Confusion in calculating number of steps for various algorithms? - data-structures

I've been learning data structures and algorithms from a book, in which it compares time efficiency in terms of number of steps taken by various sorting algorithms. I'm confused as to what we define as one step while doing this.
So while counting no. of steps we consider the worst case scenarios. I understood how we come up with the no. of steps for bubble sort. But for selection sort, I am confused about the part where we compare every element with the current lowest value.
For example, in the worst case array, lets say 5,4,3,2,1, and lets say we are in the first pass through. When we start, 5 is the current lowest value. When we move to 4, and compare it to 5, we change the current lowest value to 4.
Why isnt this action of changing the current lowest value to 4 counted as a swap or an additional step? I mean, it is a step separate from the comparison step. The book I am referring to states that in the first passthrough, the number of comparisons are n-1 but the no. of swaps is only 1, even in worst case, for an n size array. Here they are assuming that the step of changing the current lowest value is a part of the comparison step, which I think should not be a valid assumption, since there can be an array in which you compare but don't need to change the lowest current value and hence your no. of steps eventually reduce. Point being, we cant assume that the no. of steps in the first pass through for selection sort in the worst case is n-1 (comparisons) + 1 (swap). It should be more than (n-1) + (1).
I understand that both selection sort and bubble sort lie in the same classification of time complexity as per big O methodology, but the book goes on to claim that selection sort has lesser steps than bubble sort in worst case scenarios, and I'm doubting that. This is what the book says: https://ibb.co/dxFP0

Generally in these kinds of exercises you’re interested in whether the algorithm is O(1), O(n), O(n^2) or something higher. You’re generally not interested in O(1) vs O(2) or in O(3n) vs O(5n) because for sufficiently large n only the power of n matters.
To put it another way, small differences in the complexity of each step, maybe favors of 2 or 3 or even 10, don’t matter against choosing an algorithm with a factor of n = 300 or more additional work

Related

write an Algorithm for Scenario using Selection sort?

This Scenario was in my final exam but can't write up an algorithm for it.
Everfresh Cattle farm has its annual Big Cattle Contest. Because the Bilal Haleem son Ali, is majoring in computer science, the county hires him to computerize the Big Cattle judging. Each Cattle’s name (string) and weight (integer) are to be read in from the keyboard. The county expects 500 entries this year. The output needed is a listing of the ten heaviest Cattles, sorted from biggest to smallest. Because Ali has just learned some sorting methods in school, he feels up to the task of writing this “pork-gram”. He writes a program to read in all the entries into an array of records, then uses a selection sort to put the entire array in order based on the Cattle Weight member. He then prints the ten largest values from the array. Can you think of a more efficient way to write this program? If so, write the algorithm.
The solution is to not sort the 500 entries, you only have to keep track of the top 10 encountered so far, sort it every time a new value is larger than best10[9].
First of all, I would not say that this is a C++ question. This actually sounds quite similar to some interview questions. I will assume you care about worst-case running times so will use Big-Oh and we will worry about the general case of n is the number of cattle and k is the number of entries we want.
The first observation you can make is looking at the running time of the algorithm they have used which is selection sort. It says that the entire array is sorted so the running time will be O(n^2 + k). Since k < n in this case, we get O(n^2).
The first observation to make is that we don't need to sort the entire array only get the k largest. In fact, if we're running selection sort to choose maximums, we have this after only k iterations of the algorithm giving a running time of O(kn). This may have been enough for the exam question, but we can simplify further.
The next observation extends from the observation that we only care about the k largest elements we have encountered so far. Let us say we have this collection of elements when we encounter a new element, we need to determine if it should be within that collection. It actually suffices to show that if it is greater than the smallest element of the collection, then we know that it must be in the collection.
Now, the question now becomes which data structure should we use to store this? Since we care about fast insertions, deletions of the smallest and getting of the smallest, the natural choice is a Min-Heap. Performing at most n operations on this heap each costing log k, the maximum size of the heap, gives us O(n log k) time.
There are some further minor improvements we can make which actually reduce this to O((n - k) log k), though I will leave it as an exercise to you to work out why this is. You should also note that the question asks for the output in sorted order, so you would have to deconstruct the heap at the end taking an additional O(k log k) steps.
In terms of the code, this will also be left to you, so best of luck.
p.s. homework / exam questions aren't the most welcome here and there are plenty of sources.

