SLURM: Embarrassingly parallel program inside an embarrassingly parallel program - bash

I have a complex model written in Matlab. The model was not written by us and is best thought of as a "black box" i.e. in order to fix the relevant problems from the inside would require rewritting the entire model which would take years.
If I have an "embarrassingly parallel" problem I can use an array to submit X variations of the same simulation with the option #SBATCH --array=1-X. However, clusters normally have a (frustratingly small) limit on the maximum array size.
Whilst using a PBS/TORQUE cluster I have got around this problem by forcing Matlab to run on a single thread, requesting multiple CPUs and then running multiple instances of Matlab in the background. An example submission script is:
#!/bin/bash
<OTHER PBS COMMANDS>
#PBS -l nodes=1:ppn=5,walltime=30:00:00
#PBS -t 1-600
<GATHER DYNAMIC ARGUMENTS FOR MATLAB FUNCTION CALLS BASED ON ARRAY NUMBER>
# define Matlab options
options="-nodesktop -noFigureWindows -nosplash -singleCompThread"
for sub_job in {1..5}
do
<GATHER DYNAMIC ARGUMENTS FOR MATLAB FUNCTION CALLS BASED ON LOOP NUMBER (i.e. sub_job)>
matlab ${options} -r "run_model(${arg1}, ${arg2}, ..., ${argN}); exit" &
done
wait
<TIDY UP AND FINISH COMMANDS>
Can anyone help me do the equivalent on a SLURM cluster?
The par function will not run my model in a parallel loop in Matlab.
The PBS/TORQUE language was very intuitive but SLURM's is confusing me. Assuming a similarly structured submission script as my PBS example, here is what I think certain commands will result in.
--ncpus-per-task=5 seems like the most obvious one to me. Would I put srun in front of the matlab command in the loop or leave it as it is in the PBS script loop?
--ntasks=5 I would imagine would request 5 CPUs but will run in serial unless a program specifically requests them (i.e. MPI or Python-Multithreaded etc). Would I need to put srun in front of the Matlab command in this case?

I am not a big expert on array jobs but I can help you with the inner loop.
I would always use GNU parallel to run several serial processes in parallel, within a single job that has more than one CPU available. It is a simple perl script, so not difficult to 'install', and its syntax is extremely easy. What it basically does is to run some (nested) loop in parallel. Each iteration of this loop contains a (long) process, like your Matlab command. In contrast to your solution it does not submit all these processes at once, but it runs only N processes at the same time (where N is the number of CPUs you have available). As soon as one finishes, the next one is submitted, and so on until your entire loop is finished. It is perfectly fine that not all processes take the same amount of time, as soon as one CPU is freed, another process is started.
Then, what you would like to do is to launch 600 jobs (for which I substitute 3 below, to show the complete behavior), each with 5 CPUs. To do that you could do the following (whereby I have not included the actual run of matlab, but that trivially can be included):
#!/bin/bash
#SBATCH --job-name example
#SBATCH --out job.slurm.out
#SBATCH --nodes 1
#SBATCH --ntasks 1
#SBATCH --cpus-per-task 5
#SBATCH --mem 512
#SBATCH --time 30:00:00
#SBATCH --array 1-3
cmd="echo matlab array=${SLURM_ARRAY_TASK_ID}"
parallel --max-procs=${SLURM_CPUS_PER_TASK} "$cmd,subjob={1}; sleep 30" ::: {1..5}
Submitting this job using:
$ sbatch job.slurm
submits 3 jobs to the queue. For example:
$ squeue | grep tdegeus
3395882_1 debug example tdegeus R 0:01 1 c07
3395882_2 debug example tdegeus R 0:01 1 c07
3395882_3 debug example tdegeus R 0:01 1 c07
Each job gets 5 CPUs. These are exploited by the parallel command, to run your inner loop in parallel. Once again, the range of this inner loop may be (much) larger than 5, parallel takes care of the balancing between the 5 available CPUs within this job.
Let's inspect the output:
$ cat job.slurm.out
matlab array=2,subjob=1
matlab array=2,subjob=2
matlab array=2,subjob=3
matlab array=2,subjob=4
matlab array=2,subjob=5
matlab array=1,subjob=1
matlab array=3,subjob=1
matlab array=1,subjob=2
matlab array=1,subjob=3
matlab array=1,subjob=4
matlab array=3,subjob=2
matlab array=3,subjob=3
matlab array=1,subjob=5
matlab array=3,subjob=4
matlab array=3,subjob=5
You can clearly see the 3 times 5 processes run at the same time now (as their output is mixed).
No need in this case to use srun. SLURM will create 3 jobs. Within each job everything happens on individual compute nodes (i.e. as if you were running on your own system).
Installing GNU Parallel - option 1
To 'install' GNU parallel into your home folder, for example in ~/opt.
Download the latest GNU Parallel.
Make the directory ~/opt if it does not yet exist
mkdir $HOME/opt
'Install' GNU Parallel:
tar jxvf parallel-latest.tar.bz2
cd parallel-XXXXXXXX
./configure --prefix=$HOME/opt
make
make install
Add ~/opt to your path:
export PATH=$HOME/opt/bin:$PATH
(To make it permanent, add that line to your ~/.bashrc.)
Installing GNU Parallel - option 2
Use conda.
(Optional) Create a new environment
conda create --name myenv
Load an existing environment:
conda activate myenv
Install GNU parallel:
conda install -c conda-forge parallel
Note that the command is available only when the environment is loaded.

