How do the various ways of setting GHC options in haskell-stack work together - haskell-stack

While setting up a deploy pipeline for optimised builds of a server application, I ran into some trouble getting the GHC options right with stack-1.6.5.
In particular, from the docs it doesn't get clear to me how the various ways to specify GHC options work together and when and how they are applied.
As far as I can tell, there are X ways of specifying GHC options:
globally as ghc-options: in ~/.stack/config.yaml and/or /etc/stack/config.yaml, per package or with "$locals", "$targets" or "$everything"
in the project stack.yaml file, per package or with "$locals", "$targets" or "$everything"
in the project package.yaml/.cabal file, globally or per target
in a dependency stack.yaml/package.yaml/.cabal files
on the stack command line via --ghc-options
and there is the apply-ghc-options: setting locals/targets/everything in stack.yaml and ~/.stack/config.yaml and/or /etc/stack/config.yaml
I'd like to know which options are applied in the different build phases snapshots/locals/targets in which order and in which cases they are additive or override options given elsewhere.

good question, this is not adequately documented. These tend to be additive. Most of the logic for this is here: https://github.com/commercialhaskell/stack/blob/657937b0ac5dbef29114b43e9c69e2b57198af85/src/Stack/Build/Source.hs#L131 . Here's the order, where later items in the list come later in the options provided to ghc:
Options specified in the package.yaml / cabal file.
$everything in ghc-options in stack.yaml
$locals in ghc-options in stack.yaml
$targets in ghc-options in stack.yaml
Special options like -fhpc (--coverage) / fprof-auto -fprof-cafs (--profile) / -g (--no-strip).
Options specified via --ghc-options on the CLI
There is currently an issue where $everything / $locals / $targets ghc-options specified in .stack/config.yaml are not additive. Instead they are currently shadowed by the project stack.yaml. There is a PR fixing this, it will probably get merged at some point: https://github.com/commercialhaskell/stack/pull/3781

Related

Compile OCCT7.5 with rapidjson using FreeCad Libpack?

I'm looking to compile OCCT 7.5 in Windows 10 (x64 via VS2019) for use with FreeCAD, to enable exporting glTF files, which requires RapidJSON support (in OCCT). I've checked out OCCT 7.5.3 and RapidJSON 1.1.0 from their git repos, then grabbed the FreeCAD libpack 12.5.2 (for OCCT 7.5). I started from FreeCAD's build docs, then attempted to follow OCCT's build docs.
When configuring the OCCT project in CMake-GUI, I've been able to find what I think are correct values for some variables (e.g. those regarding FREETYPE) within the FreeCAD libpack, as well as RapidJSON, but still get some errors in the config, seemingly no matter what values I try:
Could not find headers of used third-party products:
3RDPARTY_TCL_INCLUDE_DIR 3RDPARTY_TK_INCLUDE_DIR
...
Could not find DLLs of used third-party products: 3RDPARTY_TCL_DLL_DIR
3RDPARTY_TK_DLL_DIR
I've tried using *.lib, *.h and *.dll files found within the FreeCAD Libpack (and their corresponding directories) for *_LIBRARY/INCLUDE/DLL variables, but nothing is found. I see
Info: TCL is used by OCCT
Could NOT find Tclsh (missing: TCL_TCLSH)
even though tclsh86t.exe exists in the libpack/bin directory.
What should the 3RDPARTY_TCL_* & 3RDPARTY_TK_* CMake variables be set to, to use the FreeCAD libpack?
The problem was my lack of familiarity with CMake and Cmake-gui: the gui opened a dialog for a FILEPATH when specifying a PATH variable. I naively thought, "I don't know CMake, so I'll trust the gui". Totally wrong.
I manually edited the 3RDPARTY_* variable entries to point to the correct directories (or libs, when needed) in the FreeCAD libpack, using the variable name and description/hint for each to determine what the variable's value should be. Below are my entries, for reference:
I did need to check "Advanced", to edit the FREETYPE_LIBRARY_DEBUG & FREETYPE_LIBRARY_RELEASE variables (CMake set them to separate libs found in a jdk directory, presumably because it was added to the system path at some point).

