Find k in a k-sorted array - algorithm

I'm trying to write a binary-search-like algorithm to find k in a k-sorted array. (It needs to be O(logn))
For example, k here is 3:
5, 6, 7, 1, 2, 3, 4
Here's my try in Java
public static int findk(int[] a) {
int low = 0;
int high = a.length-1;
while(low <= high) {
if(a[low] <= a[high])
return low;
int middle = (low+high)/2;
if(a[low] > a[middle])
high = middle-1;
else
low = middle+1;
}
return 0;
}
It works for some inputs but doesn't work for others. It should be really easy but I can't figure out what's wrong.
Even a hint will be nice!

You need to find the first element which is smaller than a[0]. So you need to compare against a[0].
public static int findk(int[] a) {
int low = 0;
int high = a.length - 1;
if (a[high] >= a[0]) // special case array completely sorted
return high + 1;
while(low < high) {
int middle = (low + high) / 2;
if(a[middle] < a[0])
high = middle;
else
low = middle + 1;
}
return low; // or high
}
You will get [0,6] on start, then [0,3], then [2,3] and finally [3,3].
The reason why we don't do high = middle - 1 is that this way we could end up in the k-values which we don't want.

Related

Dynamic Programming Coin Change Limited Coins

Dynamic Programming Change Problem (Limited Coins).
I'm trying to create a program that takes as INPUT:
int coinValues[]; //e.g [coin1,coin2,coin3]
int coinLimit[]; //e.g [2 coin1 available,1 coin2 available,...]
int amount; //the amount we want change for.
OUTPUT:
int DynProg[]; //of size amount+1.
And output should be an Array of size amount+1 of which each cell represents the optimal number of coins we need to give change for the amount of the cell's index.
EXAMPLE: Let's say that we have the cell of Array at index: 5 with a content of 2.
This means that in order to give change for the amount of 5(INDEX), you need 2(cell's content) coins (Optimal Solution).
Basically I need exactly the output of the first array of this video(C[p])
. It's exactly the same problem with the big DIFFERENCE of LIMITED COINS.
Link to Video.
Note: See the video to understand, ignore the 2nd array of the video, and have in mind that I don't need the combinations, but the DP array, so then I can find which coins to give as change.
Thank you.
Consider the next pseudocode:
for every coin nominal v = coinValues[i]:
loop coinLimit[i] times:
starting with k=0 entry, check for non-zero C[k]:
if C[k]+1 < C[k+v] then
replace C[k+v] with C[k]+1 and set S[k+v]=v
Is it clear?
O(nk) solution from an editorial I wrote a while ago:
We start with the basic DP solution that runs in O(k*sum(c)). We have our dp array, where dp[i][j] stores the least possible number of coins from the first i denominations that sum to j. We have the following transition: dp[i][j] = min(dp[i - 1][j - cnt * value[i]] + cnt) for cnt from 0 to j / value[i].
To optimize this to an O(nk) solution, we can use a deque to memorize the minimum values from the previous iteration and make the transitions O(1). The basic idea is that if we want to find the minimum of the last m values in some array, we can maintain an increasing deque that stores possible candidates for the minimum. At each step, we pop off values at the end of the deque greater than the current value before pushing the current value into the back deque. Since the current value is both further to the right and less than the values we popped off, we can be sure they will never be the minimum. Then, we pop off the first element in the deque if it is more than m elements away. The minimum value at each step is now simply the first element in the deque.
We can apply a similar optimization trick to this problem. For each coin type i, we compute the elements of the dp array in this order: For each possible value of j % value[i] in increasing order, we process the values of j which when divided by value[i] produces that remainder in increasing order. Now we can apply the deque optimization trick to find min(dp[i - 1][j - cnt * value[i]] + cnt) for cnt from 0 to j / value[i] in constant time.
Pseudocode:
let n = number of coin denominations
let k = amount of change needed
let v[i] = value of the ith denomination, 1 indexed
let c[i] = maximum number of coins of the ith denomination, 1 indexed
let dp[i][j] = the fewest number of coins needed to sum to j using the first i coin denominations
for i from 1 to k:
dp[0][i] = INF
for i from 1 to n:
for rem from 0 to v[i] - 1:
let d = empty double-ended-queue
for j from 0 to (k - rem) / v[i]:
let currval = rem + v[i] * j
if dp[i - 1][currval] is not INF:
while d is not empty and dp[i - 1][d.back() * v[i] + rem] + j - d.back() >= dp[i - 1][currval]:
d.pop_back()
d.push_back(j)
if d is not empty and j - d.front() > c[i]:
d.pop_front()
if d is empty:
dp[i][currval] = INF
else:
dp[i][currval] = dp[i - 1][d.front() * v[i] + rem] + j - d.front()
This is what you are looking for.
Assumptions made : Coin Values are in descending order
public class CoinChangeLimitedCoins {
public static void main(String[] args) {
int[] coins = { 5, 3, 2, 1 };
int[] counts = { 2, 1, 2, 1 };
int target = 9;
int[] nums = combine(coins, counts);
System.out.println(minCount(nums, target, 0, 0, 0));
}
private static int minCount(int[] nums, int target, int sum, int current, int count){
if(current > nums.length) return -1;
if(sum == target) return count;
if(sum + nums[current] <= target){
return minCount(nums, target, sum+nums[current], current+1, count+1);
} else {
return minCount(nums, target, sum, current+1, count);
}
}
private static int[] combine(int[] coins, int[] counts) {
int sum = 0;
for (int count : counts) {
sum += count;
}
int[] returnArray = new int[sum];
int returnArrayIndex = 0;
for (int i = 0; i < coins.length; i++) {
int count = counts[i];
while (count != 0) {
returnArray[returnArrayIndex] = coins[i];
returnArrayIndex++;
count--;
}
}
return returnArray;
}
}
You can check this question: Minimum coin change problem with limited amount of coins.
