Algorithm for all the possible positions of dots between letters - algorithm

Say I have a word like "welcome", I want to insert a full-stops between the letters of the word.
So it would be "welcome", "w.elcome", we.lcome",...... Until it reaches "w.e.l.c.o.m.e".
I need an algorithm that will give me all the possible combinations of letters and full-stops for any given word.

Consider a set S containing all the possible positions of .. Now, Length of the set S would be lengthOfTheString - 1.
Now you just need to find all possible subsets of set S and while processing each of them, You can mark the positions present in the subset as ..
How to generate a powerset.
This way you can generate all the possible combinations.
Ex. String : "abc"
a b c
^ ^
1 2
Subsets :
{} abc
{1} a.bc
{2} ab.c
{1,2} a.b.c

Related

Clusters of words with Hamming distance of 1

You are given a set of words, e.g.
{ ded, aaa, dec, aab, cab, def }
You need to add each word into a group. A word can be added to a group if:
It is the only word in the group
There is at least one other word already in the group that is at the most 1 edit distance away from the given word.
Your function must return the minimum possible number of such groups that can be formed by using all the given words.
Example, for the given input string, the groups would look like this:
{ aaa, aab, cab }, { ded, def, dec }
Explanation: distance(aaa, aab) is 1 so they belong in the same group. Also, distance(aab, cab) is also 1, so they also belong in the same group. But no words in the second group are at an edit distance of 1 from any other word in the first group, but are at an edit distance of 1 from at least one other word in their own group.
If we were given two more words in addition to the ones in the example, let's say cad, ced, then the answer would change to 1, because now distance(cab, cad) is 1, hence cad is in group 1 and distance(cad, ced) is 1, so ced is in group 1. Also, distance(ded, ced) is 1, so the second group will be "connected" with the first group, hence we will be left with only 1 group.
We're only interested in the number of groups, not the groups themselves.
Constraints: all words will have the same length, but that length is not fixed and could be large.
I could only come up with O(mn^2) where m is the length of any word and n is number of words. Did this using graph approach (Each word as a node and word with edit distance 1 as a neighbouring node).
Expected solution is O(mn).
Found a solution which is an extension of the accepted solution here:
Efficiently build a graph of words with given Hamming distance
Basically, the idea is to store the strings in a Set where lookup and delete are O(1) on average. Putting them in a set means we'd be overwriting strings with edit distance of 0 i.e. equal strings. But we don't care for them anyway, as they will always be in the same group.
Create an empty list of "start nodes" N.
Add next item from the set S in the list
Remove this string from the set S and call 4 for this string.
Generate all strings with Hamming distance 1 from string passed in parameter. For each such generated string, if it exists in the set, remove it from the set and call 4 for this string.
While set is not empty, repeat 2
Return size of "start nodes" list
Explanation of why this would work:
We traverse each node only once and remove it from the set. After we remove the string from the set, we also recursively remove any item in the set that was "adjacent" to it. But only the first node in the recursion is added to the start nodes list.
In our example, ded would get added to the node list and dec, def would get removed. Then aaa would get added to the node list and aab would be removed. While removing aab, recursively, cab would also be removed. The returned answer would be 2.
Time complexity:
O(mnC) where C is the size of the charset, m is the length of the string and n is the number of strings.
C substitutions made for each character in string m times. This is done once for each item in the string set.

DFA that accepts strings over {b} of length 2i+5k for any non-negative values of i and k

DFA that accepts strings over {b} of length 2i+5k for any non-negative values of i and k?
What will be the solution to this?
Start with finding all words that this DFA accepts. First, there is an empty string (i=0, k=0), then bb (i=1, k=0), bbbb (i=2, k=0) and bbbbb (i=0, k=1). From this point you can generate all words that have more than five bs - even are of the form 2*i, and odd are of the form 5 + 2*i.
This is the desired DFA:

