Spring - Access a Service interface programmatically - spring

i have several interfaces which extend a single interface.
I need to add, during a #PostCostruct method, these interfaces to a Map.
The problem is that i need to retrieve the #Service class name from the DB and i don't know ho to put the interface in the map...
I'll try to explain it better
I have a general service interface
public interface IVehicleServiceGeneral{
//methods...
}
then i have several interfaces which extend the general one.
public interface IService1 extends IVehicleServiceGeneral{
}
public interface IService2 extends IVehicleServiceGeneral{
}
the concrete implementations of these classes are annotated with #Service("service1Name"), #Service("service2Name") and so on...
Then from the DB i retrieve my Suppliers
public class Supplier {
private long id;
private String serviceName;
//getters and setters
}
Finally i need to create the map, because i need to access the implementations at runtime based on the Supplier, i created a ContextAware class to get my beans by name, but the interfaces are not beans... I also tried to put the #Qualifier on the interface, but obviously it does not work... How can I put the interface in the map?
#PostConstruct
private void createServiceMap(){
serviceMap = new HashMap<OBUSupplier, IVehicleServiceGeneral>();
List<Supplier> suppliers = supplierService.findAll();
for(Supplier s : suppliers) {
serviceMap.put(s, contextAware.getBean(s.getServiceName()));
}
}

You can create IVehicleServiceGeneral instance map like this:
class SomeClass {
Map vehicleServiceGeneralInstanceMap = new HashMap();
SomeClass(Set<IVehicleServiceGeneral> instances) {
instances.forEach(i -> vehicleServiceGeneralInstanceMap.put(i.getServiceName(), i));
}
private void createServiceMap() {
Map serviceMap = new HashMap<OBUSupplier, IVehicleServiceGeneral>();
List<Supplier> suppliers = supplierService.findAll();
for(Supplier s : suppliers) {
serviceMap.put(s, vehicleServiceGeneralInstanceMap.get(s.getServiceName()));
}
}
The only thing you require is IVehicleServiceGeneral#getServiceName which your Service1, 2 need to override with proper names that present in DB.

Related

Two-way binding in Android with data from Room database

I am new to the MVVM architecture in Android, and I have some days with a doubt that I consider basic, but that I can't solve.
I proceed to discuss my problem:
I have an Entity, CustomerView (this entity is created from a DatabaseView):
#DatabaseView("select ... ")
public class CustomerView {
public String cardCode;
public String cardName;
public String cardFName;
...
Then, I have a Dao class:
#Dao
public interface OCRD_DAO {
...
#Query("SELECT * from CustomerView where cardCode= :cardCode")
LiveData<CustomerView> getCustomerViewByCardCode(String cardCode);
...
}
The repository class, makes use of the DAO class:
public LiveData<CustomerView> getCustomer(String cardCode){
return mOcrdDao.getCustomerViewByCardCode(cardCode);
}
The CustomerSheetViewModel class:
public class CustomerSheetViewModel extends BaseObservable {
private Repository mRepository;
public LiveData<CustomerView> mCustomer;
private MutableLiveData<String> _cardName;
#Bindable
public MutableLiveData<String> getCardName(){
return this._cardName;
}
public MutableLiveData<String> setCardName(String value){
// Avoids infinite loops.
if (mCustomer.getValue().cardName != value) {
mCustomer.getValue().cardName = value;
// React to the change.
saveData();
// Notify observers of a new value.
notifyPropertyChanged(BR._cardName);
}
}
public CustomerSheetViewModel (Application application, String cardCode) {
mRepository = new Repository(application);
this.mCustomer = mRepository.getCustomer(cardCode);
//Init MutableLiveData????
this._cardName = this.mCustomer.getValue().cardName;
//Null Exception, because this.mCustomer.getValue() is null
}
}
At this point, my problem occurs: when I initialise the CustomerView object, it is of type LiveData. However, if I want to make use of 2-way binding, I need an object of type MutableLiveData. So, I think I should create the MutableLiveData object with the data extracted from the database (i.e. from the call to the repository). When I try this (e.g. getValue().cardName) a null exception is thrown, since LiveData is asynchronous.
Finally, I could make use of this property in the layout:
android:text="#={customerSheetViewModel.cardName}"
I really appreciate any help, as I can't find any reference to 2-way binding when the data comes from a database read.
Thanks in advance.