Can my algorithm be done any better?

I have been presented with a challenge to make the most effective algorithm that I can for a task. Right now I came to the complexity of n * logn. And I was wondering if it is even possible to do it better. So basically the task is there are kids having a counting out game. You are given the number n which is the number of kids and m which how many times you skip someone before you execute. You need to return a list which gives the execution order. I tried to do it like this you use skip list.
Current = m
while table.size>0:
executed.add(table[current%table.size])
table.remove(current%table.size)
Current += m
My questions are is this correct? Is it n*logn and can you do it better?
Is this correct?
No.
When you remove an element from the table, the table.size decreases, and current % table.size expression generally ends up pointing at another irrelevant element.
For example, 44 % 11 is 0 but 44 % 10 is 4, an element in a totally different place.
Is it n*logn?
No.
If table is just a random-access array, it can take n operations to remove an element.
For example, if m = 1, the program, after fixing the point above, would always remove the first element of the array.
When an array implementation is naive enough, it takes table.size operations to relocate the array each time, leading to a total to about n^2 / 2 operations in total.
Now, it would be n log n if table was backed up, for example, by a balanced binary search tree with implicit indexes instead of keys, as well as split and merge primitives. That's a treap for example, here is what results from a quick search for an English source.
Such a data structure could be used as an array with O(log n) costs for access, merge and split.
But nothing so far suggests this is the case, and there is no such data structure in most languages' standard libraries.
Can you do it better?
Correction: partially, yes; fully, maybe.
If we solve the problem backwards, we have the following sub-problem.
Let there be a circle of k kids, and the pointer is currently at kid t.
We know that, just a moment ago, there was a circle of k + 1 kids, but we don't know where, at which kid x, the pointer was.
Then we counted to m, removed the kid, and the pointer ended up at t.
Whom did we just remove, and what is x?
Turns out the "what is x" part can be solved in O(1) (drawing can be helpful here), so the finding the last kid standing is doable in O(n).
As pointed out in the comments, the whole thing is called Josephus Problem, and its variants are studied extensively, e.g., in Concrete Mathematics by Knuth et al.
However, in O(1) per step, this only finds the number of the last standing kid.
It does not automatically give the whole order of counting the kids out.
There certainly are ways to make it O(log(n)) per step, O(n log(n)) in total.
But as for O(1), I don't know at the moment.
Complexity of your algorithm depends on the complexity of the operations
executed.add(..) and table.remove(..).
If both of them have complexity of O(1), your algorithm has complexity of O(n) because the loop terminates after n steps.
While executed.add(..) can easily be implemented in O(1), table.remove(..) needs a bit more thinking.
You can make it in O(n):
Store your persons in a LinkedList and connect the last element with the first. Removing an element costs O(1).
Goging to the next person to choose would cost O(m) but that is a constant = O(1).
This way the algorithm has the complexity of O(n*m) = O(n) (for constant m).

How can the worst case for an algorithm have different bounds?