Install systemd service using autotools

I have an autotools project which successfully builds and tests an app (https://github.com/goglecm/AutoBrightnessCam). The app is installed in the bin directory (preceded by any prefix the user specifies). That's pretty straightforward. I now need to make a systemd service to start it at boot time. I've created the service file and ran it manually and it works fine.
The last bit is to tell configure.ac and Makefile.am to patch a *.service.in file with the correct path for the app (just like config.h is created from config.h.in).
Will using AC_CONFIG_HEADERS be appropriate to patch *.service.in into *.service? Is there another macro used for "non-headers" perhaps?
Also, how do I specify that the service file should land (i.e. installed) in /etc/systemd/system?
Is there perhaps a better way of starting this app at boot time without systemd?
How do I specify that the service file should land (i.e. installed) in /etc/systemd/system?
According to Systemd's daemon man page:
<BEGINQUOTE>
Installing systemd Service Files
At the build installation time (e.g. make install during package build), packages are recommended to install their systemd unit files in the directory returned by pkg-config systemd --variable=systemdsystemunitdir (for system services) or pkg-config systemd --variable=systemduserunitdir (for user services). This will make the services available in the system on explicit request but not activate them automatically during boot. Optionally, during package installation (e.g. rpm -i by the administrator), symlinks should be created in the systemd configuration directories via the enable command of the systemctl(1) tool to activate them automatically on boot.
Packages using autoconf(1) are recommended to use a configure script excerpt like the following to determine the unit installation path during source configuration:
PKG_PROG_PKG_CONFIG
AC_ARG_WITH([systemdsystemunitdir],
[AS_HELP_STRING([--with-systemdsystemunitdir=DIR], [Directory for systemd service files])],,
[with_systemdsystemunitdir=auto])
AS_IF([test "x$with_systemdsystemunitdir" = "xyes" -o "x$with_systemdsystemunitdir" = "xauto"], [
def_systemdsystemunitdir=$($PKG_CONFIG --variable=systemdsystemunitdir systemd)
AS_IF([test "x$def_systemdsystemunitdir" = "x"],
[AS_IF([test "x$with_systemdsystemunitdir" = "xyes"],
[AC_MSG_ERROR([systemd support requested but pkg-config unable to query systemd package])])
with_systemdsystemunitdir=no],
[with_systemdsystemunitdir="$def_systemdsystemunitdir"])])
AS_IF([test "x$with_systemdsystemunitdir" != "xno"],
[AC_SUBST([systemdsystemunitdir], [$with_systemdsystemunitdir])])
AM_CONDITIONAL([HAVE_SYSTEMD], [test "x$with_systemdsystemunitdir" != "xno"])
This snippet allows automatic installation of the unit files on systemd machines, and optionally allows their installation even on machines lacking systemd. (Modification of this snippet for the user unit directory is left as an exercise for the reader.)
Additionally, to ensure that make distcheck continues to work, it is recommended to add the following to the top-level Makefile.am file in automake(1)-based projects:
AM_DISTCHECK_CONFIGURE_FLAGS = \
--with-systemdsystemunitdir=$$dc_install_base/$(systemdsystemunitdir)
Finally, unit files should be installed in the system with an automake excerpt like the following:
if HAVE_SYSTEMD
systemdsystemunit_DATA = \
foobar.socket \
foobar.service
endif
...
</ENDQUOTE>
So it appears you should use systemdsystemunitdir and systemduserunitdir. How well Autotools supports it, well...
A quick grep on Fedora 31 using grep systemdsystemunitdir /bin/autoconf and grep -IR systemdsystemunitdir /usr/share shows no Autotools support yet. 7 years and counting...
Is there perhaps a better way of starting this app at boot time without systemd?
Systemd should be OK to start your app. Simply use systemctl(1) to enable and start them as you normally would.
Based on your GitHub and autobrightnesscam.service.in, I would not dick around with Autotools for this. You can waste copious amounts of time working around Autotols short comings (speaking from experience).
My configure.ac script (which is just a shell script) would copy autobrightnesscam.service.in to autobrightnesscam.service, and then use sed to copy-in the correct directories and files. Then, I would copy the updated autobrightnesscam.service to its proper location in AC_CONFIG_COMMANDS_POST. Maybe something like:
SERVICE_FILE=autobrightnesscam.service
SYSTEMD_DIR=`pkg-config systemd --variable=systemdsystemunitdir`
# Use default if SYSTEMD_DIR is empty
if test x"$SYSTEMD_DIR" = "x"; then
SYSTEMD_DIR=/etc/systemd/system
fi
AC_CONFIG_COMMANDS_POST([cp "$SERVICE_FILE" "$SYSTEMD_DIR"])
AC_CONFIG_COMMANDS_POST([systemctl enable "$SYSTEMD_DIR/$SERVICE_FILE"])
AC_CONFIG_COMMANDS_POST([systemctl start "$SERVICE_FILE"])
Will using AC_CONFIG_HEADERS be appropriate to patch *.service.in into *.service? Is there another macro used for "non-headers" perhaps?
No. AC_CONFIG_HEADERS is for setting up configuration headers to support your build. It is rarely used for anything other than building a config.h recording the results of certain tests that Autoconf performs, and it is not as flexible as other options in this area.
If you have additional files that you want Autoconf to build from templates then you should tell Autoconf about them via AC_CONFIG_FILES. Example:
AC_CONFIG_FILES([Makefile AutoBrightnessCam.service])
But if some of the data with which you are filling that template are installation directories then Autoconf is probably not the right place to do this at all, because it makes provision for the installation prefix to be changed by arguments to make. You would at least need to work around that, but the best thing to do is to roll with it instead, and build the .service file under make's control. It's not that hard, and there are several technical advantages, some applying even if there aren't any installation directory substitutions to worry about.
You can do it the same way that configure does, by running the very same template you're already using through sed, with an appropriate script. Something like this would appear in your Makefile.am:
SERVICE_SUBS = \
s,[#]VARIABLE_NAME[#],$(VARIABLE_NAME),g; \
s,[#]OTHER_VARIABLE[#],$(OTHER_VARIABLE),g
AutoBrightnessCam.service: AutoBrightnessCam.service.in
$(SED) -e '$(SERVICE_SUBS)' < $< > $#
Also, how do I specify that the service file should land (i.e.
installed) in /etc/systemd/system?
You use Automake's standard mechanism for specifying custom installation locations. Maybe something like this:
sytemdsysdir = $(sysconfdir)/systemd/system
systemdsys_DATA = AutoBrightnessCam.service
Is there perhaps a better way of
starting this app at boot time without systemd?
On a systemd-based machine, systemd is in control of what starts at boot. If you want the machine to start your application automatically at boot, then I think your options are limited to
Configuring systemd to start it
Configuring something in a chain of programs ultimately started by systemd to start it
Hacking the bootloader or kernel to start it
There is room for diverging opinions here, but I think the first of those is cleanest and most future-proof, and I cannot recommend the last.