While Tom's suggestion to use GNU Parallel is a good one, I will attempt to answer the question asked.
If you want to run 5 instances of the matlab command with the same arguments (for example if they were communicating via MPI) then you would want to ask for --ncpus-per-task=1, --ntasks=5 and you should preface your matlab line with srun and get rid of the loop.
In your case, as each of your 5 calls to matlab are independent, you want to ask for --ncpus-per-task=5, --ntasks=1. This will ensure that you allocate 5 CPU cores per job to do with as you wish. You can preface your matlab line with srun if you wish but it will make little difference you are only running one task.
Of course, this is only efficient if each of your 5 matlab runs take the same amount of time since if one takes much longer then the other 4 CPU cores will be sitting idle, waiting for the fifth to finish.

You can do it with python and subprocess, in what I describe below you just set the number of nodes and tasks and that is it, no need for an array, no need to match the size of the array to the number of simulations, etc... It will just execute python code until it is done, more nodes faster execution.
Also, it is easier to decide on variables as everything is being prepared in python (which is easier than bash).
It does assume that the Matlab scripts save the output to file - nothing is returned by this function (it can be changed..)
In the sbatch script you need to add something like this:
#!/bin/bash
#SBATCH --output=out_cluster.log
#SBATCH --error=err_cluster.log
#SBATCH --time=8:00:00
#SBATCH --nodes=36
#SBATCH --exclusive
#SBATCH --cpus-per-task=2
export IPYTHONDIR="`pwd`/.ipython"
export IPYTHON_PROFILE=ipyparallel.${SLURM_JOBID}
whereis ipcontroller
sleep 3
echo "===== Beginning ipcontroller execution ======"
ipcontroller --init --ip='*' --nodb --profile=${IPYTHON_PROFILE} --ping=30000 & # --sqlitedb
echo "===== Finish ipcontroller execution ======"
sleep 15
srun ipengine --profile=${IPYTHON_PROFILE} --timeout=300 &
sleep 75
echo "===== Beginning python execution ======"
python run_simulations.py
depending on your system, read more here:https://ipyparallel.readthedocs.io/en/latest/process.html
and run_simulations.py should contain something like this:
import os
from ipyparallel import Client
import sys
from tqdm import tqdm
import subprocess
from subprocess import PIPE
def run_sim(x):
import os
import subprocess
from subprocess import PIPE
# send job!
params = [str(i) for i in x]
p1 = subprocess.Popen(['matlab','-r',f'"run_model({x[0]},{x[1]})"'], env=dict(**os.environ))
p1.wait()
return
##load ipython parallel
rc = Client(profile=os.getenv('IPYTHON_PROFILE'))
print('Using ipyparallel with %d engines', len(rc))
lview = rc.load_balanced_view()
view = rc[:]
print('Using ipyparallel with %d engines', len(rc))
sys.stdout.flush()
map_function = lview.map_sync
to_send = []
#prepare variables <-- here you should prepare the arguments for matlab
####################
for param_1 in [1,2,3,4]:
for param_2 in [10,20,40]:
to_send.append([param_1, param_2])
ind_raw_features = lview.map_async(run_sim,to_send)
all_results = []
print('Sending jobs');sys.stdout.flush()
for i in tqdm(ind_raw_features,file=sys.stdout):
all_results.append(i)
You also get a progress bar in the stdout, which is nice... you can also easily add a check to see if the output files exist and ignore a run.