BTW, I created c++ program based above link's algorithm:
#include <iostream>
#include <map>
#include <vector>
#include <algorithm>
#include <limits>
using namespace std;
void copyVec(vector<int> from, vector<int> &to){
for(vector<int>::size_type i = 0; i < from.size(); i++)
to[i] = from[i];
}
vector<int> makeChangeWithLimited(int amount, vector<int> coins, vector<int> limits)
{
vector<int> change;
vector<vector<int>> coinsUsed( amount + 1 , vector<int>(coins.size()));
vector<int> minCoins(amount+1,numeric_limits<int>::max() - 1);
minCoins[0] = 0;
vector<int> limitsCopy(limits.size());
copy(limits.begin(), limits.end(), limitsCopy.begin());
for (vector<int>::size_type i = 0; i < coins.size(); ++i)
{
while (limitsCopy[i] > 0)
{
for (int j = amount; j >= 0; --j)
{
int currAmount = j + coins[i];
if (currAmount <= amount)
{
if (minCoins[currAmount] > minCoins[j] + 1)
{
minCoins[currAmount] = minCoins[j] + 1;
copyVec(coinsUsed[j], coinsUsed[currAmount]);
coinsUsed[currAmount][i] += 1;
}
}
}
limitsCopy[i] -= 1;
}
}
if (minCoins[amount] == numeric_limits<int>::max() - 1)
{
return change;
}
copy(coinsUsed[amount].begin(),coinsUsed[amount].end(), back_inserter(change) );
return change;
}
int main()
{
vector<int> coins;
coins.push_back(20);
coins.push_back(50);
coins.push_back(100);
coins.push_back(200);
vector<int> limits;
limits.push_back(100);
limits.push_back(100);
limits.push_back(50);
limits.push_back(20);
int amount = 0;
cin >> amount;
while(amount){
vector<int> change = makeChangeWithLimited(amount,coins,limits);
for(vector<int>::size_type i = 0; i < change.size(); i++){
cout << change[i] << "x" << coins[i] << endl;
}
if(change.empty()){
cout << "IMPOSSIBE\n";
}
cin >> amount;
}
system("pause");
return 0;
}
Code in c#
private static int MinCoinsChangeWithLimitedCoins(int[] coins, int[] counts, int sum)
{
var dp = new int[sum + 1];
Array.Fill(dp, int.MaxValue);
dp[0] = 0;
for (int i = 0; i < coins.Length; i++) // n
{
int coin = coins[i];
for (int j = 0; j < counts[i]; j++) //
{
for (int s = sum; s >= coin ; s--) // sum
{
int remainder = s - coin;
if (remainder >= 0 && dp[remainder] != int.MaxValue)
{
dp[s] = Math.Min(1 + dp[remainder], dp[s]);
}
}
}
}
return dp[sum] == int.MaxValue ? -1 : dp[sum];
}

Shell Sort and Confusion with gaps

I've recently seen and studied the shell-sort algorithm and the seen the example provided here. In the example they consider a 'inc' or 'gap'.
I made a c implementation of the algorithm, and taking the gap value as a parameter in the sort.
I am observing the fact that for 10 unsorted values which are :
5, 1, 3, 2, 4, 8, 6, 9, 7, 10
using any gap, I am getting the following output :
1 2 3 4 5 6 8 7 9 10
I've built a recursive version of the code, which is here :
void shellSort(int *arr, int size, int gap){
int i, tmp;
if (gap == 0) return;
for (i = 0; i < size / gap; i+=gap){
if (i < size - 1){//Valid Index
if (arr[i] > arr[i + gap]){
tmp = arr[i];
arr[i] = arr[i + gap];
arr[i + gap] = tmp;
}
}
}
printf("Interation : \n");
for (i = 0; i < 10; i++){
printf("%d\t", arr[i]);
}
printf("\n\n");
shellSort(arr, size, gap - 1);
}
Example :
int main()
{
int arr[] = { 5, 1, 3, 2, 4, 8, 6, 9, 7, 10 }, i;
shellSort(&arr[0], 10, 3);
getch();
return 0;
}
After reading through the material in the internet, I am completely confused about selecting this gap value, in some places like wikipedia, they are using a gap sequence. Some assistance would be appreciated.
After Correction,
for (i = 0; i < size - gap; i++)
Output:
1 3 2 4 5 6 8 7 9 10
This code is not shell sort, it is a kind of comb sort
In this line
for (i = 0; i < size / gap; i+=gap)
index i doesn't walk through the whole array. Possible correction:
for (i = 0; i < size - gap; i++)
For full sorting, you have to repeat sort with gap = 1 while swapping occurs. Examples
Gaps are described in every manual about shellsort or combsort.
In short - two indexes, separated by gap, walk through array, so unordered elements are moving closer to their places in sorted array. After every run gap decreases (in shellsort denominator is 2-3, in combsort - 1.3). Decrementing gap by 1 (as your code shows) makes the code very slow.
In the Shell-Sort Algorithm, you need to understand the concept of gap-sorting an array (or h-sorting).
Assume that you have a gap 'h'. You will begin with the first element tab[0] and sort all the elements spaced by h in your array: tab[0], tab[h], tab[2h] ... then you will pick the secend element as a begining and try to sort the spaced elements. Each time the starting element is incremented. To sort the h-spaced elements, you use the insertion sort algorithm.
After that choose a sequence for your h-insertion sort code starting from the biggest gap.
This is my implementation in java:
// Using Pratt sequence
public static void hSort(int tab[]) {
int N = tab.length;
int k = 0;
int sequence = 1;
// Getting the final term of the pratt sequence
while(((int)(Math.pow(3, k) - 1) / 2) < N/3) {
sequence = (int)(Math.pow(3, k) - 1) / 2;
k++;
}
k--;
while(sequence > 0) {
hInsertionSort(tab, sequence);
k--;
sequence = (int)(Math.pow(3, k) - 1) / 2;
}
}
public static void hInsertionSort(int[] tab, int h) {
int N = tab.length;
int k = 0;
while (k < h) {
for (int i = k; i < N; i+=h) {
for (int j = i; j > k+h-1; j-=h) {
if (less(tab[j], tab[j-h]) == -1) exch(tab, j, j-h);
else break;
}
}
k++;
}
}
private static inttab[1] (it means sort tab[1], tab[h+1], ...). This is h-sorting your array. less(int value1, int value2) {
if (value1 == value2) return 0;
if (value1 < value2) return -1;
else return 1;
}
tab[1] (it means sort tab[1], tab[h+1], ...). This is h-sorting your array.
private static void exch(int[] tab, int key1, int key2) {
int inter;
inter = tab[key1];
tab[key1] = tab[key2];
tab[key2] = inter;
}

find the max difference between j and i indices such that j > i and a[j] > a[i] in O(n)

Given an unsorted array, find the max j - i difference between indices such that j > i and a[j] > a[i] in O(n). I am able to find j and i using trivial methods in O(n^2) complexity but would like to know how to do this in O(n)?