Wireshark rpm packaging - setting the release number

I'm running the configure.ac on RHEL 7.2, I'm wondering if there's a way to set the Release number (which is defined om the spec file) as a variable like the Version number which is being generated by the configure.ac and it's written to the config.h file , I'd like to set a kind of BUILD_NUMBER variable somewhere, and it'll take the value of the exported variable during the execution.
The release number for an RPM package is set by the Release: tag in the spec-file. Some spec-files are generated, e.g., using autoconf to substitute values such as the release number in a template, e.g., mypackage.spec.in, to obtain mypackage.spec
A quick check of wireshark's source shows that it uses this scheme, but its template hardcodes the release number as 1. You could modify the configure script and template to add your own option.
For example, adapting the style of --with-XXX options used in the wireshark 2.0.1 configure.ac, you would add a chunk like this (untested):
AC_ARG_WITH([release],
AC_HELP_STRING( [--with-release=#<:#1/no/4/5#:>#],
[set release-number in package #<:#default=1#:>#]),
with_release="$withval", with_release="unspecified")
case "x$with_release" in
x[[1-9]]*)
RELEASE="$with_release"
;;
*)
AC_MSG_ERROR(release is not a number: $with_release)
;;
esac
AC_SUBST(RELEASE)
and use the RELEASE variable in packaging/rpm/SPECS/wireshark.spec.in, as you see the VERSION value used:
Release: #RELEASE#
Alternatively, if you are using the wireshark source without modifying it directly, your build script could
unpack the sources,
update the spec-file,
repack the tarball,
deploy the updated tarball to your build area
Either way, you would have to do some work.

How to write a BitBake driver recipe which requires kernel source header files?