Related

How to utilise GNU parallel efficiently?

I have a script say parallelise.sh, whose contents are 10 different python calls shown below:
python3.8 script1.py
python3.8 script2.py
.
.
.
python3.8 script10.py
Now, I use GNU parallel
nohup parallel -j 5 < parallellise.sh &
It starts as expected; 5 different processors are being used and the first 5 scripts, script_1.py ... script_5.py are running. Now I notice that some of them (say two of them script_1.py and script_2.py) complete very fast, whereas the others need more time to complete.
Now, there are unused resources (2 processors) while waiting for the remaining 3 scripts (script_3.py, script_4.py, and script_5.py) to complete so that the next 5 can be loaded. Is there a way to use these resources by loading new ones as existing commands get completed?
For information: My OS is CentOS
As #RenaudPacalet says there is nothing else to do.
So there is something in your scripts which causes this not to happen.
To help debug you can use:
parallel --lb --tag < parallellise.sh
and maybe add a "Starting X" line at the beginning of scriptX.py and a "Finishing X" line at the end of scriptX.py so you can see that the scripts are indeed finishing.
Without knowing anything about scriptX.py it is impossible to say what is causing this.
(Instead of nohup consider using tmux or screen so you can have the jobs run in the background but always check in on them and see their output. nohup is not ideal for debugging).

SLURM Submit multiple tasks per node?

I found some very similar questions which helped me arrive at a script which seems to work however I'm still unsure if I fully understand why, hence this question..
My problem (example): On 3 nodes, I want to run 12 tasks on each node (so 36 tasks in total). Also each task uses OpenMP and should use 2 CPUs. In my case a node has 24 CPUs and 64GB memory. My script would be:
#SBATCH --nodes=3
#SBATCH --ntasks=36
#SBATCH --cpus-per-task=2
#SBATCH --mem-per-cpu=2000
export OMP_NUM_THREADS=2
for i in {1..36}; do
srun -N 1 -n 1 ./program input${i} >& out${i} &
done
wait
This seems to work as I require, successively running tasks on a node until all CPUs on that node are in use, and then continuing to run further tasks on the next node until all CPUs are used again, etc..
My question.. I'm not sure if this is actually what it does (?) as I didn't fully understand the man page of srun regarding -n, and i have not used srun before.
Mainly my confusion comes from "-n": In the man page for -n it says "The default is one task per node, ..", so I expected if I use "srun -n 1" that only one task will be run on each node, which doesn't seem to be the case.
Furthermore when i tried e.g. "srun -n 2 ./program" it seems to just run the exact same program twice as two different tasks with no way to use different input files.. which I can't think of why that would ever be useful?
Your setup is correct except that you must use the --exclusive option of srun (which has a different meaning in this case than for sbatch).
As for your remark regarding the usefulness of srun, the behaviour of the program can be changed based on the environment variable $SLURM_TASK_ID, or the rank in case of an MPI program. Your confusion arises from the fact that your program is not written to be parallel (appart from the 2 OMP threads) while srun is meant to start parallel programs, most of the time based on MPI.
An other way is to run all your tasks at once.
since the input and output file depends on the rank, a wrapper is needed
your SLURM script would be
#SBATCH --nodes=3
#SBATCH --ntasks=36
#SBATCH --cpus-per-task=2
#SBATCH --mem-per-cpu=2000
export OMP_NUM_THREADS=2
srun -n 36 ./program.sh
and your wrapper program.sh would be
#!/bin/sh
exec ./program input${SLURM_PROCID} > out${SLURM_PROCID} 2>&1