I've been trying to figure this out all day. Some other threads address this, but I really don't understand the answers. There are also many answers that contradict one another.
I understand that an algorithm will never take longer than the upper bound and never be faster than the lower bound. However, I didn't know an upper bound existed for best case time and a lower bound existed for worst case time. This question really threw me in a loop. I can't wrap my head around this... a given run time can have a different upper and lower bound?
For example, if someone asked: "Show that the worst-case running time of some algorithm on a heap of size n is Big Omega(lg(n))". How do you possibly get a lower bound, any bound for that matter, when given a run time?
So, in summation, an algorithm's worst case upper bound can be different than its worst case lower bound? How can this be? Once given the case, don't bounds become irrelevant? Trying to independent study algorithms and I really need to wrap my head around this first.
The meat of my accepted answer to that question is a function whose running time oscillates between n^2 and n^3 depending on whether n is odd. The point that I was trying to make is that sometimes bounds of the form O(n^k) and Omega(n^k) aren't sufficiently descriptive, even though the worst case running time is a perfectly well defined function (which, like all functions, is its own best lower and upper bound). This happens with more natural functions like n log n, which is Omega(n^k) but not O(n^k) for k ≤ 1, and O(n^k) but not Omega(n^k) for k > 1 (and hence not Theta(n^k) regardless of how we choose a constant k).
Suppose you write a program like this to find the smallest prime factor of an integer:
function lpf(n):
for i = 2 to n
if n%i == 0 then return i
If you run the function on the number 10^11 + 3, it will take 10^11 + 2 steps. If you run it on the number 10^11 + 4 it will take just one step. So the function's best-case time is O(1) steps and its worst-case time is O(n) steps.
Big O notation, describes efficiency in runtime iterations, generally based on size of an input data set.
The notation is written in its simplest form, ignoring multiples or additives, but keeping exponential form. If you have an operation of O(1) it is executed in constant time, no matter the input data.
However if you have something such as O(N) or O(log(N)), they will execute at different rates depending on input data.
The high and low bounds describe the largest and least iterations, respectively, that an algorithm can take.
Example: O(N), high bound is largest input data and low bound is smallest.
Extra sources:
Big O Cheat Sheet and MIT Lecture Notes
UPDATE:
Looking at the Stack Overflow question mentioned above, that algorithm is broken into three parts, where it has 3 possible types of runtime, depending on data. Now really, this is three different algorithms designed to handle for different data values. An algorithm is generally classified with just one notation of efficiency and that is of the notation taking the least time for ALL possible values of N.
In the case of O(N^2), larger data will take exponentially longer, and having a smaller number will proceed quickly. The algorithm determines how quickly a data set will be run, yet bounds are given depending on the range of data the algorithm is designed to handle.
I will try to explain it in the quicksort algorithm.
In quicksort you have an array and choose an element as pivot. The next step is to partition the input array into two arrays. The first one will contain elements < pivot and the second one elements > pivot.
Now assume you will apply quicksort on an already sorted list and the pivot element will always be the last element of the array. The result of partition will be an array of size n-1 and an array oft size 1 (the pivot element). This will result in a runtime of O(n*n). Now assume that the pivot element will always split the array in two equal sized array. In every step the array size will be cut in halves. This will result in O(n log n). I hope this example will make this a bit clearer for you.
Another well known sort algorithm is mergesort. Mergesort has always runtime of O(n log n). In mergesort you will cut the array down until only one element is left und will climb up the call stack to merge the one sized arrays and after that merge the array of size two and so on.
Let's say you implement a set using an array. To insert a element you simply put in the next available bucket. If there is no available bucket you increase the capacity of the array by a value m.
For the insert algorithm "there is no enough space" is the worse case.
insert (S, e)
if size(S) >= capacity(S)
reserve(S, size(S) + m)
put(S,e)
Assume we never delete elements. By keeping track of the last available position, put, size and capacity are Θ(1) in space and memory.
What about reserve? If it is implemented like [realloc in C][1], in the best case you just allocate new memory at the end of the existing memory (best case for reserve), or you have to move all existing elements as well (worse case for reserve).
The worst case lower bound for insert is the best case of
reserve(), which is linear in m if we dont nitpick. insert in
worst case is Ω(m) in space and time.
The worst case upper bound for insert is the worse case of
reserve(), which is linear in m+n. insert in worst case is
O(m+n) in space and time.

