Conjugate of a partition - algorithm

How to find a conjugate of a partition? I want to know if there's an algorithm. I know the Ferrers- Young diagram. Like 7 = 4+2+1 and the conjugate is 7=3+2+1+1. Is it possible to find it without drawing the diagram?

Yes, it is possible.
Decrement all non-zero items of partition and count their number at every stage
4 + 2 + 1 3 non zeros => 3
becomes
3 + 1 + 0 2 non zeros => 2
2 + 0 1 non zero => 1
1 1 non zero => 1
result is 3 2 1 1
Of course, you don't need to decrement items explicitly - just count items >= MinValue at every step

Related

Is there an algorithm that divide a square cell grid map into 3 or 4 equal spaces?

So for example I have divide my map into something like this:
click on link
the matrix representative would be
0 1 0 1 0
1 1 1 1 0
0 1 1 1 1
0 1 0 0 0
one of the way I could divide it into even-ish would be:
click to see
where total square is 11 and since 11/3 gives us a decimal, I need to have 2 space with 4 square and one space with 3 squares.
but I don't know an algorithm that will be able to divide a small map like that.
there is probably a code that will be able to solve that particular map, but what if it is like :
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1
Each value is a square in the map and 1 is the square that should be considered. 0 is an empty/null space that is not part of the map and should not be taken into consideration when dividing the map.
So far I try a for loop adding all value and divide by 3 to determine how many squares is needed for each space. Also, if I get a decimal, then one space can have one more square than the other. So in this problem there is 36 squares so if I try to divide it into 3 space, then each space would have 12 squares.
So I am looking to see if there is an algorithm that will be able to solve all types of map.
This is actually NP-hard for k>=2, where you want k=3 or k=4:
theorem 2.2 in On the complexity of partitioning graphs into connected subgraphs - M.E. DYER, A.M. FRIEZE
You can get a decent answer by greedily removing nodes from your graph, and backtracking if you can't merge the remaining nodes.
It would help if you gave a more rigorous definition of 'even-ish' - for example, consider a map with 13 nodes - Would you rather have divisions of size (4,4,5), (3,3,3,4), (4,4,4,1), (5,5,3), or (4,4,3,2)?

Distinct values of bitwise and of subarrays

How to find number of distinct values of bitwise and of all subarrays of an array.(Array size <=1e5 and array elements<=1e6).
for eg.
A[]={1,2,3}
distinct values are 4(1,2,3,0).
Let's fix the right boundary r of the subarray. Let's image the left boundary l moves to the left starting from r. How many times can the value of the and change? At most O(log(MAX_VALUE)). Why? When we add one more element to the left, we've got two options:
The and value of the subarray doesn't change.
It changes. In that case, the number of bits in it gets strictly less (as it's a submask of the previous and value).
Thus, we can consider only those values of l where something changes. Now we just need to find them quickly.
Let's iterate over the array from left to right and store the position of the last element that doesn't have the i-th bit for all valid i (we can update it by iterating over all bits of the current element). This way, we'll be able to find the next position where the value changes quickly (namely, it's the largest value in this array over all bits that are set). If we sort the positions, we can find the next largest one in O(1).
The total time complexity of this solution is O(N * log(MAX_VALUE) * log(log(MAX_VALUE))) (we iterate over all bits of each element of the array, we sort the array of positions for each them and iterate over it). The space complexity is O(N + MAX_VALUE). It should be good enough for the given contraints.
Imagine the numbers as columns representing their bits. We will have sequences of 1's extending horizontally. For example:
Array index: 0 1 2 3 4 5 6 7
Bit columns: 0 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 0
1 0 0 0 1 1 0 1
0 1 1 1 1 1 1 0
Looking to the left, the bit-row for any subarray anded after a zero will continue being zero, which means no change after that in that row.
Let's take index 5 for example. Now sorting the horizontal sequences of 1's from index 5 to the left will provide us a simple way to detect a change in the bit configuration (the sorting would have to be done on each iteration):
Index 5 ->
Sorted bit rows: 1 0 0 0 1 1
0 0 0 1 1 1
0 0 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
Index 5 to 4, no change
Index 4 to 3, change
Index 2 to 1, change
Index 1 to 0, change
To easily examine these changes, kraskevich proposes recording only the last unset bit for each row as we go along, which would indicate the length of the horizontal sequence of 1's, and a boolean array (of 1e6 numbers max) to store the unique bit configurations encountered.
Numbers: 1, 2, 3
Bits: 1 0 1
0 1 1
As we move from left to right, keep a record of the index of the last unset bit in each row, and also keep a record of any new bit configuration (at most 1e6 of them):
Indexes of last unset bit for each row on each iteration
Numbers: 1, 2, 3
A[0]: -1 arrayHash = [false,true,false,false], count = 1
0
A[1]: -1 1 Now sort the column descending, representing (current - index)
0 0 the lengths of sequences of 1's extending to the left.
As we move from top to bottom on this column, each value change represents a bit
configuration and a possibly distinct count:
Record present bit configuration b10
=> arrayHash = [false,true,true,false]
1 => 1 - 1 => sequence length 0, ignore sequence length 0
0 => 1 - 0 => sequence length 1,
unset second bit: b10 => b00
=> new bit configuration b00
=> arrayHash = [true,true,true,false]
Third iteration:
Numbers: 1, 2, 3
A[2]: -1 1 1
0 0 0
Record present bit configuration b11
=> arrayHash = [true,true,true,true]
(We continue since we don't necessarily know the arrayHash has filled.)
1 => 2 - 1 => sequence length 1
unset first bit: b11 => b10
=> seen bit configuration b10
0 => 2 - 0 => sequence length 2,
unset second bit: b10 => b00
=> seen bit configuration b00