Running a queue of MPI calls in parallel with SLURM and limited resources

I'm trying to run a Particle Swarm Optimization problem on a cluster using SLURM, with the optimization algorithm managed by a single-core matlab process. Each particle evaluation requires multiple MPI calls that alternate between two Python programs until the result converges. Each MPI call takes up to 20 minutes.
I initially naively submitted each MPI call as a separate SLURM job, but the resulting queue time made it slower than running each job locally in serial. I am now trying to figure out a way to submit an N node job that will continuously run MPI tasks to utilize the available resources. The matlab process would manage this job with text file flags.
Here is a pseudo-code bash file that might help to illustrate what I am trying to do on a smaller scale:
#!/bin/bash
#SBATCH -t 4:00:00 # walltime
#SBATCH -N 2 # number of nodes in this job
#SBATCH -n 32 # total number of processor cores in this job
# Set required modules
module purge
module load intel/16.0
module load gcc/6.3.0
# Job working directory
echo Working directory is $SLURM_SUBMIT_DIR
cd $SLURM_SUBMIT_DIR
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
# Run Command
while <"KeepRunning.txt” == 1>
do
for i in {0..40}
do
if <“RunJob_i.txt” == 1>
then
mpirun -np 8 -rr -f ${PBS_NODEFILE} <job_i> &
fi
done
done
wait
This approach doesn't work (just crashes), but I don't know why (probably overutilization of resources?). Some of my peers have suggested using parallel with srun, but as far as I can tell this requires that I call the MPI functions in batches. This will be a huge waste of resources, as a significant portion of the runs finish or fail quickly (this is expected behavior). A concrete example of the problem would be starting a batch of 5 8-core jobs and having 4 of them crash immediately; now 32 cores would be doing nothing while they wait up to 20 minutes for the 5th job to finish.
Since the optimization will likely require upwards of 5000 mpi calls, any increase in efficiency will make a huge difference in absolute walltime. Does anyone have any advice as to how I could run a constant stream of MPI calls on a large SLURM job? I would really appreciate any help.
A couple of things: under SLURM you should be using srun, not mpirun.
The second thing is that the pseudo-code you provided launches an infinite number of jobs without waiting for any completion signal. You should try to put the wait into the inner loop, so you launch just a set of jobs, wait for them to finish, evaluate the condition and, maybe, launch the next set of jobs:
#!/bin/bash
#SBATCH -t 4:00:00 # walltime
#SBATCH -N 2 # number of nodes in this job
#SBATCH -n 4 # total number of tasks in this job
#SBATCH -s 8 # total number of processor cores for each task
# Set required modules
module purge
module load intel/16.0
module load gcc/6.3.0
# Job working directory
echo Working directory is $SLURM_SUBMIT_DIR
cd $SLURM_SUBMIT_DIR
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
# Run Command
while <"KeepRunning.txt” == 1>
do
for i in {0..40}
do
if <“RunJob_i.txt” == 1>
then
srun -np 8 --exclusive <job_i> &
fi
done
wait
<Update "KeepRunning.txt”>
done
Take care also distinguishing tasks and cores. -n says how many tasks will be used, -c says how many cpus per task will be allocated.
The code I wrote will launch in the background 41 jobs (from 0 to 40, included), but they will only start once the resources are available (--exclusive), waiting while they are occupied. Each jobs will use 8 CPUs. The you will wait for them to finish and I assume that you will update the KeepRunning.txt after that round.

What does the --ntasks or -n tasks does in SLURM?