Input: {9, 2, 3, 4, 5, 6, 7, 8, 18, 0}
Output: 8 ( j = 8, i = 0)
Input: {1, 2, 3, 4, 5, 6}
Output: 5 (j = 5, i = 0)
For brevity's sake I am going to assume all the elements are unique. The algorithm can be extended to handle non-unique element case.
First, observe that if x and y are your desired max and min locations respectively, then there can not be any a[i] > a[x] and i > x, and similarly, no a[j] < a[y] and j < y.
So we scan along the array a and build an array S such that S[i] holds the index of the minimum element in a[0:i]. Similarly an array T which holds the index of the maximum element in a[n-1:i] (i.e., backwards).
Now we can see that a[S[i]] and a[T[i]] are necessarily decreasing sequences, since they were the minimum till i and maximum from n till i respectively.
So now we try to do a merge-sort like procedure. At each step, if a[S[head]] < a[T[head]], we pop off an element from T, otherwise we pop off an element from S. At each such step, we record the difference in the head of S and T if a[S[head]] < a[T[head]]. The maximum such difference gives you your answer.
EDIT: Here is a simple code in Python implementing the algorithm.
def getMaxDist(arr):
# get minima going forward
minimum = float("inf")
minima = collections.deque()
for i in range(len(arr)):
if arr[i] < minimum:
minimum = arr[i]
minima.append((arr[i], i))
# get maxima going back
maximum = float("-inf")
maxima = collections.deque()
for i in range(len(arr)-1,0,-1):
if arr[i] > maximum:
maximum = arr[i]
maxima.appendleft((arr[i], i))
# do merge between maxima and minima
maxdist = 0
while len(maxima) and len(minima):
if maxima[0][0] > minima[0][0]:
if maxima[0][1] - minima[0][1] > maxdist:
maxdist = maxima[0][1] - minima[0][1]
maxima.popleft()
else:
minima.popleft()
return maxdist
Let's make this simple observation: If we have 2 elements a[i], a[j] with i < j and a[i] < a[j] then we can be sure that j won't be part of the solution as the first element (he can be the second but that's a second story) because i would be a better alternative.
What this tells us is that if we build greedily a decreasing sequence from the elements of a the left part of the answer will surely come from there.
For example for : 12 3 61 23 51 2 the greedily decreasing sequence is built like this:
12 -> 12 3 -> we ignore 61 because it's worse than 3 -> we ignore 23 because it's worse than 3 -> we ignore 51 because it's worse than 3 -> 12 3 2.
So the answer would contain on the left side 12 3 or 2.
Now on a random case this has O(log N) length so you can binary search on it for each element as the right part of the answer and you would get O(N log log N) which is good, and if you apply the same logic on the right part of the string on a random case you could get O(log^2 N + N(from the reading)) which is O(N). But we can do O(N) on a non-random case too.
Suppose we have this decreasing sequence. We start from the right of the string and do the following while we can pair the last of the decreasing sequence with the current number
1) If we found a better solution by taking the last of the decreasing sequence and the current number than we update the answer
2) Even if we updated the answer or not we pop the last element of the decreasing sequence because we are it's perfect match (any other match would be to the left and would give an answer with smaller j - i)
3) Repeat while we can pair these 2
Example Code:
#include <iostream>
#include <vector>
using namespace std;
int main() {
int N; cin >> N;
vector<int> A(N + 1);
for (int i = 1; i <= N; ++i)
cin >> A[i];
// let's solve the problem
vector<int> decreasing;
pair<int, int> answer;
// build the decreasing sequence
decreasing.push_back(1);
for (int i = 1; i <= N; ++i)
if (A[i] < A[decreasing.back()])
decreasing.push_back(i); // we work with indexes because we might have equal values
for (int i = N; i > 0; --i) {
while (decreasing.size() and A[decreasing.back()] < A[i]) { // while we can pair these 2
pair<int, int> current_pair(decreasing.back(), i);
if (current_pair.second - current_pair.first > answer.second - answer.first)
answer = current_pair;
decreasing.pop_back();
}
}
cout << "Best pair found: (" << answer.first << ", " << answer.second << ") with values (" << A[answer.first] << ", " << A[answer.second] << ")\n";
}
Later Edit:
I see you gave an example: I indexed from 1 to make it clearer and I print (i, j) instead of (j, i). You can alter it as you see fit.
