I think I've hit the upper limit level for random generating numbers.
Is there any workaround for this?
I need to generate ten unique, 19-digit, random numbers in one formula/string.
I have this: =TRUNC (RAND() * (9999999999999999999 - 1) + 1) but spreadsheet rewrites it to:
=TRUNC (RAND() * (9999999999999990000 - 1) + 1)
so I guess the limit is 9999999999999990000.
Desired output format in A1:
2459759093970314589,6393667943286134368,4897561254458152397, etc.
Numeric precision in Excel is ~15 significant digits. An alternative would be to generate the random numbers as strings (the fist character needs to be in the range of 1 to 9, the others from the range of 0-9). Something like this:
=CONCAT(
TRUNC(RAND()*9+1);
TRUNC(RAND()*10);
TRUNC(RAND()*10);
TRUNC(RAND()*10);
...
)
google-spreadsheets
=TRANSPOSE(regexextract(JOIN("",ArrayFormula(RANDBETWEEN(row(INDIRECT("a1:a"&A1*A2))^0-1,9))),rept("(\d{"&A1&"})",A2)))
Related
How to generate pseudo random numbers and row-counts in Tableau? I didn't find any built-in functions (like 'RAND', 'RCOUNT').
Edit:
Just learned that there is a Random() function in Tableau. It is not in the library but if you use it anyway, it will tell you that the formula is valid and create a value between 0 and 1.
Original and still valid answer in case you want to use officially supported functions:
Since Tableau is used to create graphs based on your data, there is usually little use for random numbers (would you explain what you need them for?)
However you could use an approach like this to work around this limitation: http://community.tableau.com/docs/DOC-1474
Basically getting a semi-random seed out of the time, combine it with other values based on table calculations and multiplying it with other semi-random values
Seed
(DATEPART('second', NOW()) + 1) * (DATEPART('minute', NOW()) + 1) * (DATEPART('hour', NOW()) + 1) * (DATEPART('day', NOW()) + 1)
Random Number
((PREVIOUS_VALUE(MIN([Seed])) * 1140671485 + 12820163) % (2^24))
Random Int
INT([Random Number] / (2^24) * [Random Upper Limit]) + 1
Where [Random Upper Limit] is a user defined value to limit the range of the result.
I am quite new to KDB+ and have a question about generating random numbers.
Lets say I want to create num random unique numbers.
When i use this
q)10?10
q)-10?10
I get 10 random numbers in line 1 and 10 unique random numbers in line 2 (range from 0 to 9)
When I want to introduce a variable like this
q)num:10
q)num?10 / works
q)-num?10 / dont work
The generation of unique randoms does not work.
Whats the correct syntax for this?
Thanks in advance
This will give you num unique numbers between 0 and 9.
q)(neg num)?10
I have been asked to use the ANU Quantum Random Numbers Service to create random numbers and use Random.rand only as a fallback.
module QRandom
def next
RestClient.get('http://qrng.anu.edu.au/API/jsonI.php?type=uint16&length=1'){ |response, request, result, &block|
case response.code
when 200
_json=JSON.parse(response)
if _json["success"]==true && _json["data"]
_json["data"].first || Random.rand(65535)
else
Random.rand(65535) #fallback
end
else
puts response #log problem
Random.rand(65535) #fallback
end
}
end
end
Their API service gives me a number between 0-65535. In order to create a random for a bigger set, like a random number between 0-99999, I have to do the following:
(QRandom.next.to_f*(99999.to_f/65535)).round
This strikes me as the wrong way of doing, since if I were to use a service (quantum or not) that creates numbers from 0-3 and transpose them into space of 0-9999 I have a choice of 4 numbers that I always get. How can I use the service that produces numbers between 0-65535 to create random numbers for a larger number set?
Since 65535 is 1111111111111111 in binary, you can just think of the random number server as a source of random bits. The fact that it gives the bits to you in chunks of 16 is not important, since you can make multiple requests and you can also ignore certain bits from the response.