Repository vs. DAO (again)

In general this back-story does not matter but just to explain the code below:
The server handles users and user groups. User groups are able to "discover" places - at this point in time these places are coming exclusively from the Google Places API.
Current Implementation
Currently, I have a lot of JpaRepository objects, which I call Repository, in my Service Layer. I am stressing "Repository" because in my proposed solution below, they'd be downgraded to DAOs.
However, what I do not like in my current code, and also the reason for my question here, is the amount of repositories one can find in the UserGroupService.
#Service
public class UserGroupService {
private final static Logger LOGGER = LogManager.getLogger(UserGroupService.class);
#Autowired
private UserGroupRepository userGroupRepository;
#Autowired
private UserGroupPlaceRepository userGroupPlaceRepository;
#Autowired
private PlaceRepository placeRepository;
#Autowired
private GooglePlaceRepository googlePlaceRepository;
#Autowired
private GooglePlaces googlePlaces;
public UserGroupService() {
}
#Transactional
public void discoverPlaces(Long groupId) {
final UserGroup userGroup = this.userGroupRepository.findById(groupId).orElse(null);
if (userGroup == null) {
throw new EntityNotFoundException(String.format("User group with id %s not found.", groupId));
}
List<PlacesSearchResult> allPlaces = this.googlePlaces.findPlaces(
userGroup.getLatitude(),
userGroup.getLongitude(),
userGroup.getSearchRadius());
allPlaces.forEach(googlePlaceResult -> {
GooglePlace googlePlace = this.googlePlaceRepository.findByGooglePlaceId(googlePlaceResult.placeId);
if (googlePlace != null) {
return;
}
Place place = new Place();
place.setLatitude(googlePlaceResult.geometry.location.lat);
place.setLongitude(googlePlaceResult.geometry.location.lng);
place.setPlaceType(Place.PlaceType.GOOGLE_PLACE);
place.setName(googlePlaceResult.name);
place.setVicinity(googlePlaceResult.vicinity);
place = this.placeRepository.save(place);
UserGroupPlace.UserGroupPlaceId userGroupPlaceId = new UserGroupPlace.UserGroupPlaceId();
userGroupPlaceId.setUserGroup(userGroup);
userGroupPlaceId.setPlace(place);
UserGroupPlace userGroupPlace = new UserGroupPlace();
userGroupPlace.setUserGroupPlaceId(userGroupPlaceId);
this.userGroupPlaceRepository.save(userGroupPlace);
googlePlace = new GooglePlace();
googlePlace.setPlace(place);
googlePlace.setGooglePlaceId(googlePlaceResult.placeId);
this.googlePlaceRepository.save(googlePlace);
});
}
}
A Solution That Does Not Work
What could make this code a lot simpler and had the potential to resolve this mess up there, would be #Inheritance:
#Entity
#Table(name = "place")
#Inheritance(strategy InheritanceType.JOINED)
public class Place { /* .. */ }
#Entity
#Table(name = "google_place")
public class GooglePlace extends Place { /* .. */ }
However, this is not an option because then I cannot have a PlaceRepository which saves just a place. Hibernate does not seem to like it..
My proposal
I think my confusion starts with the names that Spring is using. E.g. JpaRepository - I am not so sure if this is actually "the right" name. Because as far as I understood, these objects actually work like data access objects (DAOs). I think it should actually look something like this:
public interface PlaceDao extends JpaRepository<Place, Long> {
}
public interface GooglePlaceDao extends JpaRepository<Place, Long> {
}
#Repository
public class GooglePlaceRepository {
#Autowired
private PlaceDao placeDao;
#Autowired
private GooglePlaceDao googlePlaceDao;
public List<GooglePlace> findByGroupId(Long groupId) {
// ..
}
public void save(GooglePlace googlePlace) {
// ..
}
public void saveAll(List<GooglePlace> googlePlaces) {
// ..
}
}
#Service
public class UserGroupService {
#Autowired
private GooglePlaceRepository googlePlaceRepository;
#Autowired
private UserGroupRepository userGroupRepository;
#Transactional
public void discoverPlaces(Long groupId) {
final UserGroup userGroup = this.userGroupRepository.findById(groupId).orElse(null)
.orElseThrow(throw new EntityNotFoundException(String.format("User group with id %s not found.", groupId)));
List<PlacesSearchResult> fetched = this.googlePlaces.findPlaces(
userGroup.getLatitude(),
userGroup.getLongitude(),
userGroup.getSearchRadius());
// Either do the mapping here or let GooglePlaces return
// List<GooglePlace> instead of List<PlacesSearchResult>
List<GooglePlace> places = fetched.stream().map(googlePlaceResult -> {
GooglePlace googlePlace = this.googlePlaceRepository.findByGooglePlaceId(googlePlaceResult.placeId);
if (googlePlace != null) {
return googlePlace;
}
Place place = new Place();
place.setLatitude(googlePlaceResult.geometry.location.lat);
place.setLongitude(googlePlaceResult.geometry.location.lng);
place.setPlaceType(Place.PlaceType.GOOGLE_PLACE);
place.setName(googlePlaceResult.name);
place.setVicinity(googlePlaceResult.vicinity);
googlePlace = new GooglePlace();
googlePlace.setPlace(place);
googlePlace.setGooglePlaceId(googlePlaceResult.placeId);
return googlePlace;
}).collect(Collectors.toList());
this.googlePlaceRepository.saveAll(places);
// Add places to group..
}
}
Summary
I would like to know what I don't see. Am I fighting the framework, or does my data model not make sense and this is why I find myself struggling with this? Or am I still having issues on how the two patterns "Repository" and "DAO" are supposed to be used?
How would one implement this?
I would say you are correct that there are too many repository dependencies in your service. Personally, I try to keep the number of #Autowired dependencies to a minimum and I try to use a repository only in one service and expose its higher level functionality via that service. At our company we call that data sovereignty (in German: Datenhoheit) and its purpose is to ensure that there is only one place in the application where those entities are modified.
From what I understand from your code I would introduce a PlacesService which has all the Dependencies to the PlaceRepository, GooglePlaceRepository and GooglePlaces. If you feel like Service is not the right name you could also call it the PlacesDao, mark it with a Spring #Component annotation and inject all the Repositories, which are by definition collections of things
#Component
public class PlacesDao {
#Autowired
private PlaceRepository placeRepository;
#Autowired
private GooglePlaceRepository googlePlaceRepository;
This service/DAO could offer an API findPlacesForGroup(userGroup) and createNewPlace(...) and thus making your for Loop smaller and more elegant.
On a side note: you can merge your first four lines into just one. Java Optionals support a orElseThrow() method:
UserGroup userGroup = userGroupRepository.findById(groupId).orElseThrow(() ->
new EntityNotFoundException(String.format("User group with id %s not found.", groupId));
I think the foreach does not look like a good approach to me. You're doing way to much for just a single responsibility of a function. I would refactor this to a standart for loop.
Place place = new Place();
place.setLatitude(googlePlaceResult.geometry.location.lat);
place.setLongitude(googlePlaceResult.geometry.location.lng);
place.setPlaceType(Place.PlaceType.GOOGLE_PLACE);
place.setName(googlePlaceResult.name);
place.setVicinity(googlePlaceResult.vicinity);
place = this.placeRepository.save(place);
This part can easily be a method in a service.
UserGroupPlace.UserGroupPlaceId userGroupPlaceId = new
UserGroupPlace.UserGroupPlaceId();
userGroupPlaceId.setUserGroup(userGroup);
userGroupPlaceId.setPlace(place);
UserGroupPlace userGroupPlace = new UserGroupPlace();
userGroupPlace.setUserGroupPlaceId(userGroupPlaceId);
this.userGroupPlaceRepository.save(userGroupPlace);
That part as well.
googlePlace = new GooglePlace();
googlePlace.setPlace(place);
googlePlace.setGooglePlaceId(googlePlaceResult.placeId);
this.googlePlaceRepository.save(googlePlace);
And this part: I don't understand why your doing this. You could just update the googlePlace instance you loaded from the repo. Hibernate/Transactions are doing the rest for you.

