We are stuck with a problem where-in we are trying to do a near real time sync between a RDBMS(Source) and hive (Target). Basically the source is pushing the changes (inserts, updates and deletes) into HDFS as avro files. These are loaded into external tables (with avro schema), into the Hive. There is also a base table in ORC, which has all the records that came in before the Source pushed in the new set of records.
Once the data is received, we have to do a de-duplication (since there could be updates on existing rows) and remove all deleted records (since there could be deletes from the Source).
We are now performing a de-dupe using rank() over partitioned keys on the union of external table and base table. And then the result is then pushed into a new table, swap the names. This is taking a lot of time.
We tried using merges, acid transactions, but rank over partition and then filtering out all the rows has given us the best possible time at this moment.
Is there a better way of doing this? Any suggestions on improving the process altogether? We are having quite a few tables, so we do not have any partitions or buckets at this moment.
You can try with storing all the transactional data into Hbase table.
Storing data into Hbase table using Primary key of RDBMS table as Row Key:-
Once you pull all the data from RDBMS with NiFi processors(executesql,Querydatabasetable..etc) we are going to have output from the processors in Avro format.
You can use ConvertAvroToJson processor and then use SplitJson Processor to split each record from array of json records.
Store all the records in Hbase table having Rowkey as the Primary key in the RDBMS table.
As when we get incremental load based on Last Modified Date field we are going to have updated records and newly added records from the RDBMS table.
If we got update for the existing rowkey then Hbase will overwrite the existing data for that record, for newly added records Hbase will add them as a new record in the table.
Then by using Hive-Hbase integration you can get the Hbase table data exposed using Hive.
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
By using this method we are going to have Hbase table that will take care of all the upsert operations and we cannot expect same performance from hive-hbase table vs native hive table will perform faster,as hbase tables are not meant for sql kind of queries, hbase table is most efficient if you are accessing data based on Rowkey,
if we are going to have millions of records then we need to do some tuning to the hive queries
Tuning Hive Queries That Uses Underlying HBase Table
Related
I have a production hive table partitioned by date. New data are generated hourly, and I need to merge the new data into the hive table.
In case there're duplicate data insertion requests or data overlap among hourly requests, I want to perform dedup to each partition whenever I update it.
I reviewed the answer to How to Append new data to already existing hive table
, but still have some confusions:
How should I merge the new data pieces into the existing partition?
I mean, should I create a tmp table for the new data, pull existing data into the tmp table, make dudup and OVERWRITE back the partition of the production table?
Is it possible "dirty read" could occur during the overwriting of the partition of the production hive table? Is there any solution to this?
I'm wondering if there's anything like atomic RENAME.
I am new to HDFS/HIVE. Need some advice. I have a background of RDBMS Data modelling.
I have a requirement of a daily report. The report requires fetching of data from two staging Tables(HIVE).
What if I create a table in HIVE, write a view to fetch records from staging to populate HIVE table. create a HIVE view pointing to HIVE table with where clause of selecting one-day data?
HIVE staging tables ---> 2. View to populate HIVE table --> 3. HIVE table ----> 4. View to fetch data from HIVE table created in 3.
what if I create a view on top of two staging HIVE tables (joining two tables with where clause to fetch one-day data)?
HIVE staging tables ---> 2. View to fetch data from HIVE staging tables
I want to know HIVE best practice and solution strategies.
View or not View but you need ETL process to load tables. ETL process can join, aggregate, etc, so you will be able use finally joined and aggregated data in the form star/snowflake or report table. Why do you need Views here? To reuse some common queries, to reduce complexity of some long complex queries, make interfaces to data, create logical entities, etc. You do not necessarily need View simply to join tables and load data to another table. All depends on your requirements. If reports should query data fast then data should be precalculated by ETL process. View is just wrapper over query, it will be calculated each time you query data.
I think its best if you have zero views, 1 single table, and make your partition the date field (but you can't partition on the date, so you have to store it as a string) ... this make it easier for the end user to have only 1 table... fewer tables.
This gives your users the ability to engage only the latest date they want, or leverage the full table.
I wanna know how hive partitioning works I know the concept but I am trying to understand how its working and store the in exact partition.
Let say I have a table and I have created partition on year its dynamic, ingested data from 2013 so how hive create partition and store the exact data in exact partition.
If the table is not partitioned, all the data is stored in one directory without order. If the table is partitioned(eg. by year) data are stored separately in different directories. Each directory is corresponding to one year.
For a non-partitioned table, when you want to fetch the data of year=2010, hive have to scan the whole table to find out the 2010-records. If the table is partitioned, hive just go to the year=2010 directory. More faster and IO efficient
Hive organizes tables into partitions. It is a way of dividing a table into related parts based on the values of partitioned columns such as date.