I was using SLURM to use some computing cluster and it had the -ntasks or -n. I have obviously read the documentation for it (http://slurm.schedmd.com/sbatch.html):
sbatch does not launch tasks, it requests an allocation of resources
and submits a batch script. This option advises the Slurm controller
that job steps run within the allocation will launch a maximum of
number tasks and to provide for sufficient resources. The default is
one task per node, but note that the --cpus-per-task option will
change this default.
the specific part I do not understand what it means is:
run within the allocation will launch a maximum of number tasks and to
provide for sufficient resources.
I have a few questions:
I guess my first question is what does the word "task" mean and the difference is with the word "job" in the SLURM context. I usually think of a job as the running the bash script under sbatch as in sbatch my_batch_job.sh. Not sure what task means.
If I equate the word task with job then I thought it would have ran the same identical bash script multiple times according to the argument to -n, --ntasks=<number>. However, I obviously tested it out in the cluster, ran a echo hello with --ntask=9 and I expected sbatch would echo hello 9 times to stdout (which is collected in slurm-job_id.out, but to my surprise, there was a single execution of my echo hello script Then what does this command even do? It seems it does nothing or at least I can't see whats suppose to be doing.
I do know the -a, --array=<indexes> option exists for multiple jobs. That is a different topic. I simply want to know what --ntasks is suppose to do, ideally with an example so that I can test it out in the cluster.
The --ntasks parameter is useful if you have commands that you want to run in parallel within the same batch script.
This may be two separate commands separated by an & or two commands used in a bash pipe (|).
For example
Using the default ntasks=1
#!/bin/bash
#SBATCH --ntasks=1
srun sleep 10 &
srun sleep 12 &
wait
Will throw the warning:
Job step creation temporarily disabled, retrying
The number of tasks by default was specified to one, and therefore the second task cannot start until the first task has finished.
This job will finish in around 22 seconds. To break this down:
sacct -j515058 --format=JobID,Start,End,Elapsed,NCPUS
JobID Start End Elapsed NCPUS
------------ ------------------- ------------------- ---------- ----------
515058 2018-12-13T20:51:44 2018-12-13T20:52:06 00:00:22 1
515058.batch 2018-12-13T20:51:44 2018-12-13T20:52:06 00:00:22 1
515058.0 2018-12-13T20:51:44 2018-12-13T20:51:56 00:00:12 1
515058.1 2018-12-13T20:51:56 2018-12-13T20:52:06 00:00:10 1
Here task 0 started and finished (in 12 seconds) followed by task 1 (in 10 seconds). To make a total user time of 22 seconds.
To run both of these commands simultaneously:
#!/bin/bash
#SBATCH --ntasks=2
srun --ntasks=1 sleep 10 &
srun --ntasks=1 sleep 12 &
wait
Running the same sacct command as specified above
sacct -j 515064 --format=JobID,Start,End,Elapsed,NCPUS
JobID Start End Elapsed NCPUS
------------ ------------------- ------------------- ---------- ----------
515064 2018-12-13T21:34:08 2018-12-13T21:34:20 00:00:12 2
515064.batch 2018-12-13T21:34:08 2018-12-13T21:34:20 00:00:12 2
515064.0 2018-12-13T21:34:08 2018-12-13T21:34:20 00:00:12 1
515064.1 2018-12-13T21:34:08 2018-12-13T21:34:18 00:00:10 1
Here the total job taking 12 seconds. There is no risk of jobs waiting for resources as the number of tasks has been specified in the batch script and therefore the job has the resources to run this many commands at once.
Each task inherits the parameters specified for the batch script. This is why --ntasks=1 needs to be specified for each srun task, otherwise each task uses --ntasks=2 and so the second command will not run until the first task has finished.
Another caveat of the tasks inheriting the batch parameters is if --export=NONE is specified as a batch parameter. In this case --export=ALL should be specified for each srun command otherwise environment variables set within the sbatch script are not inherited by the srun command.
Additional notes:
When using bash pipes, it may be necessary to specify --nodes=1 to prevent commands either side of the pipes running on separate nodes.
When using & to run commands simultaneously, the wait is vital. In this case, without the wait command, task 0 would cancel itself, given task 1 completed successfully.
The "--ntasks" options specifies how many instances of your command are executed.
For a common cluster setup and if you start your command with "srun" this corresponds to the number of MPI ranks.
In contrast the option "--cpus-per-task" specify how many CPUs each task can use.
Your output surprises me as well. Have you launched your command in the script or via srun?
Does you script look like:
#!/bin/bash
#SBATCH --ntasks=8
## more options
echo hello
This should always output only a single line, because the script is only executed on the submitting node not the worker.
If your script look like
#!/bin/bash
#SBATCH --ntasks=8
## more options
srun echo hello
srun causes the script to run your command on the worker nodes and as a result you should get 8 lines of hello.
Tasks are processes that a job executes in parallel in one or more nodes. sbatch allocates resources for your job, but even if you request resources for multiple tasks, it will launch your job script in a single process in a single node only. srun is used to launch job steps from the batch script. --ntasks=N instructs srun to execute N copies of the job step.
For example,
#SBATCH --ntasks=2
#SBATCH --cpus-per-task=2
means that you want to run two processes in parallel, and have each process access two CPUs. sbatch will allocate four CPUs for your job and then start the batch script in a single process. Within your batch script, you can create a parallel job step using
srun --ntasks=2 --cpus-per-task=2 step.sh
This will run two processes in parallel, both of them executing the step.sh script. From the same job, you could also run
srun --ntasks=1 --cpus-per-task=4 step.sh
This would launch a single process that can access all the four GPUs (although it would issue a warning).
It's worth noting that within the allocated resources, your job script is free to do anything, and it doesn't have to use srun to create job steps (but you need srun to launch a job step in multiple nodes). For example, the following script will run both steps in parallel:
#!/bin/bash
#SBATCH --ntasks=1
step1.sh &
step2.sh &
wait
If you want to launch job steps using srun and have two different steps run in parallel, then your job needs to allocate two tasks, and your job steps need to request only one task. You also need to provide the --exclusive argument to srun, for the job steps to use separate resources.
#!/bin/bash
#SBATCH --ntasks=2
srun --ntasks=1 --exclusive step1.sh &
srun --ntasks=1 --exclusive step2.sh &
wait