Efficiently construct a square matrix with unique numbers in each row

A matrix of size nxn needs to be constructed with the desired properties.
n is even. (given as input to the algorithm)
Matrix should contain integers from 0 to n-1
Main diagonal should contain only zeroes and matrix should be symmetric.
All numbers in each row should be different.
For various n , any one of the possible output is required.
input
2
output
0 1
1 0
input
4
output
0 1 3 2
1 0 2 3
3 2 0 1
2 3 1 0
Now the only idea that comes to my mind is to brute-force build combinations recursively and prune.
How can this be done in a iterative way perhaps efficiently?
IMO, You can handle your answer by an algorithm to handle this:
If 8x8 result is:
0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0
You have actually a matrix of two 4x4 matrices in below pattern:
m0 => 0 1 2 3 m1 => 4 5 6 7 pattern => m0 m1
1 0 3 2 5 4 7 6 m1 m0
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
And also each 4x4 is a matrix of two 2x2 matrices with a relation to a power of 2:
m0 => 0 1 m1 => 2 3 pattern => m0 m1
1 0 3 2 m1 m0
In other explanation I should say you have a 2x2 matrix of 0 and 1 then you expand it to a 4x4 matrix by replacing each cell with a new 2x2 matrix:
0 => 0+2*0 1+2*0 1=> 0+2*1 1+2*1
1+2*0 0+2*0 1+2*1 0+2*1
result => 0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0
Now expand it again:
0,1=> as above 2=> 0+2*2 1+2*2 3=> 0+2*3 1+2*3
1+2*2 0+2*2 1+2*3 0+2*3
I can calculate value of each cell by this C# sample code:
// i: row, j: column, n: matrix dimension
var v = 0;
var m = 2;
do
{
var p = m/2;
v = v*2 + (i%(n/p) < n/m == j%(n/p) < n/m ? 0 : 1);
m *= 2;
} while (m <= n);
We know each row must contain each number. Likewise, each row contains each number.
Let us take CS convention of indices starting from 0.
First, consider how to place the 1's in the matrix. Choose a random number k0, from 1 to n-1. Place the 1 in row 0 at position (0,k0). In row 1, if k0 = 1 in which case there is already a one placed. Otherwise, there are n-2 free positions and place the 1 at position (1,k1). Continue in this way until all the 1 are placed. In the final row there is exactly one free position.
Next, repeat with the 2 which have to fit in the remaining places.
Now the problem is that we might not be able to actually complete the square. We may find there are some constraints which make it impossible to fill in the last digits. The problem is that checking a partially filled latin square is NP-complete.(wikipedia) This basically means pretty compute intensive and there no know short-cut algorithm. So I think the best you can do is generate squares and test if they work or not.
If you only want one particular square for each n then there might be simpler ways of generating them.
The link Ted Hopp gave in his comment Latin Squares. Simple Construction does provide a method for generating a square starting with the addition of integers mod n.
I might be wrong, but if you just look for printing a symmetric table - a special case of latin squares isomorphic to the symmetric difference operation table over a powerset({0,1,..,n}) mapped to a ring {0,1,2,..,2^n-1}.
One can also produce such a table, using XOR(i,j) where i and j are n*n table indexes.
For example:
def latin_powerset(n):
for i in range(n):
for j in range(n):
yield (i, j, i^j)
Printing tuples coming from previously defined special-case generator of symmetric latin squares declared above:
def print_latin_square(sq, n=None):
cells = [c for c in sq]
if n is None:
# find the length of the square side
n = 1; n2 = len(cells)
while n2 != n*n:
n += 1
rows = list()
for i in range(n):
rows.append(" ".join("{0}".format(cells[i*n + j][2]) for j in range(n)))
print("\n".join(rows))
square = latin_powerset(8)
print(print_latin_square(square))
outputs:
0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0
See also
This covers more generic cases of latin squares, rather than that super symmetrical case with the trivial code above:
https://www.cut-the-knot.org/arithmetic/latin2.shtml (also pointed in the comments above for symmetric latin square construction)
https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/matrices/latin.html

How I can get the 'n' possible matrices from two vectors?