Pair up strings to form palindromes

Given N strings each of at max 1000 length. We can concatenate pair of strings by ends. Like if one is "abc" and other is "cba" then we can get "abccba" as well as "cbaabc". Some string may be left without concatenation to any other string. Also no string can be concatenated to itself.
We can only concatenate those two strings that form a palindrome. So I need to tell the minimum number of strings left after making such pairs.
Example : Let we have 9 strings :
aabbaabb
bbaabbaa
aa
bb
a
bbaa
bba
bab
ab
Then here answer is 5
Explanation : Here are 5 strings :
"aabbaabb" + "bbaabbaa" = "aabbaabbbbaabbaa"
"aa" + "a = "aaa"
"bba" + "bb" = "bbabb"
"bab" + "ab" = "babab"
"bbaa"
Also there can be 1000 such strings in total.
1) Make a graph where we have one node for each word.
2) Go through all pairs of words and check if they form palindrome if we concatenate them. If they do connect corresponding nodes in graph with edge.
3) Now use matching algorithm to find maximum number of edges you can match: http://en.wikipedia.org/wiki/Blossom_algorithm
Time complexity: O(N) for point 1, O(n*n*1000) for point 2 and O(V^4) for point 3 yielding total complexity of O(n^4).

Algorithm to find

the logic behind this was (n-2)3^(n-3) has lots of repetitons like (abc)***(abc) when abc is at start and at end and the strings repated total to 3^4 . similarly as abc moves ahead and number of sets of (abc) increase
You can use dynamic programming to compute the number of forbidden strings.
The algorithms follow from the observation below:
"Legal string of size n is the legal string of size n - 1 extended with one letter, so that the last three letters of the resulting string are not all distinct."
So if we had all the legal strings of size n-1 we could try extending them to obtain the legal strings of size n.
To check whether the extended string is legal we just need to know the last two letters of the previous string (of size n-1).
In the algorithm we will compute two arrays, where
different[i] # number of legal strings of length i in which last two letters are different
same[i] # number of legal strings of length i in which last two letters are the same
It can be easily proved that:
different[i+1] = different[i] + 2*same[i]
same[i+1] = different[i] + same[i]
It is the consequence of the following facts:
Any 'same' string of size i+1 can be obtained either from 'same' string of size i (think BB -> BBB) or from 'different' string (think AB -> ABB) and these are the only options.
Any 'different' string of size i+1 can be obtained either from 'different' string of size i (think AB-> ABA ) or from the 'same' string in two ways (AA -> AAB or AA -> AAC)
Having observed all this it is easy to write an algorithm that computes the result in O(n) time.
I suggest you use recursion, and look at two numbers:
F(n), the number of legal strings of length n whose last two symbols are the same.
G(n), the number of legal strings of length n whose last two symbols are different.
Is that enough to go on?
get the ASCII values of the last three letters and add the square values of these letters. If it gives a certain result, then it is forbidden. For A, B and C, it would be fine.
To do this:
1) find out how to get characters from your string.
2) find out how to get ASCII value of a character.
3) Multiply these ASCII values with themselves.
4) Do that for the three letters each time and add their values.