We can avoid checking the whole array by starting from the maximum difference of j-i and comparing arr[j]>arr[i] for all the possible combinations j and i for that particular maximum difference
Whenever we get a combination of (j,i) with arr[j]>arr[i] we can exit the loop
Example : In an array of {2,3,4,5,8,1}
first code will check for maximum difference 5(5-0) i.e (arr[0],arr[5]), if arr[5]>arr[0] function will exit else will take combinations of max diff 4 (5,1) and (4,0) i.e arr[5],arr[1] and arr[4],arr[0]
int maxIndexDiff(int arr[], int n)
{
int maxDiff = n-1;
int i, j;
while (maxDiff>0)
{
j=n-1;
while(j>=maxDiff)
{
i=j - maxDiff;
if(arr[j]>arr[i])
{
return maxDiff;
}
j=j-1;
}
maxDiff=maxDiff-1;
}
return -1;
}`
https://ide.geeksforgeeks.org/cjCW3wXjcj
Here is a very simple O(n) Python implementation of the merged down-sequence idea. The implementation works even in the case of duplicate values:
downs = [0]
for i in range(N):
if ar[i] < ar[downs[-1]]:
downs.append(i)
best = 0
i, j = len(downs)-1, N-1
while i >= 0:
if ar[downs[i]] <= ar[j]:
best = max(best, j-downs[i])
i -= 1
else:
j -= 1
print best
To solve this problem, we need to get two optimum indexes of arr[]: left index i and right index j. For an element arr[i], we do not need to consider arr[i] for left index if there is an element smaller than arr[i] on left side of arr[i]. Similarly, if there is a greater element on right side of arr[j] then we do not need to consider this j for right index. So we construct two auxiliary arrays LMin[] and RMax[] such that LMin[i] holds the smallest element on left side of arr[i] including arr[i], and RMax[j] holds the greatest element on right side of arr[j] including arr[j]. After constructing these two auxiliary arrays, we traverse both of these arrays from left to right. While traversing LMin[] and RMa[] if we see that LMin[i] is greater than RMax[j], then we must move ahead in LMin[] (or do i++) because all elements on left of LMin[i] are greater than or equal to LMin[i]. Otherwise we must move ahead in RMax[j] to look for a greater j – i value. Here is the c code running in O(n) time:
#include <stdio.h>
#include <stdlib.h>
/* Utility Functions to get max and minimum of two integers */
int max(int x, int y)
{
return x > y? x : y;
}
int min(int x, int y)
{
return x < y? x : y;
}
/* For a given array arr[], returns the maximum j – i such that
arr[j] > arr[i] */
int maxIndexDiff(int arr[], int n)
{
int maxDiff;
int i, j;
int *LMin = (int *)malloc(sizeof(int)*n);
int *RMax = (int *)malloc(sizeof(int)*n);
/* Construct LMin[] such that LMin[i] stores the minimum value
from (arr[0], arr[1], ... arr[i]) */
LMin[0] = arr[0];
for (i = 1; i < n; ++i)
LMin[i] = min(arr[i], LMin[i-1]);
/* Construct RMax[] such that RMax[j] stores the maximum value
from (arr[j], arr[j+1], ..arr[n-1]) */
RMax[n-1] = arr[n-1];
for (j = n-2; j >= 0; --j)
RMax[j] = max(arr[j], RMax[j+1]);
/* Traverse both arrays from left to right to find optimum j - i
This process is similar to merge() of MergeSort */
i = 0, j = 0, maxDiff = -1;
while (j < n && i < n)
{
if (LMin[i] < RMax[j])
{
maxDiff = max(maxDiff, j-i);
j = j + 1;
}
else
i = i+1;
}
return maxDiff;
}
/* Driver program to test above functions */
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6};
int n = sizeof(arr)/sizeof(arr[0]);
int maxDiff = maxIndexDiff(arr, n);
printf("\n %d", maxDiff);
getchar();
return 0;
}
Simplified version of Subhasis Das answer using auxiliary arrays.
def maxdistance(nums):
n = len(nums)
minima ,maxima = [None]*n, [None]*n
minima[0],maxima[n-1] = nums[0],nums[n-1]
for i in range(1,n):
minima[i] = min(nums[i],minima[i-1])
for i in range(n-2,-1,-1):
maxima[i]= max(nums[i],maxima[i+1])
i,j,maxdist = 0,0,-1
while(i<n and j<n):
if minima[i] <maxima[j]:
maxdist = max(j-i,maxdist)
j = j+1
else:
i += 1
print maxdist
I can think of improvement over O(n^2), but need to verify if this is O(n) in worse case or not.
Create a variable BestSoln=0; and traverse the array for first element
and store the best solution for first element i.e bestSoln=k;.
Now for 2nd element consider only elements which are k distances away
from the second element.
If BestSoln in this case is better than first iteration then replace
it otherwise let it be like that. Keep iterating for other elements.
It can be improved further if we store max element for each subarray starting from i to end.
This can be done in O(n) by traversing the array from end.
If a particular element is more than it's local max then there is no need to do evaluation for this element.
Input:
{9, 2, 3, 4, 5, 6, 7, 8, 18, 0}
create local max array for this array:
[18,18,18,18,18,18,18,0,0] O(n).
Now, traverse the array for 9 ,here best solution will be i=0,j=8.
Now for second element or after it, we don't need to evaluate. and best solution is i=0,j=8.
But suppose array is Input:
{19, 2, 3, 4, 5, 6, 7, 8, 18, 0,4}
Local max array [18,18,18,18,18,18,18,0,0] then in first iteration we don't need to evaluate as local max is less than current elem.
Now for second iteration best solution is, i=1,j=10. Now for other elements we don't need to consider evaluation as they can't give best solution.
Let me know your view your use case to which my solution is not applicable.
This is a very simple solution for O(2n) of speed and additional ~O(2n) of space (in addition to the input array). The following implementation is in C:
int findMaxDiff(int array[], int size) {
int index = 0;
int maxima[size];
int indexes[size];
while (index < size) {
int max = array[index];
int i;
for (i = index; i < size; i++) {
if (array[i] > max) {
max = array[i];
indexes[index] = i;
}
}
maxima[index] = max;
index++;
}
int j;
int result;
for (j = 0; j < size; j++) {
int max2 = 0;
if (maxima[j] - array[j] > max2) {
max2 = maxima[j] - array[j];
result = indexes[j];
}
}
return result;
}
The first loop scan the array once, finding for each element the maximum of the remaining elements to its right. We store also the relative index in a separate array.
The second loops finds the maximum between each element and the correspondent right-hand-side maximum, and returns the right index.
My Solution with in O(log n) (Please correct me here if I am wrong in calculating this complexity)time ...
Idea is to insert into a BST and then search for node and if the node has a right child then traverse through the right sub tree to calculate the node with maximum index..