So after performing that abstraction, what we have now is a service that gives you a random bit (0 or 1) whenever you want it.
Figure out how many bits of randomness you need. Since you want a number between 0 and 99999, you just need to find a binary number that is all ones and is greater than or equal to 99999. Decimal 99999 is equal to binary 11000011010011111, which is 17 bits long, so you will need 17 bits of randomness.
Now get 17 bits of randomness from the service and assemble them into a binary number. The number will be between 0 and 2**17-1 (131071), and it will be evenly distributed. If the random number happens to be greater than 99999, then throw away the bits you have and try again. (The probability of needing to retry should be less than 50%.)
Eventually you will get a number between 0 and 99999, and this algorithm should give you a totally uniform distribution.
How about asking for more numbers? Using the length parameter of that API you can just ask for extra numbers and sum them so you get bigger numbers like you want.
http://qrng.anu.edu.au/API/jsonI.php?type=uint16&length=2
You can use inject for the sum and the modulo operation to make sure the number is not bigger than you want.
json["data"].inject(:+) % MAX_NUMBER
I made some other changes to your code like using SecureRandom instead of the regular Random. You can find the code here:
https://gist.github.com/matugm/bee45bfe637f0abf8f29#file-qrandom-rb
Think of the individual numbers you are getting as 16 bits of randomness. To make larger random numbers, you just need more bits. The tricky bit is figuring out how many bits is enough. For example, if you wanted to generate numbers from an absolutely fair distribution from 0 to 65000, then it should be pretty obvious that 16 bits are not enough; even though you have the range covered, some numbers will have twice the probability of being selected than others.
There are a couple of ways around this problem. Using Ruby's Bignum (technically that happens behind the scenes, it works well in Ruby because you won't overflow your Integer type) it is possible to use a method that simply collects more bits until the result of a division could never be ambiguous - i.e. the difference when adding more significant bits to the division you are doing could never change the result.
This what it might look like, using your QRandom.next method to fetch bits in batches of 16:
def QRandom.rand max
max = max.to_i # This approach requires integers
power = 1
sum = 0
loop do
sum = 2**16 * sum + QRandom.next
power *= 2**16
lower_bound = sum * max / power
break lower_bound if lower_bound == ( (sum + 1) * max ) / power
end
end
Because it costs you quite a bit to fetch random bits from your chosen source, you may benefit from taking this to the most efficient form possible, which is similar in principle to Arithmetic Coding and squeezes out the maximum possible entropy from your source whilst generating unbiased numbers in 0...max. You would need to implement a method QRandom.next_bits( num ) that returned an integer constructed from a bitstream buffer originating with your 16-bit numbers:
def QRandom.rand max
max = max.to_i # This approach requires integers
# I prefer this: start_bits = Math.log2( max ).floor
# But this also works (and avoids suggestions the algo uses FP):
start_bits = max.to_s(2).length
sum = QRandom.next_bits( start_bits )
power = 2 ** start_bits
# No need for fractional bits if max is power of 2
return sum if power == max
# Draw 1 bit at a time to resolve fractional powers of 2
loop do
lower_bound = (sum * max) / power
break lower_bound if lower_bound == ((sum + 1) * max)/ power
sum = 2 * sum + QRandom.next_bits(1) # 0 or 1
power *= 2
end
end
This is the most efficient use of bits from your source possible. It is always as efficient or better than re-try schemes. The expected number of bits used per call to QRandom.rand( max ) is 1 + Math.log2( max ) - i.e. on average this allows you to draw just over the fractional number of bits needed to represent your range.
I would like to do a database lookup based on a 10 digit numeric value where only the first n digits are significant. Assume that there is no way in advance to determine n by looking at the value.
For example, I receive the value 5432154321. The corresponding entry (if it exists) might have key 54 or 543215 or any value based on n being somewhere between 1 and 10 inclusive.
Is there any efficient approach to matching on such a string short of simply trying all 10 possibilities?