string of integers puzzle

I apologize for not have the math background to put this question in a more formal way.
I'm looking to create a string of 796 letters (or integers) with certain properties.
Basically, the string is a variation on a De Bruijn sequence B(12,4), except order and repetition within each n-length subsequence are disregarded.
i.e. ABBB BABA BBBA are each equivalent to {AB}.
In other words, the main property of the string involves looking at consecutive groups of 4 letters within the larger string
(i.e. the 1st through 4th letters, the 2nd through 5th letters, the 3rd through 6th letters, etc)
And then producing the set of letters that comprise each group (repetitions and order disregarded)
For example, in the string of 9 letters:
A B B A C E B C D
the first 4-letter groups is: ABBA, which is comprised of the set {AB}
the second group is: BBAC, which is comprised of the set {ABC}
the third group is: BACE, which is comprised of the set {ABCE}
etc.
The goal is for every combination of 1-4 letters from a set of N letters to be represented by the 1-4-letter resultant sets of the 4-element groups once and only once in the original string.
For example, if there is a set of 5 letters {A, B, C, D, E} being used
Then the possible 1-4 letter combinations are:
A, B, C, D, E,
AB, AC, AD, AE, BC, BD, BE, CD, CE, DE,
ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE,
ABCD, ABCE, ABDE, ACDE, BCDE
Here is a working example that uses a set of 5 letters {A, B, C, D, E}.
D D D D E C B B B B A E C C C C D A E E E E B D A A A A C B D D B
The 1st through 4th elements form the set: D
The 2nd through 5th elements form the set: DE
The 3rd through 6th elements form the set: CDE
The 4th through 7th elements form the set: BCDE
The 5th through 8th elements form the set: BCE
The 6th through 9th elements form the set: BC
The 7th through 10th elements form the set: B
etc.
* I am hoping to find a working example of a string that uses 12 different letters (a total of 793 4-letter groups within a 796-letter string) starting (and if possible ending) with 4 of the same letter. *
Here is a working solution for 7 letters:
AAAABCDBEAAACDECFAAADBFBACEAGAADEFBAGACDFBGCCCCDGEAFAGCBEEECGFFBFEGGGGFDEEEEFCBBBBGDCFFFFDAGBEGDDDDBE
Beware that in order to attempt exhaustive search (answer in VB is trying a naive version of that) you'll first have to solve the problem of generating all possible expansions while maintaining lexicographical order. Just ABC, expands to all perms of AABC, plus all perms of ABBC, plus all perms of ABCC which is 3*4! instead of just AABC. If you just concatenate AABC and AABD it would cover just 4 out of 4! perms of AABC and even that by accident. Just this expansion will bring you exponential complexity - end of game. Plus you'll need to maintain association between all explansions and the set (the set becomes a label).
Your best bet is to use one of known efficient De Bruijn constuctors and try to see if you can put your set-equivalence in there. Check out
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.674&rep=rep1&type=pdf
and
http://www.dim.uchile.cl/~emoreno/publicaciones/FINALES/copyrighted/IPL05-De_Bruijn_sequences_and_De_Bruijn_graphs_for_a_general_language.pdf
for a start.
If you know graphs, another viable option is to start with De Bruijn graph and formulate your set-equivalence as a graph rewriting. 2nd paper does De Bruijn graph partitioning.
BTW, try VB answer just for A,B,AB (at least expansion is small) - it will make AABBAB and construct ABBA or ABBAB (or throw in a decent language) both of which are wrong. You can even prove that it will always miss with 1st lexical expansions (that's what AAB, AAAB etc. are) just by examining first 2 passes (it will always miss 2nd A for NxA because (N-1)xA+B is in the string (1st expansion of {AB}).
Oh and if we could establish how many of each letters an optimal soluton should have (don't look at B(5,2) it's too easy and regular :-) a random serch would be feasible - you generate candidates with provable traits (like AAAA, BBBB ... are present and not touching and is has n1 A-s, n2 B-s ...) and random arrangement and then test whether they are solutions (checking is much faster than exhaustive search in this case).
Cool problem. Just a draft/psuedo algo:
dim STR-A as string = getall(ABCDEFGHIJKL)
//custom function to generate concat list of all 793 4-char combos.
//should be listed side-by-side to form 3172 character-long string.
//different ordering may ultimately produce different results.
//brute-forcing all orders of combos is too much work (793! is a big #).
//need to determine how to find optimal ordering, for this particular
//approach below.
dim STR-B as string = "" // to hold the string you're searching for
dim STR-C as string = "" // to hold the sub-string you are searching in
dim STR-A-NEW as string = "" //variable to hold your new string
dim MATCH as boolean = false //variable to hold matching status
while len(STR-A) > 0
//check each character in STR-A, which will be shorted by 1 char on each
//pass.
MATCH = false
STR-B = left(STR-A, 4)
STR-B = reduce(STR-B)
//reduce(str) is a custom re-usable function to sort & remove duplicates
for i as integer = 1 to len((STR-A) - 1)
STR-C = substr(STR-A, i, 4)
//gives you the 4-character sequence beginning at position i
STR-C = reduce(STR-C)
IF STR-B = STR-C Then
MATCH = true
exit for
//as long as there is even one match, you can throw-away the first
//letter
END IF
i = i+1
next
IF match = false then