understanding of lower bound for comparison-based sorting algorithm

First, I know
lower bound is O(nlogn)
and how to prove it
And I agree the lower bound should be O(nlogn).
What I don't quite understand is:
For some special cases, the # of comparisons could actually be even lower than the lower bound. For example, use bubble sort to sort an already sorted array. The # of comparisons is O(n).
So how to actually understand the idea of lower bound?
The classical definition on Wikipedial: http://en.wikipedia.org/wiki/Upper_and_lower_bounds does not help much.
My current understanding of this is:
lower bound of the comparison-based sorting is actually the upper bound for the worst case.
namely, how best you could in the worst case.
Is this correct? Thanks.
lower bound of the comparison-based sorting is actually the upper bound for the best case.
No.
The function that you are bounding is the worst-case running time of the best possible sorting algorithm.
Imagine the following game:
We choose some number n.
You pick your favorite sorting algorithm.
After looking at your algorithm, I pick some input sequence of length n.
We run your algorithm on my input, and you give me a dollar for every executed instruction.
The O(n log n) upper bound means you can limit your cost to at most O(n log n) dollars, no matter what input sequence I choose.
The Ω(n log n) lower bound means that I can force you to pay at least Ω(n log n) dollars, no matter what sorting algorithm you choose.
Also: "The lower bound is O(n log n)" doesn't make any sense. O(f(n)) means "at most a constant times f(n)". But "lower bound" means "at least ...". So saying "a lower bound of O(n log n)" is exactly like saying "You can save up to 50% or more!" — it's completely meaningless! The correct notation for lower bounds is Ω(...).
The problem of sorting can be viewed as following.
Input: A sequence of n numbers .
Output: A permutation (reordering) of the input sequence such that a‘1 <= a‘2 ….. <= a‘n.
A sorting algorithm is comparison based if it uses comparison operators to find the order between two numbers. Comparison sorts can be viewed abstractly in terms of decision trees. A decision tree is a full binary tree that represents the comparisons between elements that are performed by a particular sorting algorithm operating on an input of a given size. The execution of the sorting algorithm corresponds to tracing a path from the root of the decision tree to a leaf. At each internal node, a comparison ai aj is made. The left subtree then dictates subsequent comparisons for ai aj, and the right subtree dictates subsequent comparisons for ai > aj. When we come to a leaf, the sorting algorithm has established the ordering. So we can say following about the decison tree.
1) Each of the n! permutations on n elements must appear as one of the leaves of the decision tree for the sorting algorithm to sort properly.
2) Let x be the maximum number of comparisons in a sorting algorithm. The maximum height of the decison tree would be x. A tree with maximum height x has at most 2^x leaves.
After combining the above two facts, we get following relation.
n! <= 2^x
Taking Log on both sides.
\log_2n! <= x
Since \log_2n! = \Theta(nLogn), we can say
x = \Omega(nLog_2n)
Therefore, any comparison based sorting algorithm must make at least \Omega(nLog_2n) comparisons to sort the input array, and Heapsort and merge sort are asymptotically optimal comparison sorts.
When you do asymptotic analysis you derive an O or Θ or Ω for all input.
But you can also make analysis on whether properties of the input affect the runtime.
For example algorithms that take as input something almost sorted have better performance than the formal asymptotic formula due to the input characteristics and the structure of the algorithm. Examples are bubblesort and quicksort.
It is not that you can go bellow the lower boundaries. It only behavior of the implementation on specific input.
Imagine all the possible arrays of things that could be sorted. Lets say they are arrays of length 'n' and ignore stuff like arrays with one element (which, of course, are always already sorted.
Imagine a long list of all possible value combinations for that array. Notice that we can simplify this a bit since the values in the array always have some sort of ordering. So if we replace the smallest one with the number 1, the next one with 1 or 2 (depending on whether its equal or greater) and so forth, we end up with the same sorting problem as if we allowed any value at all. (This means an array of length n will need, at most, the numbers 1-n. Maybe less if some are equal.)
Then put a number beside each one telling how much work it takes to sort that array with those values in it. You could put several numbers. For example, you could put the number of comparisons it takes. Or you could put the number of element moves or swaps it takes. Whatever number you put there indicates how many operations it takes. You could put the sum of them.
One thing you have to do is ignore any special information. For example, you can't know ahead of time that the arrangement of values in the array are already sorted. Your algorithm has to do the same steps with that array as with any other. (But the first step could be to check if its sorted. Usually that doesn't help in sorting, though.)
So. The largest number, measured by comparisons, is the typical number of comparisons when the values are arranged in a pathologically bad way. The smallest number, similarly, is the number of comparisons needed when the values are arranged in a really good way.
For a bubble sort, the best case (shortest or fastest) is if the values are in order already. But that's only if you use a flag to tell whether you swapped any values. In that best case, you look at each adjacent pair of elements one time and find they are already sorted and when you get to the end, you find you haven't swapped anything so you are done. that's n-1 comparisons total and forms the lowest number of comparisons you could ever do.
It would take me a while to figure out the worst case. I haven't looked at a bubble sort in decades. But I would guess its a case where they are reverse ordered. You do the 1st comparison and find the 1st element needs to move. You slide up to the top comparing to each one and finally swap it with the last element. So you did n-1 comparisons in that pass. The 2nd pass starts at the 2nd element and does n-2 comparisons and so forth. So you do (n-1)+(n-2)+(n-3)+...+1 comparisons in this case which is about (n**2)/2.
Maybe your variation on bubble sort is better than the one I described. No matter.
For bubble sort then, the lower bound is n-1 and the upper bound is (n**2)/2
Other sort algorithms have better performance.
You might want to remember that there are other operations that cost besides comparisons. We use comparisons because much sorting is done with strings and a string comparison is costly in compute time.
You could use element swaps to count (or the sum of swaps and elements swaps) but they are typically shorter than comparisons with strings. If you have numbers, they are similar.
You could also use more esoteric things like branch prediction failure or memory cache misses or for measuring.