How do I autowire a repository which has primitive type dependency injection?

I have three text files, they all contain data of the same type, but data is stored differently in each file.
I want to have one interface:
public interface ItemRepository() {
List<Item> getItems();
}
And instead of creating three implementations I want to create one implementation and use dependency injection to inject a path to the text file
and an analyser class for each text file:
public class ItemRepositoryImpl() implements ItemRepository {
Analyser analyser;
String path;
public ItemRepositoryImpl(Analyser analyser, String path) {
this.analyser = analyser;
this.path = path;
}
public List<Item> getItems() {
// Use injected analyser and a path to the text file to extract the data
}
}
How do I wire everything and inject the ItemRepositoryImpl into my controller?
I know I could simply do:
#Controller
public class ItemController {
#RequestMapping("/items1")
public List<Item> getItems1() {
ItemRepository itemRepository = new ItemRepositoryImpl(new Analyser1(), "file1.txt");
return itemRepository.getItems();
}
#RequestMapping("/items2")
public List<Item> getItems1() {
ItemRepository itemRepository = new ItemRepositoryImpl(new Analyser2(), "file2.txt");
return itemRepository.getItems();
}
#RequestMapping("/items3")
public List<Item> getItems1() {
ItemRepository itemRepository = new ItemRepositoryImpl(new Analyser3(), "file3.txt");
return itemRepository.getItems();
}
}
But I don't know how to configure Spring to autowire it.
You can achieve it in many different ways and it probably depends on your design.
One of them can be initialising 3 different analyzers in spring context and wiring all the three analyzers in ItemRepositoryImpl using '#Qualifier' annotation. With the help of an extra method parameter, ItemRepositoryImpl can decide which analyzer it should route the requests to.
For the path variable also you can follow a similar approach.
If your question is specific about how to wire the primitive type in the bean, check this post . It specifies how to initialize a String variable in spring context.