Introduction
I have a do_install task in a BitBake recipe which I've written for a driver where I execute a custom install script. The task fails because the installation script cannot find kernel source header files within <the image rootfs>/usr/src/kernel. This script runs fine on the generated OS.
What's Happening
Here's the relevant part of my recipe:
SRC_URI += "file://${TOPDIR}/example"
DEPENDS += " virtual/kernel linux-libc-headers "
do_install () {
( cd ${TOPDIR}/example/Install ; ./install )
}
Here's a relevant portion of the install script:
if [ ! -d "/usr/src/kernel/include" ]; then
echo ERROR: Linux kernel source include directory not found.
exit 1
fi
cd /usr/src/kernel
make scripts
...
./install_drv pci ${DRV_ARGS}
I checked changing to if [ ! -d "/usr/src/kernel" ], which also failed. install passes different options to install_drv, which I have a relevant portion of below:
cd ${DRV_PATH}/pci
make NO_SYSFS=${ARG_NO_SYSFS} NO_INSTALL=${ARG_NO_INSTALL} ${ARGS_HWINT}
if [ ${ARG_NO_INSTALL} == 0 ]; then
if [ `/sbin/lsmod | grep -ci "uceipci"` -eq 1 ]; then
./unload_pci
fi
./load_pci DEBUG=${ARG_DEBUG}
fi
The make target build: within ${DRV_PATH}/pci is essentially this:
make -C /usr/src/kernel SUBDIRS=${PWD} modules
My Research
I found these comments within linux-libc-headers.inc relevant:
# You're probably looking here thinking you need to create some new copy
# of linux-libc-headers since you have your own custom kernel. To put
# this simply, you DO NOT.
#
# Why? These headers are used to build the libc. If you customise the
# headers you are customising the libc and the libc becomes machine
# specific. Most people do not add custom libc extensions to the kernel
# and have a machine specific libc.
#
# But you have some kernel headers you need for some driver? That is fine
# but get them from STAGING_KERNEL_DIR where the kernel installs itself.
# This will make the package using them machine specific but this is much
# better than having a machine specific C library. This does mean your
# recipe needs a DEPENDS += "virtual/kernel" but again, that is fine and
# makes total sense.
#
# There can also be a case where your kernel extremely old and you want
# an older libc ABI for that old kernel. The headers installed by this
# recipe should still be a standard mainline kernel, not your own custom
# one.
I'm a bit unclear if I can 'get' the headers from the STAGING_KERNEL_DIR properly since I'm not using make.
Within kernel.bbclass provided in the meta/classes directory, there is this variable assigment:
# Define where the kernel headers are installed on the target as well as where
# they are staged.
KERNEL_SRC_PATH = "/usr/src/kernel"
This path is then packaged later within that .bbclass file here:
PACKAGES = "kernel kernel-base kernel-vmlinux kernel-image kernel-dev kernel-modules"
...
FILES_kernel-dev = "/boot/System.map* /boot/Module.symvers* /boot/config* ${KERNEL_SRC_PATH} /lib/modules/${KERNEL_VERSION}/build"
Update (1/21):
A suggestion on the yocto IRC channel was to use the following line:
do_configure[depends] += "virtual/kernel:do_shared_workdir"
which is corroborated by the Yocto Project Reference Manual, which states that in version 1.8, there was the following change:
The kernel build process was changed to place the source in a common shared work area and to place build artifacts separately in the source code tree. In theory, migration paths have been provided for most common usages in kernel recipes but this might not work in all cases. In particular, users need to ensure that ${S} (source files) and ${B} (build artifacts) are used correctly in functions such as do_configure and do_install. For kernel recipes that do not inherit from kernel-yocto or include linux-yocto.inc, you might wish to refer to the linux.inc file in the meta-oe layer for the kinds of changes you need to make. For reference, here is the commit where the linux.inc file in meta-oewas updated.
Recipes that rely on the kernel source code and do not inherit the module classes might need to add explicit dependencies on the do_shared_workdir kernel task, for example:
do_configure[depends] += "virtual/kernel:do_shared_workdir"
But I'm having difficulties applying this to my recipe. From what I understand, I should be able to change the above line to:
do_install[depends] += "virtual/kernel:do_shared_workdir"
Which would mean that the do_install task now must be run after do_shared_workdir task of the virtual/kernel recipe, which means that I should be able to work with the shared workdir (see Question 3 below), but I still have the same missing kernel header issue.
My Questions
I'm using a custom linux kernel (v3.14) from git.kernel.org. which inherits the kernel class. Here are some of my questions:
Shouldn't the package kernel-dev be a part of any recipe which inherits the kernel class? (this section of the variables glossary)
If I add the virtual/kernel to the DEPENDS variable, wouldn't that mean that the kernel-dev would be brought in?
If kernel-dev is part of the dependencies of my recipe, wouldn't I be able to point to the /usr/src/kernel directory from my recipe? According to this reply on the Yocto mailing list, I think I should.
How can I properly reference the kernel source header files, preferably without changing the installation script?
Consider your Environment
Remember that there are different environments within the the build time environment, consisting of:
sysroots
in the case of kernels, a shared work directory
target packages
kernel-dev is a target package, which you'd install into the rootfs of the target system for certain things like kernel symbol maps which are needed by profiling tools like perf/oprofile. It is not present at build time although some of its contents are available in the sysroots or shared workdir.
Point to the Correct Directories
Your do_install runs at build time so this is within the build directory structures of the build system, not the target one. In particular, /usr/src/ won't be correct, it would need to be some path within your build directory. The virtual/kernel do_shared_workdir task populates ${STAGING_DIR_KERNEL} so you would want to change to that directory in your script.
Adding a Task Dependency
The:
do_install[depends] += "virtual/kernel:do_shared_workdir
dependency like looks correct for your use case, assuming nothing in do_configure or do_compile accesses the data there.
Reconsider the module BitBake class
The other answers are correct in the recommendation to look at module.bbclass, since this illustrates how common kernel modules can be built. If you want to use custom functions or make commands, this is fine, you can just override them. If you really don't want to use that class, I would suggest taking inspiration from it though.
Task Dependencies
Adding virtual/kernel to DEPENDS means virtual/kernel:do_populate_sysroot must run before our do_configure task. Since you need a dependency for do_shared_workdir here, a DEPENDS on virtual/kernel is not enough.
Answer to Question 3
The kernel-dev package would be built, however it would then need to be installed into your target image and used at runtime on a real target. You need this at build time so kernel-dev is not appropriate.
Other Suggestions
You'd likely want the kernel-devsrc package for what you're doing, not the kernel-dev package.
I don't think anyone can properly answer that last question here. You are using a non-standard install method: we can't know how to interact with it...
That said, take a look at what meta/classes/module.bbclass does. It sets several related variables for make: KERNEL_SRC=${STAGING_KERNEL_DIR}, KERNEL_PATH=${STAGING_KERNEL_DIR}, O=${STAGING_KERNEL_BUILDDIR}. Maybe your installer supports some of these environment variables and you could set them in your recipe?