Analysis of algorithms (complexity)

How are algorithms analyzed? What makes quicksort have an O(n^2) worst-case performance while merge sort has an O(n log(n)) worst-case performance?
That's a topic for an entire semester. Ultimately we are talking about the upper bound on the number of operations that must be completed before the algorithm finishes as a function of the size of the input. We do not include the coeffecients (ie 10N vs 4N^2) because for N large enough, it doesn't matter anymore.
How to prove what the big-oh of an algorithm is can be quite difficult. It requires a formal proof and there are many techniques. Often a good adhoc way is to just count how many passes on the data the algorithm makes. For instance, if your algorithm has nested for loops, then for each of N items you must operate N times. That would generally be O(N^2).
As to merge sort, you split the data in half over and over. That takes log2(n). And for each split you make a pass on the data, which gives N log(n).
quick sort is a bit trickier because in the average case it is also n log (n). You have to imagine what happens if your partition splits the data such that every time you get only one element on one side of the partition. Then you will need to split the data n times instead of log(n) times which makes it N^2. The advantage of quicksort is that it can be done in place, and that we usually get closer to N log(n) performance.
This is introductory analysis of algorithms course material.
An operation is defined (ie, multiplication) and the analysis is performed in terms of either space or time.
This operation is counted in terms of space or time. Typically analyses are performed as Time being the dependent variable upon Input Size.
Example pseudocode:
foreach $elem in #list
op();
endfor
There will be n operations performed, where n is the size of #list. Count it yourself if you don't believe me.
To analyze quicksort and mergesort requires a decent level of what is known as mathematical sophistication. Loosely, you solve a discrete differential equation derived from the recursive relation.
Both quicksort and merge sort split the array into two, sort each part recursively, then combine the result. Quicksort splits by choosing a "pivot" element and partitioning the array into smaller or greater then the pivot. Merge sort splits arbitrarily and then merges the results in linear time. In both cases a single step is O(n), and if the array size halves each time this would give a logarithmic number of steps. So we would expect O(n log(n)).
However quicksort has a worst case where the split is always uneven so you don't get a number of steps proportional to the logarithmic of n, but a number of steps proportional to n. Merge sort splits exactly into two halves (or as close as possible) so it doesn't have this problem.
Quick sort has many variants depending on pivot selection
Let's assume we always select 1st item in the array as a pivot
If the input array is sorted then Quick sort will be only a kind of selection sort!
Because you are not really dividing the array.. you are only picking first item in each cycle
On the other hand merge sort will always divide the input array in the same manner, regardless of its content!
Also note: the best performance in divide and conquer when divisions length are -nearly- equal !
Analysing algorithms is a painstaking effort, and it is error-prone. I would compare it with a question like, how much chance do I have to get dealt two aces in a bridge game. One has to carefully consider all possibilities and must not overlook that the aces can arrive in any order.
So what one does for analysing those algorithms is going through an actual pseudo code of the algorithm and add what result a worst case situation would have. In the following I will paint with a large brush.
For quicksort one has to choose a pivot to split the set. In a case of dramatic bad luck the set splits in a set of n-1 and a set of 1 each time, for n steps, where each steps means inspecting n elements. This arrive at N^2
For merge sort one starts by splitting the sequence into in order sequences. Even in the worst case that means at most n sequences. Those can be combined two by two, then the larger sets are combined two by two etc. However those (at most) n/2 first combinations deal with extremely small subsets, and the last step deals with subsets that have about size n, but there is just one such step. This arrives at N.log(N)

Categories

Resources