I've been searching for an algorithm for the solution of all possible matrices of dimension 'n' that can be obtained with two arrays, one of the sum of the rows, and another, of the sum of the columns of a matrix. For example, if I have the following matrix of dimension 7:
matriz= [ 1 0 0 1 1 1 0
1 0 1 0 1 0 0
0 0 1 0 1 0 0
1 0 0 1 1 0 1
0 1 1 0 1 0 1
1 1 1 0 0 0 1
0 0 1 0 1 0 1 ]
The sum of the columns are:
col= [4 2 5 2 6 1 4]
The sum of the rows are:
row = [4 3 2 4 4 4 3]
Now, I want to obtain all possible matrices of "ones and zeros" where the sum of the columns and the rows fulfil the condition of "col" and "row" respectively.
I would appreciate ideas that can help solve this problem.
One obvious way is to brute-force a solution: for the first row, generate all the possibilities that have the right sum, then for each of these, generate all the possibilities for the 2nd row, and so on. Once you have generated all the rows, you check if the sum of the columns is right. But this will take a lot of time. My math might be rusty at this time of the day, but I believe the number of distinct possibilities for a row of length n of which k bits are 1 is given by the binomial coefficient or nchoosek(n,k) in Matlab. To determine the total number of possibilities, you have to multiply this number for every row:
>> n = 7;
>> row= [4 3 2 4 4 4 3];
>> prod(arrayfun(#(k) nchoosek(n, k), row))
ans =
3.8604e+10
This is a lot of possibilities to check! Doing the same for the columns gives
>> col= [4 2 5 2 6 1 4];
>> prod(arrayfun(#(k) nchoosek(n, k), col))
ans =
555891525
Still a large number, but 'only' a factor 70 smaller.
It might be possible to improve this brute-force method a little bit by seeing if the later rows are already constrained by the previous rows. If in your example, for a particular combination of the first two rows, both rows have a 1 in the second column, the rest of this column should all be 0, since the sum must be 2. This reduces the number of possibilities for the remaining rows a bit. Implementing such checks might complicate things a bit, but they might make the difference between a calculation that takes 2 days or one that takes just 1 hour.
An optimized version of this might alternatively generate rows and columns, and start with those for which the number of possibilities is the lowest. I don't know if there is a more elegant solution than this brute-force method, I would be interested to hear one.

How to Shuffle an Array with Fixed Row/Column Sum?

I need to assign random papers to students of a class, but I have the constraints that:
Each student should have two papers assigned.
Each paper should be assigned to (approximately) the same number of students.
Is there an elegant way to generate a matrix that has this property? i.e. it is shuffled but the row and column sums are constant? As an illustration:
Student A 1 0 0 1 1 0 | 3
Student B 1 0 1 0 0 1 | 3
Student C 0 1 1 0 1 0 | 3
Student D 0 1 0 1 0 1 | 3
----------------
2 2 2 2 2 2
I thought of first building an "initial matrix" with the right row/column sum, then randomly permuting first the rows, then the colums, but how do I generate this initial matrix? The problem here is that I'd be choosing between (e.g.) the following alternatives, and the fact that there are two students with the same pair of papers assigned (in the left setup) won't change through row/column shuffling:
INITIAL (MA): OR (MB):
A 1 1 1 0 0 0 || 1 1 1 0 0 0
B 1 1 1 0 0 0 || 0 1 1 1 0 0
C 0 0 0 1 1 1 || 0 0 0 1 1 1
D 0 0 0 1 1 1 || 1 0 0 0 1 1
I know I could come up with something quick/dirty and just tweak where necessary but it seemed like a fun exercise.
If you want to make permutations, what about:
Chose randomly a student, say student 1
For this student, chose a random paper he has, say paper A
Chose randomly another student
For this student, chose a random paper he has, say paper B (different from A)
Give paper B to student 1 and paper A to student 2.
That way, you preserve both the number of different papers and the number of papers per student. Indeed, both students give one paper and receive one back. Moreover, no paper is created nor deleted.
In term of table, it means finding two pairs of indices(i1,i2) and (j1,j2) such that A(i1,j1) = 1, A(i2,j2)=1, A(i1,j2)=0 and A(i2,j1)=0 and changing the 0s for 1s and the 1s for 0s => The sums of the rows and columns do not change.
Remark 1: If you do not want to proceed by permutations, you can simply put in a vector all the paper (put 2 times paper A, 2 times paper B,...). Then, random shuffle the vector and attribute the k first to the first student, the k next ones to student 2, ... However, you can end with a student having several times the same paper. In this case, make some permutations starting with the surnumerary papers.
You can generate the initial matrix as follows (pseudo-Python syntax):
column_sum = [0] * n_students
for i in range(n_students):
if column_sum[i] < max_allowed:
for j in range(i + 1, n_students):
if column_sum[j] < max_allowed:
generate_row_with_ones_at(i, j)
column_sum[i] += 1
column_sum[j] += 1
if n_rows == n_wanted:
return
This is a straightforward iteration over all n choose 2 distinct rows, but with the constraint on column sums enforced as early as possible.

Resources