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
class Ideone
{
public static void main (String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t1 = Integer.parseInt(br.readLine());
for(int j=0;j<t1;j++){
int size = Integer.parseInt(br.readLine());
String input = br.readLine();
String[] t = input.split(" ");
Node root = new Node(Integer.parseInt(t[0]),0);
for(int i=1;i<size;i++){
Node addNode = new Node(Integer.parseInt(t[i]),i);
insertIntoBST(root,addNode);
}
for(String s: t){
Node nd = findNode(root,Integer.parseInt(s));
if(nd.right != null){
int i = nd.index;
int j1 = calculate(nd.right);
mVal = max(mVal,j1-i);
}
}
System.out.println(mVal);
mVal=0;
}
}
static int mVal =0;
public static int calculate (Node root){
if(root==null){
return -1;
}
int i = max(calculate(root.left),calculate(root.right));
return max(root.index,i);
}
public static Node findNode(Node root,int n){
if(root==null){
return null;
}
if(root.value == n){
return root;
}
Node result = findNode(root.left,n);
if(result ==null){
result = findNode(root.right,n);
}
return result;
}
public static int max(int a , int b){
return a<b?b:a;
}
public static class Node{
Node left;
Node right;
int value;
int index;
public Node(int value,int index){
this.value = value;
this.index = index;
}
}
public static void insertIntoBST(Node root, Node addNode){
if(root.value< addNode.value){
if(root.right!=null){
insertIntoBST(root.right,addNode);
}else{
root.right = addNode;
}
}
if(root.value>=addNode.value){
if(root.left!=null){
insertIntoBST(root.left,addNode);
}else{
root.left =addNode;
}
}
}
}
A simplified algorithm from Subhasis Das's answer:
# assume list is not empty
max_dist = 0
acceptable_min = (0, arr[0])
acceptable_max = (0, arr[0])
min = (0, arr[0])
for i in range(len(arr)):
if arr[i] < min[1]:
min = (i, arr[i])
elif arr[i] - min[1] > max_dist:
max_dist = arr[i] - min[1]
acceptable_min = min
acceptable_max = (i, arr[i])
# acceptable_min[0] is the i
# acceptable_max[0] is the j
# max_dist is the max difference
Below is a C++ solution for the condition a[i] <= a[j]. It needs a slight modification to handle the case a[i] < a[j].
template<typename T>
std::size_t max_dist_sorted_pair(const std::vector<T>& seq)
{
const auto n = seq.size();
const auto less = [&seq](std::size_t i, std::size_t j)
{ return seq[i] < seq[j]; };
// max_right[i] is the position of the rightmost
// largest element in the suffix seq[i..]
std::vector<std::size_t> max_right(n);
max_right.back() = n - 1;
for (auto i = n - 1; i > 0; --i)
max_right[i - 1] = std::max(max_right[i], i - 1, less);
std::size_t max_dist = 0;
for (std::size_t i = 0, j = 0; i < n; ++i)
while (!less(max_right[j], i))
{
j = max_right[j];
max_dist = std::max(max_dist, j - i);
if (++j == n)
return max_dist;
}
return max_dist;
}
Please review this solution and cases where it might fail:
def maxIndexDiff(arr, n):
j = n-1
for i in range(0,n):
if j > i:
if arr[j] >= arr[i]:
return j-i
elif arr[j-1] >= arr[i]:
return (j-1) - i
elif arr[j] >= arr[i+1]:
return j - (i+1)
j -= 1
return -1
int maxIndexDiff(int arr[], int n)
{
// Your code here
vector<int> rightMax(n);
rightMax[n-1] = arr[n-1];
for(int i =n-2;i>=0;i--){
rightMax[i] = max(rightMax[i+1],arr[i]);
}
int i = 0,j=0,maxDis = 0;
while(i<n &&j<n){
if(rightMax[j]>=arr[i]){
maxDis = max(maxDis,j-i);
j++;
} else
i++;
}
return maxDis;
}
There is concept of keeping leftMin and rightMax but leftMin is not really required and leftMin will do the work anyways.
We are choosing rightMax and traversing from start till we get a smaller value than that!
Create Arraylist of pairs where is key is array element and value is the index. Sort this arraylist of pairs. Traverse this arraylist of pairs to get the maximum gap between(maxj-i). Also keep a track of maxj and update when new maxj is found. Please find my java solution which takes O(nlogn) time complexity and O(n) space complexity.
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
class MaxDistanceSolution {
private class Pair implements Comparable<Pair> {
int key;
int value;
public int getKey() {
return key;
}
public int getValue() {
return value;
}
Pair(int key, int value) {
this.key = key;
this.value = value;
}
#Override
public int compareTo(Pair o) {
return this.getKey() - o.getKey();
}
}
public int maximumGap(final ArrayList<Integer> A) {
int n = A.size();
ArrayList<Pair> B = new ArrayList<>();
for (int i = 0 ; i < n; i++)
B.add(new Pair(A.get(i), i));
Collections.sort(B);
int maxJ = B.get(n-1).getValue();
int gaps = 0;
for (int i = n - 2; i >= 0; i--) {
gaps = Math.max(gaps, maxJ - B.get(i).getValue());
maxJ = Math.max(maxJ, B.get(i).getValue());
}
return gaps;
}
}
public class MaxDistance {
public static void main(String[] args) {
MaxDistanceSolution sol = new MaxDistanceSolution();
ArrayList<Integer> A = new ArrayList<>(Arrays.asList(3, 5, 4, 2));
int gaps = sol.maximumGap(A);
System.out.println(gaps);
}
}
I have solved this question here.
https://github.com/nagendra547/coding-practice/blob/master/src/arrays/FindMaxIndexDifference.java
Putting code here too. Thanks.
private static int findMaxIndexDifferenceOptimal(int[] a) {
int n = a.length;
// array containing minimums
int A[] = new int[n];
A[0] = a[0];
for (int i = 1; i < n; i++) {
A[i] = Math.min(a[i], A[i - 1]);
}
// array containing maximums
int B[] = new int[n];
B[n - 1] = a[n - 1];
for (int j = n - 2; j >= 0; j--) {
B[j] = Math.max(a[j], B[j + 1]);
}
int i = 0, maxDiff = -1;
int j = 0;
while (i < n && j < n) {
if (B[j] > A[i]) {
maxDiff = Math.max(j - i, maxDiff);
j++;
} else {
i++;
}
}
return maxDiff;
}

Find the first "missing" number in a sorted list

Let's say I have the continuous range of integers [0, 1, 2, 4, 6], in which the 3 is the first "missing" number. I need an algorithm to find this first "hole". Since the range is very large (containing perhaps 2^32 entries), efficiency is important. The range of numbers is stored on disk; space efficiency is also a main concern.
What's the best time and space efficient algorithm?
Use binary search. If a range of numbers has no hole, then the difference between the end and start of the range will also be the number of entries in the range.
You can therefore begin with the entire list of numbers, and chop off either the first or second half based on whether the first half has a gap. Eventually you will come to a range with two entries with a hole in the middle.
