'm now at that point where I want to try and start implementing stuff and giving something a go.
I've been looking into the technical side of CQRS and I understand the DDD concepts in there. How both the write side handles commands from the UI and publishes events from it, and how the read side handles events and creates projections on them.
The difficulty I'm having is the communication & a handling events from service-to-service (both from a write to read service and between micro services).
So I want to focus on eventstore (this one: https://eventstore.com/ to be less ambiguous). This is what I want to use as I understand it is a perfect for event sourcing and the simple nature of storing the events means I can use this for a message bus as well.
So my issue falls into two questions:
Between the write and the read, in order for the read side to receive/fetch the events created from the write side, am i right in thinking something like a catch up subscription can be used to subscribe to a stream to receive any events written to it or do i use something like polling to fetch events from a given point?
Between micro services, I am having an even harder time... So when looking at CQRS tutorials/talks etc... they always seem to talk with an example of an isolated service which receives commands from the UI/API. This is fine. I understand the write side will have an API attached to it so the user can interact with it to perform commands. E.g. create a customer. However... say if I have two micro services, e.g. a order micro service and an shipping micro service, how does the shipping micro service get the events published from the order micro service. Specifically, how does those customer events, translate to commands for the shipping service.
So let's take a simple example of: - Command created from the order's API to place an order. - A OrderPlacedEvent is published to the event store. How does the shipping service listen and react to this is it need to then DispatchOrder and create ain turn an OrderDispatchedEvent.
Does the write side of the shipping microservice then need to poll or also have a catch up subscription to the order stream? If so how does an event get translated to an command using DDD approach?
something like a catch up subscription can be used to subscribe to a stream to receive any events written to it
Yes, using catch-up subscriptions is the right way of doing it. You need to keep the stream position of your subscription persisted somewhere as well.
Here you can find some sample code that works. I am not posting the whole snippet since it is too long.
The projection service startup flow is:
Load the checkpoint (first time ever it would be the stream start)
Subscribe to the stream from that checkpoint
The runtime flow will then be:
The subscription will then call the function you provide when it receives an event. There's some plumbing there to do, like if you subscribe to $all, you need to filter out system events (it will be easier in the next version of Event Store)
Project the event
Store the new checkpoint
If you make your projections idempotent, you can store the checkpoint from time to time and save some IO.
how does the shipping micro service get the events published from the order micro service
When you build a brand new system and you have a small team working on all the components, you can make a shortcut and subscribe to domain events from another service, as you'd do with projections. Within the integration context (between the boxes), ordering should not be important so you can use persistent subscriptions so you won't need to think about checkpoints. Event Store will do it for you.
Be aware that it introduces tight coupling on the domain event schema of the originating service. Your contexts will have the Partnership relationship or the downstream service will be a Conformist.
When you move forward with your system, you might decide to decouple those contexts properly. So, you introduce a stable event API for the service that publishes events for others to consume. The same subscription that you used for integration can now instead take care of translating domain (internal) events to integration (external) events. The consuming context would then use the stable API and the domain model of the upstream service will be free in iterating on their domain model, as soon as they keep the conversion up-to-date.
It won't be necessary to use Event Store for the downstream context, they could just as well use a message broker. Integration events usually don't need to be persisted due to their transient nature.
We are running a webinar series about Event Sourcing at Event Store, check our web site to get on-demand access to previous webinars and you might find interesting to join future ones.
The difficulty I'm having is the communication & a handling events from service-to-service (both from a write to read service and between micro services).
The difficulty is not your fault - the DDD literature is really weak when it comes to discussing the plumbing.
Greg Young discusses some of the issues of subscription in the latter part of his Polygot Data talk.
Eventide Project has documentation that does a decent job of explaining the principles behind how the plumbing fits things together.
Between micro services, I am having an even harder time...
The basic idea: your message store is fundamentally a database; when the host of your microservice wakes up, it queries the message store for messages after some checkpoint, and then feeds them to your domain logic (updating its own local copy of the checkpoint as needed).
So the host pulls a document with events in it from the store, and transforms that document into a stream of handle(Event) commands that ultimately get passed to your domain component.
Put another way, you build a host that polls the database for information, parses the response, and then passes the parsed data to the domain model, and writes its own checkpoints.

Microservice - persisting to RDBMS & queue within a transaction

I have a REST service - all its requests are persisted to its own relational database. So far, good. But, there is also a small business functionality (email notification, sms alert) that should be run on the newly received/updated data. For this process to work on data in background, it requires some way to know about the persisted data - a message queue would fix the problem. Three common ways I see designing this,
The REST service inserts into the database, also, publish to the queue, too.
The problem here is, distributed transaction - combining different types within one transaction - relational database & the queue. Some tools may support, some may not.
As usual REST service persists only to its database. Additionally it also inserts the data into another table to which a scheduled job queries, publishes them to queue (from which the background job should start its work).
The problem I see is the scheduler - not reactive, batchprocessing, limited by the time slot, not realtime, slow and others.
The REST endpoint publishes the data directly to a topic. A consumer persists it to the database, whereas another process it in the background.
Something like eventsourcing. TMU, it is bit complex to implement as the number of services grow. Also, if the db is down, the persistent service would fail to save the data, however the background service (say, the emailer) would send email which is functionaly wrong. This may lead to inconsistency among the services, also functional.
I have also thought of reading database transaction-logs, but it seems more complex, requires tools to configurations to make it work, also, it seems right for data processing systems than for our use case.
What's your thought on this - did I miss anything? How do you manage such scenarios? What should be looked for? Thinking reactive, say Vertx?
Apologies if this looks very naive, but I have to ask.
I think best approach is 2 with a CDC(change data capture) system like debezium.
See [https://microservices.io/patterns/data/transactional-outbox.html][1]
I usually recommend option 3 if you don't need immediate read after write consistency. Background job should retry if the database record is still not updated by the message it processes.
Your post exemplifies why queues shouldn't be used for these types of scenarios. They are good for delivering analytical data or logs, but for task orchestration developers have to reinvent the wheel every time.
The much better approach is to use a task orchestration system like Cadence Workflow that eliminates issues you described and makes multi-service orchestration much simpler.
See this presentation that explains the Cadence programming model.

How to perform process interrupts in jBPM based on business data

I've been doing some research into BPM solutions and am looking to hopefully use jBPM to achieve my goal. I am aware it is possible to start a process instance with an event signal sent to the process engine, but I would like to be able to interact with process instances currently running in that engine WITHOUT knowing their instance ID.
I am aiming to achieve this in an interrupt fashion by sending an event to the process engine, with business data, that will match to the process instance containing that specific match in business data (for instance a customer number unique to a process instance).
I have not yet been able to figure out how to do this, another of my goals is to expose this via REST/SOAP, and I am aware that this functionality is NOT currently implemented in the jBPM5 console REST interface.
How would I go about doing this, what are the standard patterns for doing so, or what other process engines should I be looking at to achieve this?
Yeah, you can achieve that with jbpm and I would recommend you to check jbpm6 CR2..
In order to do what you need you can start multiple processes inside a KieSession and then send your customer as the payload of your event. Only the process that has that customer will catch the event ( if it's modeled correctly with the catch event node that filter by customer).
The Rest endpoints are already there in jbpm6.
Hope it helps

Resources