Running slurm script with multiple nodes, launch job steps with 1 task

I am trying to launch a large number of job steps using a batch script. The different steps can be completely different programs and do need exactly one CPU each. First I tried doing this using the --multi-prog argument to srun. Unfortunately, when using all CPUs assigned to my job in this manner, performance degrades massively. The run time increases to almost its serialized value. By undersubscribing I could ameliorate this a little. I couldn't find anything online regarding this problem, so I assumed it to be a configuration problem of the cluster I am using.
So I tried going a different route. I implemented the following script (launched via sbatch my_script.slurm):
#!/bin/bash
#SBATCH -o $HOME/slurm/slurm_out/%j.%N.out
#SBATCH --error=$HOME/slurm/slurm_out/%j.%N.err_out
#SBATCH --get-user-env
#SBATCH -J test
#SBATCH -D $HOME/slurm
#SBATCH --export=NONE
#SBATCH --ntasks=48
NR_PROCS=$(($SLURM_NTASKS))
for PROC in $(seq 0 $(($NR_PROCS-1)));
do
#My call looks like this:
#srun --exclusive -n1 bash $PROJECT/call_shells/call_"$PROC".sh &
srun --exclusive -n1 hostname &
pids[${PROC}]=$! #Save PID of this background process
done
for pid in ${pids[*]};
do
wait ${pid} #Wait on all PIDs, this returns 0 if ANY process fails
done
I am aware, that the --exclusive argument is not really needed in my case. The shell scripts called contain the different binaries and their arguments. The remaining part of my script relies on the fact that all processes have finished hence the wait. I changed the calling line to make it a minimal working example.
At first this seemed to be the solution. Unfortunately when increasing the number of nodes used in my job allocation (for example by increasing --ntasks to a number larger than the number of CPUs per node in my cluster), the script does not work as expected anymore, returning
srun: Warning: can't run 1 processes on 2 nodes, setting nnodes to 1
and continuing using only one node (i.e. 48 CPUs in my case, which go through the job steps as fast as before, all processes on the other node(s) are subsequently killed).
This seems to be the expected behaviour, but I can't really understand it. Why is it that every job step in a given allocation needs to include a minimum number of tasks equal to the number of nodes included in the allocation. I ordinarily really do not care at all about the number of nodes used in my allocation.
How can I implement my batch script, so it can be used on multiple nodes reliably?
Found it! The nomenclature and the many command line options to slurm confused me. The solution is given by
#!/bin/bash
#SBATCH -o $HOME/slurm/slurm_out/%j.%N.out
#SBATCH --error=$HOME/slurm/slurm_out/%j.%N.err_out
#SBATCH --get-user-env
#SBATCH -J test
#SBATCH -D $HOME/slurm
#SBATCH --export=NONE
#SBATCH --ntasks=48
NR_PROCS=$(($SLURM_NTASKS))
for PROC in $(seq 0 $(($NR_PROCS-1)));
do
#My call looks like this:
#srun --exclusive -N1 -n1 bash $PROJECT/call_shells/call_"$PROC".sh &
srun --exclusive -N1 -n1 hostname &
pids[${PROC}]=$! #Save PID of this background process
done
for pid in ${pids[*]};
do
wait ${pid} #Wait on all PIDs, this returns 0 if ANY process fails
done
This specifies to run the job on exactly one node incorporating a single task only.

Resources