Why is this method in a Spring Data repository considered a query method?

We have implemented an application that should be able to use either JPA, Couchbase or MongoDB. (for now, may increase in the future). We successfully implemented JPA and Couchbase by separating repositories for each e.g. JPA will come from org.company.repository.jpa while couchbase will come from org.company.repository.cb. All repository interfaces extends a common repository found in org.company.repository. We are now targeting MongoDB by creating a new package org.company.repository.mongo. However we are encountering this error:
No property updateLastUsedDate found for type TokenHistory!
Here are our codes:
#Document
public class TokenHistory extends BaseEntity {
private String subject;
private Date lastUpdate;
// Getters and setters here...
}
Under org.company.repository.TokenHistoryRepository.java
#NoRepositoryBean
public interface TokenHistoryRepository<ID extends Serializable> extends TokenHistoryRepositoryCustom, BaseEntityRepository<TokenHistory, ID> {
// No problem here. Handled by Spring Data
TokenHistory findBySubject(#Param("subject") String subject);
}
// The custom method
interface TokenHistoryRepositoryCustom {
void updateLastUsedDate(#Param("subject") String subject);
}
Under org.company.repository.mongo.TokenHistoryMongoRepository.java
#RepositoryRestResource(path = "/token-history")
public interface TokenHistoryMongoRepository extends TokenHistoryRepository<String> {
TokenHistory findBySubject(#Param("subject") String subject);
}
class TokenHistoryMongoRepositoryCustomImpl {
public void updateLastUsedDate(String subject) {
//TODO implement this
}
}
And for Mongo Configuration
#Configuration
#Profile("mongo")
#EnableMongoRepositories(basePackages = {
"org.company.repository.mongo"
}, repositoryImplementationPostfix = "CustomImpl",
repositoryBaseClass = BaseEntityRepositoryMongoImpl.class
)
public class MongoConfig {
}
Setup is the same for both JPA and Couchbase but we didn't encountered that error. It was able to use the inner class with "CustomImpl" prefix, which should be the case base on the documentations.
Is there a problem in my setup or configuration for MongoDB?
Your TokenHistoryMongoRepositoryCustomImpl doesn't actually implement the TokenHistoryRepositoryCustom interface, which means that there's no way for us to find out that updateLastUsedDate(…) in the class found is considered to be an implementation of the interface method. Hence, it's considered a query method and then triggers the query derivation.
I highly doubt that this works for the other stores as claimed as the code inspecting query methods is shared in DefaultRepositoryInformation.

Using QueryDslRepositorySupport in combination with interface repositories

since I didn't get a reply on the spring forum I'll give it a try here.
Is there a way to have a common interface repository which is extended by interfaces the following way:
#NoRepositoryBean
public interface CommonRepository<T> extends JpaRepository<T, Long>, QueryDslPredicateExecutor<T> {
T getById(final long id);
}
#Repository
public interface ConcreteRepository extends CommonRepository<ConcreteEntity> {
List<ConcreteEntity> getByNameAndAddress(final String name, final String address);
}
public class ConcreteRepositoryImpl extends QueryDslRepositorySupport implements ConcreteRepository {
private BooleanExpression nameEquals(final QConcreteEntity entity, final String name) {
return entity.eq(name);
}
public List<ConcreteEntity> getByNameAndAddress(final String name, final String address) {
QConcreteEntity entity = QConcreteEntity.concreteEntity;
return from(entity).where(entity.name.eq(name).and(entity.address.eq(address))).list(entity);
}
}
The problem with the implementation is that I have to implement getById(final long id)
in each concrete class. I don't want to do that. Normally, spring data automatically knows about each entity. Also I want to have the functionality of QueryDslRepositorySupport.
In my example it normally generates something like:
select .. from concreteentity en where en.id = ...
Is there a way to solve it? I already stumbled upon
Spring Jpa adding custom functionality to all repositories and at the same time other custom funcs to a single repository
and
http://docs.spring.io/spring-data/data-jpa/docs/current/reference/html/repositories.html#repositories.custom-implementations
but I don't think these solutions are helpful and I don't entirely understand how I can use them to solve the problem.
Thanks,
Christian
One way to create a generic getById under QuerydslRepositorySupport is like this
T getById(long id) {
return getEntityManager().find(getBuilder().getType(), id)
}

Resources