The time complexity of this is O(log N). Contrast to a linear scan, whose worst case is O(N).
Based on the approach suggested by #phs above, here is the C code to do that:
#include <stdio.h>
int find_missing_number(int arr[], int len) {
int first, middle, last;
first = 0;
last = len - 1;
middle = (first + last)/2;
while (first < last) {
if ((arr[middle] - arr[first]) != (middle - first)) {
/* there is a hole in the first half */
if ((middle - first) == 1 && (arr[middle] - arr[first] > 1)) {
return (arr[middle] - 1);
}
last = middle;
} else if ((arr[last] - arr[middle]) != (last - middle)) {
/* there is a hole in the second half */
if ((last - middle) == 1 && (arr[last] - arr[middle] > 1)) {
return (arr[middle] + 1);
}
first = middle;
} else {
/* there is no hole */
return -1;
}
middle = (first + last)/2;
}
/* there is no hole */
return -1;
}
int main() {
int arr[] = {3, 5, 1};
printf("%d", find_missing_number(arr, sizeof arr/(sizeof arr[0]))); /* prints 4 */
return 0;
}
Since numbers from 0 to n - 1 are sorted in an array, the first numbers should be same as their indexes. That's to say, the number 0 is located at the cell with index 0, the number 1 is located at the cell with index 1, and so on. If the missing number is denoted as m. Numbers less then m are located at cells with indexes same as values.
The number m + 1 is located at a cell with index m, The number m + 2 is located at a cell with index m + 1, and so on. We can see that, the missing number m is the first cell whose value is not identical to its value.
Therefore, it is required to search in an array to find the first cell whose value is not identical to its value. Since the array is sorted, we could find it in O(lg n) time based on the binary search algorithm as implemented below:
int getOnceNumber_sorted(int[] numbers)
{
int length = numbers.length
int left = 0;
int right = length - 1;
while(left <= right)
{
int middle = (right + left) >> 1;
if(numbers[middle] != middle)
{
if(middle == 0 || numbers[middle - 1] == middle - 1)
return middle;
right = middle - 1;
}
else
left = middle + 1;
}
return -1;
}
This solution is borrowed from my blog: http://codercareer.blogspot.com/2013/02/no-37-missing-number-in-array.html.
Based on algorithm provided by #phs
int findFirstMissing(int array[], int start , int end){
if(end<=start+1){
return start+1;
}
else{
int mid = start + (end-start)/2;
if((array[mid] - array[start]) != (mid-start))
return findFirstMissing(array, start, mid);
else
return findFirstMissing(array, mid+1, end);
}
}
Below is my solution, which I believe is simple and avoids an excess number of confusing if-statements. It also works when you don't start at 0 or have negative numbers involved! The complexity is O(lg(n)) time with O(1) space, assuming the client owns the array of numbers (otherwise it's O(n)).
The Algorithm in C Code
int missingNumber(int a[], int size) {
int lo = 0;
int hi = size - 1;
// TODO: Use this if we need to ensure we start at 0!
//if(a[0] != 0) { return 0; }
// All elements present? If so, return next largest number.
if((hi-lo) == (a[hi]-a[lo])) { return a[hi]+1; }
// While 2 or more elements to left to consider...
while((hi-lo) >= 2) {
int mid = (lo + hi) / 2;
if((mid-lo) != (a[mid]-a[lo])) { // Explore left-hand side
hi = mid;
} else { // Explore right hand side
lo = mid + 1;
}
}
// Return missing value from the two candidates remaining...
return (lo == (a[lo]-a[0])) ? hi + a[0] : lo + a[0];
}
Test Outputs
int a[] = {0}; // Returns: 1
int a[] = {1}; // Returns: 2
int a[] = {0, 1}; // Returns: 2
int a[] = {1, 2}; // Returns: 3
int a[] = {0, 2}; // Returns: 1
int a[] = {0, 2, 3, 4}; // Returns: 1
int a[] = {0, 1, 2, 4}; // Returns: 3
int a[] = {0, 1, 2, 4, 5, 6, 7, 8, 9}; // Returns: 3
int a[] = {2, 3, 5, 6, 7, 8, 9}; // Returns: 4
int a[] = {2, 3, 4, 5, 6, 8, 9}; // Returns: 7
int a[] = {-3, -2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; // Returns: -1
int a[] = {-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; // Returns: 10
The general procedure is:
(Optional) Check if the array starts at 0. If it doesn't, return 0 as missing.
Check if the array of integers is complete with no missing integer. If it is not missing an integer, return the next largest integer.
In a binary search fashion, check for a mismatch between the difference in the indices and array values. A mismatch tells us which half a missing element is in. If there is a mismatch in the first half, move left, otherwise move right. Do this until you have two candidate elements left to consider.
Return the number that is missing based on incorrect candidate.
Note, the algorithm's assumptions are:
First and last elements are considered to never be missing. These elements establish a range.
Only one integer is ever missing in the array. This will not find more than one missing integer!
Integer in the array are expected to increase in steps of 1, not at any other rate.
Have you considered a run-length encoding? That is, you encode the first number as well as the count of numbers that follow it consecutively. Not only can you represent the numbers used very efficiently this way, the first hole will be at the end of the first run-length encoded segment.
To illustrate with your example:
[0, 1, 2, 4, 6]
Would be encoded as:
[0:3, 4:1, 6:1]
Where x:y means there is a set of numbers consecutively starting at x for y numbers in a row. This tells us immediately that the first gap is at location 3. Note, however, that this will be much more efficient when the assigned addresses are clustered together, not randomly dispersed throughout the range.
if the list is sorted, I'd iterate over the list and do something like this Python code:
missing = []
check = 0
for n in numbers:
if n > check:
# all the numbers in [check, n) were not present
missing += range(check, n)
check = n + 1
# now we account for any missing numbers after the last element of numbers
if check < MAX:
missing += range(check, MAX + 1)
if lots of numbers are missing, you might want to use #Nathan's run-length encoding suggestion for the missing list.
Missing
Number=(1/2)(n)(n+1)-(Sum of all elements in the array)
Here n is the size of array+1.