How to install a masked package in Gentoo 2008?

I searched the net and handbook, but I only managed to learn what is the masked package, and not how to install it. I did find some commands, but they don't seem to work on 2008 (looking at it, it seems those are for earlier versions). I have something like this:
localhost ~ # emerge flamerobin
Calculating dependencies
!!! All ebuilds that could satisfy "dev-db/flamerobin" have been masked.
!!! One of the following masked packages is required to complete your request:
- dev-db/flamerobin-0.8.6 (masked by: ~x86 keyword)
- dev-db/flamerobin-0.8.3 (masked by: ~x86 keyword)
I would like to install version 0.8.6, but don't know how? I found some instructions, but they tell me to edit or write to some files under /etc/portage. However, I don't have /etc/portage on my system:
localhost ~ # ls /etc/portage
ls: cannot access /etc/portage: No such file or directory
There are two different kinds of masks in gentoo. Keyword masks and package masks. A keyword mask means that the package is either not supported (or untested) by your architecture, or still in testing. A package mask means that the package is masked for another reason (and for most users it is not smart to unmask). The solutions are:
Add a line to /etc/portage/package.keywords (Check man portage in the package.keywords section). This is for the keyword problems.
Add a line to /etc/portage/package.unmask for "package.mask" problems (you can also use package.mask for the converse). This is in the same man file, under the section package.unmask. I advise to use versioned atoms here to avoid shooting in your own foot with really broken future versions a couple of months down the line.
These days there's also a more 'automated' solution, called "autounmask". No more file editing needed to unmask!
The great benefit of the package is, it also unmasks / handles keywords of dependencies if needed. It's provided in the package app-portage/autounmask.
/etc/portage/package.keywords and
/etc/portage/package.unmask
can be directories as well nowadays (but autounmask handles single files as well). In those directories, multiple can place multiple "autounmask" files, one file in each dir per "unmask"-package. If you use single files instead of dirs, 'autounmask' will place some kind of header / footer, and this way it becomes easy to remove "unmasks" if wanted.
Simply mkdir /etc/portage and edit as mentioned here: http://gentoo-wiki.com/TIP_Dealing_with_masked_packages#But_you_want_to_install_the_package_anyway...

Resources