Using Ultrasonic sensor HC-SR04 and Gps (neogps 6m) together on arduino uno - arduino-uno

I am trying to read data from both the sensor and the gps (one by one is ok). The sensors work well individually but the Ultrasonic sensor does not give any output. I am new to arduino so i just mixed the codes from the two examples using NewPing Library and TinyGPS libraries. Here is the code. Please suggest what additions need to be made to the code to make both devices work together.
/*********************
*10 to GPS Module TX*
*09 to GPS Module RX*
*********************/
// 1.TESTED USING LED
// 2. added ultrasound libraries
#include <NewPing.h>
#define TRIGGER_PIN 5 // Arduino pin tied to trigger pin on the ultrasonic sensor.
#define ECHO_PIN 4 // Arduino pin tied to echo pin on the ultrasonic sensor.
#define MAX_DISTANCE 400 // Maximum distance we want to ping for (in centimeters). Maximum sensor distance is rated at 400-500cm.
NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); // NewPing setup of pins and maximum distance.
#include <SoftwareSerial.h>
#include <TinyGPS.h>
SoftwareSerial mySerial(10, 11);
TinyGPS gps;
float gpsdump(TinyGPS &gps);
void setup()
{
// Oploen serial communications and wait for port to open:
Serial.begin(9600);
// set the data rate for the SoftwareSerial port
mySerial.begin(9600);
delay(1000);
}
void loop() // run over and over
{
bool newdata = false;
unsigned long start = millis();
// Every 5 seconds we print an update
while (millis() - start < 5000)
{
if (mySerial.available())
{
char c = mySerial.read();
//Serial.print(c); // uncomment to see raw GPS data
if (gps.encode(c))
{
newdata = true;
break; // uncomment to print new data immediately!
}
}
}
if (newdata)
{
Serial.println("Acquired Data");
Serial.println("-------------");
gpsdump(gps);
Serial.println("-------------");
Serial.println();
}
}
float gpsdump(TinyGPS &gps)
{
// On Arduino, GPS characters may be lost during lengthy Serial.print()
// On Teensy, Serial prints to USB, which has large output buffering and
// runs very fast, so it's not necessary to worry about missing 4800
// baud GPS characters.
Serial.println("speed");
Serial.println(gps.f_speed_kmph()) ;
Serial.print(sonar.ping_cm());
;
}

The main problems:
You cannot wait 5 seconds without processing the characters. The Arduino receive buffer only has room for 64 characters. The GPS device could have sent 5000 characters during that time, so most of them will get dropped. This prevents the GPS library from ever parsing a complete sentence.
A ping will interfere with software serial ports. You will have to wait for the GPS quiet time to do the ping. Otherwise, the ping process will cause characters to be lost.
Other problems:
You are printing the speed value even though it may not be valid. If you are not moving, or you do not have good satellite reception, the GPS device may not provide a speed.
The Arduino millis() clock will not be synchronized with the GPS clock. You could use the GPS updates as an exact 1-second clock. Simply count 5 fixes as they arrive, and this will mean that 5 seconds have elapsed.
You should use a different serial port and/or library.
This answer describes the various choices: HardwareSerial (i.e. Serial on pins 0 & 1), AltSoftSerial (8 & 9 on an UNO) or NeoSWSerial (any two pins).
Here is a NeoGPS version of your sketch that addresses these issues:
/*********************
*10 to GPS Module TX*
*09 to GPS Module RX*
*********************/
// 1.TESTED USING LED
// 2. added ultrasound libraries
#include <NewPing.h>
#define TRIGGER_PIN 5 // Arduino pin tied to trigger pin on the ultrasonic sensor.
#define ECHO_PIN 4 // Arduino pin tied to echo pin on the ultrasonic sensor.
#define MAX_DISTANCE 400 // Maximum distance we want to ping for (in centimeters). Maximum sensor distance is rated at 400-500cm.
NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); // NewPing setup of pins and maximum distance.
#include <NeoSWSerial.h>
#include <NMEAGPS.h>
NeoSWSerial gpsPort(10, 11);
NMEAGPS gps; // the parser
gps_fix fix; // all the parsed values from GPS
uint8_t fixCount = 0; // a one-second "clock"
float gpsdump();
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
// set the data rate for the SoftwareSerial port
gpsPort.begin(9600);
delay(1000);
}
void loop() // run over and over
{
// Check for available GPS characters and parse them
if (gps.available( gpsPort ))
{
// Once per second, a complete fix structure is ready.
fix = gps.read();
fixCount++;
// The GPS device is going to be quiet for a while,
// *now* is a good time to do a ping.
Serial.print( "ping " );
Serial.println( sonar.ping_cm() );
// Every 5 seconds we print an update
if (fixCount >= 5)
{
fixCount = 0; // reset counter
Serial.println("Acquired Data");
Serial.println("-------------");
gpsdump();
Serial.println("-------------");
Serial.println();
}
}
}
float gpsdump()
{
// On Arduino, GPS characters may be lost during lengthy Serial.print()
// On Teensy, Serial prints to USB, which has large output buffering and
// runs very fast, so it's not necessary to worry about missing 4800
// baud GPS characters.
Serial.println("speed ");
if (fix.valid.speed)
Serial.println( fix.speed_kph() );
}
If you want to try it, NeoGPS, AltSoftSerial and NeoSWSerial are available from the IDE Library Manager, under the menu Sketch -> Include Library -> Manage Libraries. NeoGPS is smaller, faster, more reliable and more accurate than all other libraries.
Even if you don't use it, there are many suggestions on the Installation and Troubleshooting pages.