//if you didn't find a match, then the first letter should be saved
STR-A-NEW += LEFT(STR-B, 1)
END IF
MATCH = false //re-init MATCH
STR-A = RIGHT(STR-A, LEN(STR-A) - 1) //re-init STR_A
wend
Anyway -- there could be problems at this, and you'd need to write another function to parse your result string (STR-A-NEW) to prove that it's a viable answer...
I've been thinking about this one and I'm sketching out a solution.
Let's call a string of four symbols a word and we'll write S(w) to denote the set of symbols in word w.
Each word abcd has "follow-on" words bcde where a,...,e are all symbols.
Let succ(w) be the set of follow-on words v for w such that S(w) != S(v). succ(w) is the set of successor words that can follow on from the first symbol in w if w is in a solution.
For each non-empty set of symbols s of cardinality at most four, let words(s) be the set of words w such that S(w) = s. Any solution must contain exactly one word in words(s) for each such set s.
Now we can do a reasonable search. The basic idea is this: say we are exploring a search path ending with word w. The follow-on word must be a non-excluded word in succ(w). A word v is excluded if the search path contains some word w such that v in words(S(w)).
You can be slightly more cunning: if we track the possible "predecessor" words to a set s (i.e., words w with a successor v such that v in words(s)) and reach a point where every predecessor of s is excluded, then we know we have reached a dead end, since we'll never be able to obtain s from any extension of the current search path.
Code to follow after the weekend, with a bit of luck...
Here is my proposal. I'll admit upfront this is a performance and memory hog.
This may be overkill, but have a class We'll call it UniqueCombination This will contain a unique 1-4 char reduced combination of the input set (i.e. A,AB,ABC,...) This will also contain a list of possible combination (AB {AABB,ABAB,BBAA,...}) this will need a method that determines if any possible combination overlaps any possible combination of another UniqueCombination by three characters. Also need a override that takes a string as well.
Then we start with the string "AAAA" then we find all of the UniqueCombinations that overlap this string. Then we find how many uniqueCombinations those possible matches overlap with. (we could be smart at this point an store this number.) Then we pick the one with the least number of overlaps greater than 0. Use up the ones with the least possible matches first.
Then we find a specific combination for the chosen UniqueCombination and add it to the final string. Remove this UniqueCombination from the list, then as we find overlaps for current string. rinse and repeat. (we could be smart and on subsequent runs while searching for overlaps we could remove any of the unreduced combination that are contained in the final string.)
Well that's my plan I will work on the code this weekend. Granted this does not guarantee that the final 4 characters will be 4 of the same letter (it might actually be trying to avoid that but I will look into that as well.)
If there is a non-exponential solution at all it may need to be formulated in terms of a recursive "growth" from a problem with a smaller size i.e to contruct B(N,k) from B(N-1,k-1) or from B(N-1,k) or from B(N,k-1).
Systematic construction for B(5,2) - one step at the time :-) It's bound to get more complex latter [card stands for cardinality, {AB} has card=2, I'll also call them 2-s, 3-s etc.] Note, 2-s and 3-s will be k-1 and k latter (I hope).
Initial. Start with k-1 result and inject symbols for singletons
(unique expansion empty intersection):
ABCDE -> AABBCCDDEE
mark used card=2 sets: AB,BC,CD,DE
Rewriting. Form card=3 sets to inject symbols into marked card=2.
1st feasible lexicographic expansion fires (may have to backtrack for k>2)
it's OK to use already marked 2-s since they'll all get replaced
but may have to do a verification pass for higher k
AB->ACB, BC->BCD, CD->CED, DE->DAE ==> AACBBDCCEDDAEEB
mark/verify used 2s
normally keep marking/unmarking during the construction but also keep keep old
mark list
marking/unmarking can get expensive if there's backtracking in #3
Unused: AB, BE
For higher k may need several recursive rewriting passes
possibly partitioning new sets into classes
Finalize: unused 2-s should overlap around the edge (that's why it's cyclic)
ABE - B can go to the begining or and: AACBBDCCEDDAEEB
Note: a step from B(N-1,k) to B(N,k) may need injection of pseudo-signletons, like doubling or trippling A
B(5,2) -> B(5,3) - B(5,4)
Initial. same: - ABCDE -> AAACBBBDCCCEDDDAEEEB
no use of marking 3-sets since they are all going to be chenged
Rewriting.
choose systematic insertion positions
AAA_CBBB_DCCC_EDDD_AEEE_B
mark all 2-s released by this: AC,AD,BD,BE,CE
use marked 2-s to decide inserted symbols - totice total regularity:
AxCB D -> ADCB
BxDC E -> BEDC
CxED A -> CAED
DxAE B => DBAE
ExBA C -> ECBA
Verify that 3-s are all used (marked inserted symbols just for fun)
AAA[D]CBBB[E]DCCC[A]EDDD[B]AEEE[C]B
Note: Systematic choice if insertion point deterministically dictated insertions (only AD can fit 1st, AC would create duplicate 2-set (AAC, ACC))
Note: It's not going to be so nice for B(6,2) and B(6,3) since number of 2-s will exceede 2x the no of 1-s. This is important since 2-s sit naturally on the sides of 1-s like CBBBE and the issue is how to place them when you run out of 1-s.
B(5,3) is so symetrical that just repeating #1 produces B(5.4):
AAAADCBBBBEDCCCCAEDDDDBAEEEECB

Resources