Array: [1,2,3,4,5,6,8,9]
Index: [0,1,2,3,4,5,6,7]
int findMissingEmementIndex(int a[], int start, int end)
{
int mid = (start + end)/2;
if( Math.abs(a[mid] - a[start]) != Math.abs(mid - start) ){
if( Math.abs(mid - start) == 1 && Math.abs(a[mid] - a[start])!=1 ){
return start +1;
}
else{
return findMissingElmementIndex(a,start,mid);
}
}
else if( a[mid] - a[end] != end - start){
if( Math.abs(end - mid) ==1 && Math.abs(a[end] - a[mid])!=1 ){
return mid +1;
}
else{
return findMissingElmementIndex(a,mid,end);
}
}
else{
return No_Problem;
}
}
This is an interview Question. We will have an array of more than one missing numbers and we will put all those missing numbers in an ArrayList.
public class Test4 {
public static void main(String[] args) {
int[] a = { 1, 3, 5, 7, 10 };
List<Integer> list = new ArrayList<>();
int start = 0;
for (int i = 0; i < a.length; i++) {
int ch = a[i];
if (start == ch) {
start++;
} else {
list.add(start);
start++;
i--; // a must do.
} // else
} // for
System.out.println(list);
}
}
Functional Programming solution (Scala)
Nice and elegant
Lazy evaluation
def gapFinder(sortedList: List[Int], start: Int = 0): Int = {
def withGuards: Stream[Int] =
(start - 1) +: sortedList.toStream :+ (sortedList.last + 2)
if (sortedList.isEmpty) start
else withGuards.sliding(2)
.dropWhile { p => p.head + 1 >= p.last }.next()
.headOption.getOrElse(start) + 1
} // 8-line solution
// Tests
assert(gapFinder(List()) == 0)
assert(gapFinder(List[Int](0)) == 1)
assert(gapFinder(List[Int](1)) == 0)
assert(gapFinder(List[Int](2)) == 0)
assert(gapFinder(List[Int](0, 1, 2)) == 3)
assert(gapFinder(List[Int](0, 2, 4)) == 1)
assert(gapFinder(List[Int](0, 1, 2, 4)) == 3)
assert(gapFinder(List[Int](0, 1, 2, 4, 5)) == 3)
import java.util.Scanner;
class MissingNumber {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int[] arr =new int[n];
for (int i=0;i<n;i++){
arr[i]=scan.nextInt();
}
for (int i=0;i<n;i++){
if(arr[i+1]==arr[i]+1){
}
else{
System.out.println(arr[i]+1);
break;
}
}
}
}
I was looking for a super simple way to find the first missing number in a sorted array with a max potential value in javascript and didn't have to worry about efficiency too much as I didn't plan on using a list longer 10-20 items at the most. This is the recursive function I came up with:
function findFirstMissingNumber(sortedList, index, x, maxAllowedValue){
if(sortedList[index] == x && x < maxAllowedValue){
return findFirstMissingNumber(sortedList, (index+1), (x+1), maxAllowedValue);
}else{ return x; }
}
findFirstMissingNumber([3, 4, 5, 7, 8, 9], 0, 3, 10);
//expected output: 6
Give it your array, the index you wish to start at, the value you expect it to be and the maximum value you'd like to check up to.
i got one algorithm for finding the missing number in the sorted list. its complexity is logN.
public int execute2(int[] array) {
int diff = Math.min(array[1]-array[0], array[2]-array[1]);
int min = 0, max = arr.length-1;
boolean missingNum = true;
while(min<max) {
int mid = (min + max) >>> 1;
int leftDiff = array[mid] - array[min];
if(leftDiff > diff * (mid - min)) {
if(mid-min == 1)
return (array[mid] + array[min])/2;
max = mid;
missingNum = false;
continue;
}
int rightDiff = array[max] - array[mid];
if(rightDiff > diff * (max - mid)) {
if(max-mid == 1)
return (array[max] + array[mid])/2;
min = mid;
missingNum = false;
continue;
}
if(missingNum)
break;
}
return -1;
}
Based on algorithm provided by #phs
public class Solution {
public int missing(int[] array) {
// write your solution here
if(array == null){
return -1;
}
if (array.length == 0) {
return 1;
}
int left = 0;
int right = array.length -1;
while (left < right - 1) {
int mid = left + (right - left) / 2;
if (array[mid] - array[left] != mid - left) { //there is gap in [left, mid]
right = mid;
}else if (array[right] - array[mid] != right - mid) { //there is gap in [mid, right]
left = mid;
}else{ //there is no gapin [left, right], which means the missing num is the at 0 and N
return array[0] == 1 ? array.length + 1 : 1 ;
}
}
if (array[right] - array[left] == 2){ //missing number is between array[left] and array[right]
return left + 2;
}else{
return array[0] == 1 ? -1 : 1; //when ther is only one element in array
}
}
}
public static int findFirst(int[] arr) {
int l = -1;
int r = arr.length;
while (r - l > 1) {
int middle = (r + l) / 2;
if (arr[middle] > middle) {
r = middle;
}
l = middle;
}
return r;
}

Given an array of numbers, find out if 3 of them add up to 0

Given an array of numbers, find out if 3 of them add up to 0.
Do it in N^2, how would one do this?
O(n^2) solution without hash tables (because using hash tables is cheating :P). Here's the pseudocode:
Sort the array // O(nlogn)
for each i from 1 to len(array) - 1
iter = i + 1
rev_iter = len(array) - 1
while iter < rev_iter
tmp = array[iter] + array[rev_iter] + array[i]
if tmp > 0
rev_iter--
else if tmp < 0
iter++
else
return true
return false
Basically using a sorted array, for each number (target) in an array, you use two pointers, one starting from the front and one starting from the back of the array, check if the sum of the elements pointed to by the pointers is >, < or == to the target, and advance the pointers accordingly or return true if the target is found.