Related

How to send AT commands to ESP32 LilyGo-T-Call-SIM800?

I've been working with a LilyGo-TCall-SIM800 module for several days, trying to get out of a dead end.
I have tried an example from "random nerd tutorials" which works correctly. The module connects to the internet and can send data to the cloud.
I have the problem to send AT commands to the SIM800L chip integrated in the module. I can't get the chip to react back.
I have tried using Serial1 and Serial2. I have also tried configuring the RX and TX transmission pins, and I have tried with different baudrates. Always with negative results... when sending the "AT\r" command to the SIM800L, it should return "OK". But it never does.
I have simplified the code as much as possible to minimize errors:
/*
Name: TestAT.ino
Created: 08/12/2022 23:15:28
Author: user
*/
// Set serial for debug console (to the Serial Monitor, speed 115200)
#define SerialMon Serial
// Comunications between ESP32 and SIM800L
#define SerialAT Serial1
//Comunications between ESP32 ans SIM800L go thought TX and RX pins on Serial1 Port
#define MODEM_RX1 16
#define MODEM_TX1 17
void setup() {
// Set console baud rate
SerialMon.begin(115200);
delay(1000);
//Set SerialAT baud rate
SerialAT.begin(38400, SERIAL_8N1, MODEM_RX1, MODEM_TX1);
//Set timeLimit for SerialAT reads
SerialAT.setTimeout(2000);
}
void loop() {
String returned = "";
char ATcommand[] = { 'A','T','\r' };
SerialAT.print(ATcommand);
delay(1000);
returned = SerialAT.readString();
SerialMon.print(millis());
SerialMon.print(" - ");
SerialMon.print(ATcommand);
SerialMon.print(" - SerialAT returned:");
SerialMon.println(returned);
}
Anybody can help me out on this? Any idea or sugestion?
Thanks in advance

Capacitive moisture sensor + ESP32 constant 4095

I am trying to read value from a capacitive moisture sensor (https://www.amazon.fr/Capacitive-Moisture-Corrosion-Resistant-Raspberry/dp/B07FLR13FS) from an ESP32.
I connected the sensor to pin GPIO 0 but the value returned is a constant 4095 even if the sensor is dry or wet. I tried to use 3.3v and 5v but the result is the same.
Even if I disconnect the data pin the value is still 4095.
I've read that 4095 is the max value returned on a sensor connected to 5v but not sure what I am doing here.
This is the code I am using:
const int moisturePin = 0;
void setup() {
Serial.begin(115200);
}
void loop() {
float moistureValue = analogRead(moisturePin);
Serial.println(moistureValue);
delay(30000);
}
Thanks for any help.
GPIO 0 is ADC2 connected, which is not to be used if WiFi is also used.
Connect the sensor to GPIO 34/35 and try again. And never attach 5V to the ESP… possibly that one didn’t survive.
Also set pinMode (function Arduino), so the pin is an input. In the ESP32 datasheet you can find the reference to each pin number and if it belongs to ADC1/2

How to add two physical buttons to AC fan dimmer sketch and update the corresponding slider/step widget once it’s pressed