Partitions - apart from being storage units - also allow the user to efficiently identify the rows that satisfy a certain criteria.
Using partition, it is easy to query a portion of the data.
Tables or partitions are sub-divided into buckets, to provide extra structure to the data that may be used for more efficient querying. Bucketing works based on the value of hash function of some column of a table.
Suppose you need to retrieve the details of all employees who joined in 2012. A query searches the whole table for the required information. However, if you partition the employee data with the year and store it in a separate file, it reduces the query processing time.
I am new to Hadoop and learning Hive.
In Hadoop definative guide 3rd edition page no. 428 last paragraph
I don't understand below paragraph regarding external table in HIVE.
"A common pattern is to use an external table to access an initial dataset stored in HDFS (created by another process), then use a Hive transform to move the data into a managed Hive table."
Can anybody explain briefly what above phrase says?
Usually the data in the initial dataset is not constructed in the optimal way for queries.
You may want to modify the data (like modifying some columns adding columns, making aggregation etc) and to store it in a specific way (partitions / buckets / sorted etc) so that the queries would benefit from these optimizations.
The key difference between external and managed table in Hive is that data in the external table is not managed by Hive.
When you create external table you define HDFS directory for that table and Hive is simply "looking" in it and can get data from it but Hive can't delete or change data in that folder. When you drop external table Hive only deletes metadata from its metastore and data in HDFS remains unchanged.
Managed table basically is a directory in HDFS and it's created and managed by Hive. Even more - all operations for removing/changing partitions/raw data/table in that table MUST be done by Hive otherwise metadata in Hive metastore may become incorrect (e.g. you manually delete partition from HDFS but Hive metastore contains info that partition exists).
In Hadoop definative guide I think author meant that it is a common practice to write MR-job that produces some raw data and keeps it in some folder. Than you create Hive external table which will look into that folder. And than safelly run queries without the risk to drop table etc.
In other words - you can do MR job that produces some generic data and than use Hive external table as a source of data for insert into managed tables. It helps you to avoid creating boring similar MR jobs and delegate this task to Hive queries - you create query that takes data from external table, aggregates/processes it how you want and puts the result into managed tables.
Another goal of external table is to use as a source data from remote servers, e.g. in csv format.
There is no reason to move table to managed unless you are going to enable ACID or other features supported only for managed tables.
The list of differences in features supported by managed/external tables may change in future, better use current documentation. Currently these features are:
ARCHIVE/UNARCHIVE/TRUNCATE/MERGE/CONCATENATE only work for managed
tables
DROP deletes data for managed tables while it only deletes
metadata for external ones
ACID/Transactional only works for
managed tables
Query Results Caching only works for managed
tables
Only the RELY constraint is allowed on external tables
Some Materialized View features only work on managed tables
You can create both EXTERNAL and MANAGED tables on top of the same location, see this answer with more details and tests: https://stackoverflow.com/a/54038932/2700344
Data structure has nothing in common with external/managed table type. If you want to change structure you do not necessarily need to change table managed/external type
It is also mentioned in the book.
when your table is external table.
you can use other technologies like PIG,Cascading or Mapreduce to process it .
You can also use multiple schemas for that dataset.
and You can also create data lazily if it is external table.
when you decide that dataset should be used by only Hive,make it hive managed table.
I am evaluating the combination of hadoop & hive (& impala) as a repolacement for a large data warehouse. I already set up a version and performance is great in read access.
Can somebody give me any hint what concept should be used for daily data deliveries to a table?
I have a table in hive based on a file I put into hdfs. But now I have on a daily basis new transactional data coming in.
How do I add them ti the table in hive.
Inserts are not possible. HDFS cannot append. So whats the gernal concept I need to follow.
Any advice or direction to documentation is appreciated.
Best regards!
Hive allows for data to be appended to a table - the underlying implementation of how this happens in HDFS doesn't matter. There are a number of things you can do append data:
INSERT - You can just append rows to an existing table.
INSERT OVERWRITE - If you have to process data, you can perform an INSERT OVERWRITE to re-write a table or partition.
LOAD DATA - You can use this to bulk insert data into a table and, optionally, use the OVERWRITE keyword to wipe out any existing data.
Partition your data.
Load data into a new table and swap the partition in
Partitioning is great if you know you're going to be performing date based searches and gives you the ability to use options 1, 2, & 3 at either the table or partition level.
Inserts are not possible
Inserts are possible ,like you can create a new table and insert the data from new table to old table.
But simple solution is You can load data of the file into Hive table with the below command.
load data inpath '/filepath' [overwrite] into table tablename;
If you use overwrite then only existing data replced with new data otherwise It is appending only.
You can even schedule the script by creating a shell script.