Not for credit or anything, but here is my python version of Charles Ma's solution. Very cool.
def find_sum_to_zero(arr):
arr = sorted(arr)
for i, target in enumerate(arr):
lower, upper = 0, len(arr)-1
while lower < i < upper:
tmp = target + arr[lower] + arr[upper]
if tmp > 0:
upper -= 1
elif tmp < 0:
lower += 1
else:
yield arr[lower], target, arr[upper]
lower += 1
upper -= 1
if __name__ == '__main__':
# Get a list of random integers with no duplicates
from random import randint
arr = list(set(randint(-200, 200) for _ in range(50)))
for s in find_sum_to_zero(arr):
print s
Much later:
def find_sum_to_zero(arr):
limits = 0, len(arr) - 1
arr = sorted(arr)
for i, target in enumerate(arr):
lower, upper = limits
while lower < i < upper:
values = (arr[lower], target, arr[upper])
tmp = sum(values)
if not tmp:
yield values
lower += tmp <= 0
upper -= tmp >= 0
put the negative of each number into a hash table or some other constant time lookup data structure. (n)
loop through the array getting each set of two numbers (n^2), and see if their sum is in the hash table.
First sort the array, then for each negative number (A) in the array, find two elements in the array adding up to -A. Finding 2 elements in a sorted array that add up to the given number takes O(n) time, so the entire time complexity is O(n^2).
C++ implementation based on the pseudocode provided by Charles Ma, for anyone interested.
#include <iostream>
using namespace std;
void merge(int originalArray[], int low, int high, int sizeOfOriginalArray){
// Step 4: Merge sorted halves into an auxiliary array
int aux[sizeOfOriginalArray];
int auxArrayIndex, left, right, mid;
auxArrayIndex = low;
mid = (low + high)/2;
right = mid + 1;
left = low;
// choose the smaller of the two values "pointed to" by left, right
// copy that value into auxArray[auxArrayIndex]
// increment either left or right as appropriate
// increment auxArrayIndex
while ((left <= mid) && (right <= high)) {
if (originalArray[left] <= originalArray[right]) {
aux[auxArrayIndex] = originalArray[left];
left++;
auxArrayIndex++;
}else{
aux[auxArrayIndex] = originalArray[right];
right++;
auxArrayIndex++;
}
}
// here when one of the two sorted halves has "run out" of values, but
// there are still some in the other half; copy all the remaining values
// to auxArray
// Note: only 1 of the next 2 loops will actually execute
while (left <= mid) {
aux[auxArrayIndex] = originalArray[left];
left++;
auxArrayIndex++;
}
while (right <= high) {
aux[auxArrayIndex] = originalArray[right];
right++;
auxArrayIndex++;
}
// all values are in auxArray; copy them back into originalArray
int index = low;
while (index <= high) {
originalArray[index] = aux[index];
index++;
}
}
void mergeSortArray(int originalArray[], int low, int high){
int sizeOfOriginalArray = high + 1;
// base case
if (low >= high) {
return;
}
// Step 1: Find the middle of the array (conceptually, divide it in half)
int mid = (low + high)/2;
// Steps 2 and 3: Recursively sort the 2 halves of origianlArray and then merge those
mergeSortArray(originalArray, low, mid);
mergeSortArray(originalArray, mid + 1, high);
merge(originalArray, low, high, sizeOfOriginalArray);
}
//O(n^2) solution without hash tables
//Basically using a sorted array, for each number in an array, you use two pointers, one starting from the number and one starting from the end of the array, check if the sum of the three elements pointed to by the pointers (and the current number) is >, < or == to the targetSum, and advance the pointers accordingly or return true if the targetSum is found.
bool is3SumPossible(int originalArray[], int targetSum, int sizeOfOriginalArray){
int high = sizeOfOriginalArray - 1;
mergeSortArray(originalArray, 0, high);
int temp;
for (int k = 0; k < sizeOfOriginalArray; k++) {
for (int i = k, j = sizeOfOriginalArray-1; i <= j; ) {
temp = originalArray[k] + originalArray[i] + originalArray[j];
if (temp == targetSum) {
return true;
}else if (temp < targetSum){
i++;
}else if (temp > targetSum){
j--;
}
}
}
return false;
}
int main()
{
int arr[] = {2, -5, 10, 9, 8, 7, 3};
int size = sizeof(arr)/sizeof(int);
int targetSum = 5;
//3Sum possible?
bool ans = is3SumPossible(arr, targetSum, size); //size of the array passed as a function parameter because the array itself is passed as a pointer. Hence, it is cummbersome to calculate the size of the array inside is3SumPossible()
if (ans) {
cout<<"Possible";
}else{
cout<<"Not possible";
}
return 0;
}
This is my approach using Swift 3 in N^2 log N...
let integers = [-50,-40, 10, 30, 40, 50, -20, -10, 0, 5]
First step, sort array
let sortedArray = integers.sorted()
second, implement a binary search method that returns an index like so...
func find(value: Int, in array: [Int]) -> Int {
var leftIndex = 0
var rightIndex = array.count - 1
while leftIndex <= rightIndex {
let middleIndex = (leftIndex + rightIndex) / 2
let middleValue = array[middleIndex]
if middleValue == value {
return middleIndex
}
if value < middleValue {
rightIndex = middleIndex - 1
}
if value > middleValue {
leftIndex = middleIndex + 1
}
}
return 0
}
Finally, implement a method that keeps track of each time a set of "triplets" sum 0...
func getTimesTripleSumEqualZero(in integers: [Int]) -> Int {
let n = integers.count
var count = 0
//loop the array twice N^2
for i in 0..<n {
for j in (i + 1)..<n {
//Sum the first pair and assign it as a negative value
let twoSum = -(integers[i] + integers[j])
// perform a binary search log N
// it will return the index of the give number
let index = find(value: twoSum, in: integers)
//to avoid duplications we need to do this check by checking the items at correspondingly indexes
if (integers[i] < integers[j] && integers[j] < integers[index]) {
print("\([integers[i], integers[j], integers[index]])")
count += 1
}
}
}
return count
}
print("count:", findTripleSumEqualZeroBinary(in: sortedArray))
prints--- count: 7
void findTriplets(int arr[], int n)
{
bool found = false;
for (int i=0; i<n-1; i++)
{
unordered_set<int> s;
for (int j=i+1; j<n; j++)
{
int x = -(arr[i] + arr[j]);
if (s.find(x) != s.end())
{
printf("%d %d %d\n", x, arr[i], arr[j]);
found = true;
}
else
s.insert(arr[j]);
}
}
if (found == false)
cout << " No Triplet Found" << endl;
}

Resources