There are a lot of AC Fan dimmer codes are available in internet with zero cross detection and runs by Blynk app as well.
Problem is All those are only controllable by wifi (with internet) , rather have no manual control (without internet) at all.
I share a code below for AC fan dimmer which is runs by blynk app (Board NodeMCU) . It is only runs when wifi is available, i.e it has no manual contro. I am trying to improve/modify the same code by adding two physical push buttons to control Fan speed manually when internet is not available. In this case I am unable to modify the codes for these two push buttons which also capable to increase and decrease the fan speed along with the Blynk app slider button. Can anyone help/Guide me to develop this.
#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
#define triacPulse 4 //D2
#define ZVC 12 //D6
int Slider_Value;
int dimming;
int x = 0;
char auth[] = "AUTH TOKEN"; // You should get Auth Token in the Blynk App.
char ssid[] = "SSID"; // Your WiFi credentials.
char pass[] = "PASS"; // Set password to "" for open networks.
BLYNK_WRITE(V1) // function to assign value to variable Slider_Value whenever slider changes position
{
Slider_Value = param.asInt(); // assigning incoming value from pin V1 to a variable
}
void setup()
{
pinMode(ZVC, INPUT_PULLUP);
//digitalWrite(2, INPUT_PULLUP); // pull up
pinMode(triacPulse, OUTPUT);
Serial.begin(9600);
Blynk.begin(auth, ssid, pass);
attachInterrupt(digitalPinToInterrupt(ZVC), acon, FALLING); // attach Interrupt at PIN2
}
void loop()
{
Blynk.run();
// When the switch is closed
dimming = map(Slider_Value, 0, 100, 7200, 200);
}
void acon()
{
// Serial.println("REad");
delayMicroseconds(dimming); // read AD0
digitalWrite(triacPulse, HIGH);
delayMicroseconds(50); //delay 50 uSec on output pulse to turn on triac
digitalWrite(triacPulse, LOW);
// Serial.println(digitalRead(triacPulse));
}

can't pair mac and arduino fio with bluetooth bee

I can't get my arduino fio with bluetooth bee paired with my mac. I got my application working with a different board (arduino uno) and USB connection. The code I'm uploading to my arduino fio is below:
#include <SoftwareSerial.h>
SoftwareSerial softSerial(2, 3); // RX, TX
void setup() {
// bluetooth bee setup
softSerial.print("\r\n+STWMOD=0\r\n"); // set to slave
delay(1000);
softSerial.print("\r\n+STNA=MYAPP\r\n"); // set name
delay(1000);
// Serial.print("\r\n+STAUTO=1\r\n"); // permit auto-connect of paired devices
softSerial.print("\r\n+STOAUT=1\r\n");
delay(1000);
//Serial.print("\r\n +STPIN=0000\r\n"); // set PIN
//delay(1000);
softSerial.print("\r\n+STBD=9600\r\n"); // set baud
delay(2000); // required
// initiate BTBee connection
softSerial.print("\r\n+INQ=1\r\n");
delay(20000); // wait for pairing
// Start the software serial.
softSerial.begin(9600);
// Start the hardware serial.
Serial.begin(9600);
}
I think the pins are right -- 2 and 3 seem to be the pins that connect to the bluetooth bee. I've been googling for 2 days straight, and people don't seem to have problems pairing. What am I doing wrong?
Thanks,
Ok -- this took me nearly three solid days of Google-fu, and I stumbled across this page. Apparently that guy, also, had an immense amount of trouble finding a solution, so hopefully having the solution posted on StackOverflow will help future inquirers.
Really, two things are necessary. First, for whatever reason, I have no idea why, you don't worry about the "software serial". Just address the "Serial". Secondly, it will not work if you don't have the baud for the Serial at 38400. I'm actually using a "software serial" to talk to another device, and that baud is at 9600, but for the bluetooth Serial, you want it at 38400.
If you define "setup" as follows, the BluetoothBee should blink red and green, and pair (mac has nothing to do with it):
long DATARATE = 38400; // default data rate for BT Bee
char inChar = 0;
int LED = 13; // Pin 13 is connected to a LED on many Arduinos
void setup() {
Serial.begin(DATARATE);
// bluetooth bee setup
Serial.print("\r\n+STWMOD=0\r\n"); // set to slave
delay(1000);
Serial.print("\r\n+STNA=myDeviceName\r\n"); // set the device name
delay(1000);
Serial.print("\r\n+STAUTO=0\r\n"); // don't permit auto-connect
delay(1000);
Serial.print("\r\n+STOAUT=1\r\n"); // existing default
delay(1000);
Serial.print("\r\n +STPIN=0000\r\n"); // existing default
delay(2000); // required
// initiate BTBee connection
Serial.print("\r\n+INQ=1\r\n");
delay(2000); // wait for pairing
pinMode(LED, OUTPUT);
}
Then, after pairing you should see another serial port under 'tools -> serial port' in your Arduino IDE. If you select that and define the "loop" function as follows, you should be able to send those commands and get verification that you are, in fact, talking to the bluetooth bee:
void loop() {
// test app:
// wait for character,
// a returns message, h=led on, l=led off
if (Serial.available()) {
inChar = Serial.read();
if (inChar == 'a') {
Serial.print("connected"); // test return connection
}
if (inChar == 'h') {
digitalWrite(LED, HIGH); // on
}
if (inChar == 'l') {
digitalWrite(LED, LOW); // off
}
}
}