Some background
The value is from a barcode scan. The barcodes are EAN13 restricted circulation numbers so they have the following structure:
02[1234567890]C
where C is a check sum. The 10 digits in between the 02 and the check sum consist of an item identifier followed by an item measure. There might be a check digit after the item identifier.
Since I can't depend on the data to adhere to any single standard, I would like to be able to define on an ad-hoc basis, how particular barcodes are structured which means that the portion of the 10 digit number that I extract, can be any length between 1 and 10.
Just a few ideas here:
1)
Maybe store these numbers in reversed form in your DB.
If you have N = 54321 you store it as N = 12345 in the DB.
Say N is the name of the column you stored it in.
When you read K = 5432154321, reverse this one too,
you get K1 = 1234512345, now check the DB column N
(whose value is let's say P), if K1 % 10^s == P,
where s=floor(Math.log(P) + 1).
Note: floor(Math.log(P) + 1) is a formula for
the count of digits of the number P > 0.
The value floor(Math.log(P) + 1) you may also
store in the DB as precomputed one, so that
you don't need to compute it each time.
2) As this 1) is kind of sick (but maybe best of the 3 ideas here),
maybe you just store them in a string column and check it with
'like operator'. But this is trivial, you probably considered it
already.
3) Or ... you store the numbers reversed, but you also
store all their residues mod 10^k for k=1...10.
col1, col2,..., col10
Then you can compare numbers almost directly,
the check will be something like
N % 10 == col1
or
N % 100 == col2
or
...
(N % 10^10) == col10.
Still not very elegant though (and not quite sure
if applicable to your case).
I decided to check my idea 1).
So here is an example
(I did it in SQL Server).
insert into numbers
(number, cnt_dig)
values
(1234, 1 + floor(log10(1234)))
insert into numbers
(number, cnt_dig)
values
(51234, 1 + floor(log10(51234)))
insert into numbers
(number, cnt_dig)
values
(7812334, 1 + floor(log10(7812334)))
select * From numbers
/*
Now we have this in our table:
id number cnt_dig
4 1234 4
5 51234 5
6 7812334 7
*/
-- Note that the actual numbers stored here
-- are the reversed ones: 4321, 43215, 4332187.
-- So far so good.
-- Now we read say K = 433218799 on the input
-- We reverse it and we get K1 = 997812334
declare #K1 bigint
set #K1 = 997812334
select * From numbers
where
#K1 % power(10, cnt_dig) = number
-- So from the last 3 queries,
-- we get this row:
-- id number cnt_dig
-- 6 7812334 7
--
-- meaning we have a match
-- i.e. the actual number 433218799
-- was matched successfully with the
-- actual number (from the DB) 4332187.
So this idea 1) doesn't seem that bad after all.
In my app I need to run a 5 digits number through an algorithm and return a number between the given interval, ie:
The function encode, gets 3 parameters, 5 digits initial number, interval lower limit and interval superior limit, for example:
int res=encode(12879,10,100) returns 83.
The function starts from 12879 and does something with the numbers and returns a number between 10 and 100. This mustn't be random, every time I pass the number 12879 to the encode function must always return the same number.
Any ideas?
Thanks,
Direz
One possible approach:
compute the range of your interval R = (100 - 10) + 1
compute a hash modulo R of the input H = hash(12879) % R
add the lower bound to the modular hash V = 10 + H
Here the thing though - you haven't defined any constraints or requirements on the "algorithm" that produces the result. If all you want is to map a value into a given range (without any knowledge of the distribution of the input, or how input values may cluster, etc), you could just as easily just take the range modulo of the input without hashing (as Foo Bah demonstrates).
If there are certain constraints, requirements, or distributions of the input or output of your encode method, then the approach may need to be quite different. However, you are the only one who knows what additional requirements you have.
You can do something simple like
encode(x,y,z) --> y + (x mod (z-y))
You don't have an upper limit for this function?
Assume it is 99999 because it is 5 digits. For your case, the simplest way is:
int encode (double N,double H,double L)
{
return (int)(((H - L) / (99999 - 10000)) * (N - 10000) + 10);
}