Arduino/MPU6050/AdafruitMotorShieldV2: script hangs/freezes when turn on motors

I'm a newby to robotics and electronics in general, so please don't assume I tried anything you might think is obvious.
I'm trying to create a cart which will basically run around by itself (simple AI routines to avoid obstacles, go from pt. A to pt. B around corners, follow lines, etc.). I'm putting together an Adafruit Arduino Uno R3 with the Adafruit Motor Shield v2 and an MPU-6050. I'm using the "breadboard" on the Motor Shield for the circuitry, soldering everything there.
I can get all the pieces working independently with their own scripts: the Motor Shield drives the 4 motors as expected using the Adafruit library; I'm using the "JRowberg" library for the MPU-6050, and started with the example MPU6050_DMP6.ino, which works fine as long as the cart motors are turned off. My only changes in the example script below are motor startup and some simple motor commands.
As long as I leave the switch which powers the motors off, everything seems fine: it outputs to the Serial window continuously with Euler data which, I assume, is correct. However, a few seconds after I turn on the power to the motors (and the wheels start turning), it just hangs/freezes: the output to the Serial window stops (sometimes in mid-line), and the wheels keep turning at the speed of their last change. Sometimes I see "FIFO overflow" errors, but not always. Sometimes I see "nan" for some of the floating point values before it hangs, but not always.
Some things I've tried, all of which changed noting:
* I've swapped out the MPU-6050 board for another from the same manufacturer.
* I've tried moving the MPU-6050 away from the motors using a ribbon cable.
* I've changed the I2C clock using JRowber's advice (a change in a .h file and changing the value of the TWBR variable), but I don't think I've tried all possible values.
* I've changed the speed of the MotorShield in the AFMS.begin() command, although, again, there are probably other values I haven't tried, and I'm not sure how in-sync this and the TWBR value need to be.
And some other things, all to no avail.
Below is an example script which fails for me:
#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif
#include "Adafruit_MotorShield.h"
#include "utility/Adafruit_PWMServoDriver.h"
#define DEBUG 1
MPU6050 mpu;
#define OUTPUT_READABLE_EULER
#define LED_PIN 13
bool blinkState = false;
bool dmpReady = false; // set true if DMP init was successful
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer
Quaternion q; // [w, x, y, z] quaternion container
VectorInt16 aa; // [x, y, z] accel sensor measurements
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements
VectorFloat gravity; // [x, y, z] gravity vector
float euler[3]; // [psi, theta, phi] Euler angle container
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };
Adafruit_MotorShield AFMS = Adafruit_MotorShield();
#define NUM_MOTORS 4
#define MOTOR_FL 0
#define MOTOR_FR 1
#define MOTOR_RR 2
#define MOTOR_RL 3
Adafruit_DCMotor *myMotors[NUM_MOTORS] = {
AFMS.getMotor(1),
AFMS.getMotor(2),
AFMS.getMotor(3),
AFMS.getMotor(4),
};
#define CHANGE_SPEED_TIME 500
long changeSpeedMillis = 0;
int curSpeed = 30;
volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
mpuInterrupt = true;
}
void setup() {
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif
Serial.begin(115200);
while (!Serial); // wait for Leonardo enumeration, others continue immediately
// start the motor shield.
AFMS.begin(); // create with the default frequency 1.6KHz
// AFMS.begin(4000); // OR with a different frequency, say 4KHz
// kill all the motors.
myMotors[MOTOR_FL]->run(BRAKE);
myMotors[MOTOR_FL]->setSpeed(0);
myMotors[MOTOR_FR]->run(BRAKE);
myMotors[MOTOR_FR]->setSpeed(0);
myMotors[MOTOR_RR]->run(BRAKE);
myMotors[MOTOR_RR]->setSpeed(0);
myMotors[MOTOR_RL]->run(BRAKE);
myMotors[MOTOR_RL]->setSpeed(0);
Serial.println("Motor Shield ready!");
Serial.println(F("Initializing I2C devices..."));
mpu.initialize();
// verify connection
Serial.println(F("Testing device connections..."));
Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));
// wait for ready
Serial.println(F("\nSend any character to begin DMP programming and demo: "));
while (Serial.available() && Serial.read()); // empty buffer
while (!Serial.available()); // wait for data
while (Serial.available() && Serial.read()); // empty buffer again
// load and configure the DMP
Serial.println(F("Initializing DMP..."));
devStatus = mpu.dmpInitialize();
// supply your own gyro offsets here, scaled for min sensitivity
mpu.setXGyroOffset(220);
mpu.setYGyroOffset(76);
mpu.setZGyroOffset(-85);
mpu.setZAccelOffset(1788); // 1688 factory default for my test chip
// make sure it worked (returns 0 if so)
if (devStatus == 0) {
// turn on the DMP, now that it's ready
Serial.println(F("Enabling DMP..."));
mpu.setDMPEnabled(true);
// enable Arduino interrupt detection
Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
attachInterrupt(0, dmpDataReady, RISING);
mpuIntStatus = mpu.getIntStatus();
// set our DMP Ready flag so the main loop() function knows it's okay to use it
Serial.println(F("DMP ready! Waiting for first interrupt..."));
dmpReady = true;
// get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIFOPacketSize();
} else {
// ERROR!
// 1 = initial memory load failed
// 2 = DMP configuration updates failed
// (if it's going to break, usually the code will be 1)
Serial.print(F("DMP Initialization failed (code "));
Serial.print(devStatus);
Serial.println(F(")"));
}
// configure LED for output
pinMode(LED_PIN, OUTPUT);
}
void loop() {
// if programming failed, don't try to do anything
if (!dmpReady) return;
// wait for MPU interrupt or extra packet(s) available
while (!mpuInterrupt && fifoCount < packetSize) {
// as per Vulpo's post.
delay(10);
if (millis() > changeSpeedMillis) {
curSpeed += 20;
if (curSpeed > 256) {
curSpeed = 30;
}
Serial.print("changing speed to: ");
Serial.println(curSpeed);
myMotors[MOTOR_FL]->run(FORWARD);
myMotors[MOTOR_FL]->setSpeed(curSpeed);
myMotors[MOTOR_FR]->run(FORWARD);
myMotors[MOTOR_FR]->setSpeed(curSpeed);
myMotors[MOTOR_RR]->run(FORWARD);
myMotors[MOTOR_RR]->setSpeed(curSpeed);
myMotors[MOTOR_RL]->run(FORWARD);
myMotors[MOTOR_RL]->setSpeed(curSpeed);
changeSpeedMillis = millis() + CHANGE_SPEED_TIME;
}
}
// reset interrupt flag and get INT_STATUS byte
mpuInterrupt = false;
mpuIntStatus = mpu.getIntStatus();
// get current FIFO count
fifoCount = mpu.getFIFOCount();
// check for overflow (this should never happen unless our code is too inefficient)
if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
// reset so we can continue cleanly
mpu.resetFIFO();
Serial.println(F("FIFO overflow!"));
// otherwise, check for DMP data ready interrupt (this should happen frequently)
} else if (mpuIntStatus & 0x02) {
// wait for correct available data length, should be a VERY short wait
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
// read a packet from FIFO
mpu.getFIFOBytes(fifoBuffer, packetSize);
// track FIFO count here in case there is > 1 packet available
// (this lets us immediately read more without waiting for an interrupt)
fifoCount -= packetSize;
#ifdef OUTPUT_READABLE_EULER
// display Euler angles in degrees
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetEuler(euler, &q);
Serial.print("euler\t");
Serial.print(euler[0] * 180/M_PI);
Serial.print("\t");
Serial.print(euler[1] * 180/M_PI);
Serial.print("\t");
Serial.println(euler[2] * 180/M_PI);
#endif
// blink LED to indicate activity
blinkState = !blinkState;
digitalWrite(LED_PIN, blinkState);
}
}
Have you considered that your troubles are caused by interference from the currents flowing into your motors?
If your motors are DC brush, then more interference may be radiated from the brushes back into your various wires.
As a first step, perhaps let only one motor work and see if hangups diminish in frequency (although, to be sure, you need a 'scope onto a few wires carrying logic signals.

Resources