How to nicely do allOf/AnyOf with Collections of CompletionStage - java-8

Currently to do something simple with Collections of CompletionStage requires jumping through several ugly hoops:
public static CompletionStage<String> translate(String foo) {
// just example code to reproduce
return CompletableFuture.completedFuture("translated " + foo);
}
public static CompletionStage<List<String>> translateAllAsync(List<String> input) {
List<CompletableFuture<String>> tFutures = input.stream()
.map(s -> translate(s)
.toCompletableFuture())
.collect(Collectors.toList()); // cannot use toArray because of generics Arrays creation :-(
return CompletableFuture.allOf(tFutures.toArray(new CompletableFuture<?>[0])) // not using size() on purpose, see comments
.thenApply(nil -> tFutures.stream()
.map(f -> f.join())
.map(s -> s.toUpperCase())
.collect(Collectors.toList()));
}
What I want to write is:
public CompletionStage<List<String>> translateAllAsync(List<String> input) {
// allOf takes a collection< futures<X>>,
// and returns a future<collection<x>> for thenApply()
return XXXUtil.allOf(input.stream()
.map(s -> translate(s))
.collect(Collectors.toList()))
.thenApply(translations -> translations.stream()
.map(s -> s.toUpperCase())
.collect(Collectors.toList()));
}
The whole ceremony about toCompletableFuture and converting to an Array and join is boilerplate distracting from the actual code semantics.
Possibly having a version of allOf() returning a Future<Collection<Future<X>>> instead of Future<Collection<X>> may also be useful in some cases.
I could try implementing XXXUtil myself, but I wonder if there already is a mature 3rdparty library for this and similar issues (Such as Spotify's CompletableFutures). If so, I'd like to see the equivalent code for such a library as an answer.
Or maybe the original code posted above can somehow be written more compactly in a different way?
JUnit test code:
#Test
public void testTranslate() throws Exception {
List<String> list = translateAllAsync(Arrays.asList("foo", "bar")).toCompletableFuture().get();
Collections.sort(list);
assertEquals(list,
Arrays.asList("TRANSLATED BAR", "TRANSLATED FOO"));
}

I just looked into the source code of CompletableFuture.allOf, to find that it basically creates a binary tree of nodes handling two stages at a time. We can easily implement a similar logic without using toCompletableFuture() explicitly and handling the result list generation in one go:
public static <T> CompletionStage<List<T>> allOf(
Stream<? extends CompletionStage<? extends T>> source) {
return allOf(source.collect(Collectors.toList()));
}
public static <T> CompletionStage<List<T>> allOf(
List<? extends CompletionStage<? extends T>> source) {
int size = source.size();
if(size == 0) return CompletableFuture.completedFuture(Collections.emptyList());
List<T> result = new ArrayList<>(Collections.nCopies(size, null));
return allOf(source, result, 0, size-1).thenApply(x -> result);
}
private static <T> CompletionStage<Void> allOf(
List<? extends CompletionStage<? extends T>> source,
List<T> result, int from, int to) {
if(from < to) {
int mid = (from+to)>>>1;
return allOf(source, result, from, mid)
.thenCombine(allOf(source, result, mid+1, to), (x,y)->x);
}
return source.get(from).thenAccept(t -> result.set(from, t));
}
That’s it.
You can use this solution to implement the logic of your question’s code as
public static CompletionStage<List<String>> translateAllAsync(List<String> input) {
return allOf(input.stream().map(s -> translate(s)))
.thenApply(list -> list.stream()
.map(s -> s.toUpperCase())
.collect(Collectors.toList()));
}
though it would be more natural to use
public static CompletionStage<List<String>> translateAllAsync(List<String> input) {
return allOf(input.stream().map(s -> translate(s).thenApply(String::toUpperCase)));
}
Note that this solution maintains the order, so there is no need for sorting the result in the test case:
#Test
public void testTranslate() throws Exception {
List<String> list = translateAllAsync(Arrays.asList("foo", "bar")).toCompletableFuture().get();
assertEquals(list, Arrays.asList("TRANSLATED FOO", "TRANSLATED BAR"));
}

Related

How to convert Generic List with Predicate Interface into a Lambda Expression?

I am learning Java 8 Functional Interface and was trying out some examples.
I am trying to create a method which will accept Generic List as one argument and a String data filter argument as another.
Below code is working as expected, but when I am trying to convert Predicate into Lambda Expression, then I am struggling.
#SuppressWarnings("unchecked")
public static <T> List<T> filter_and_find_only_selected_Data1(List<T> genericList, String dataFilter){
Stream<List<T>> list = genericList.stream().map(eachListObj-> {
if(eachListObj instanceof Employee){
return genericList.stream().filter((Predicate<? super T>) new Predicate<Employee>() {
public boolean test(Employee eachEmpObj) {
return eachEmpObj.getEmpDept().equalsIgnoreCase(dataFilter);
}
}).collect(Collectors.toList());
}else if(eachListObj instanceof Customer){
return genericList.stream().filter((Predicate<? super T>) new Predicate<Customer>(){
public boolean test(Customer eachCust) {
return !eachCust.getCustomerName().equalsIgnoreCase(dataFilter);
}
}).collect(Collectors.toList());
}
return null;
});
return list.findAny().get();
}
Is there any way, I can convert the Predicate into Lambda as well as if there a way, I can convert if-else-if into Ternary Operator.
Like: (if condition)?return Value:(else-if condition):return value:null;
I think, you actually want something like this:
public static <T> List<T> filter_and_find_only_selected_Data(
List<T> list, Function<? super T, String> stringProperty, String filterValue) {
return list.stream()
.filter(t -> filterValue.equalsIgnoreCase(stringProperty.apply(t)))
.collect(Collectors.toList());
}
Then, the caller can use
List<Employee> source = …;
List<Employee> filtered
= filter_and_find_only_selected_Data(source, Employee::getEmpDept, "value");
or
List<Customer> source = …;
List<Customer> filtered
= filter_and_find_only_selected_Data(source, Customer::getCustomerName, "Bob");
or
List<File> source = Arrays.asList(new File("foo", "bar"), new File("foo", "test"),
new File("xyz"), new File("TEST"), new File("abc", "bar"), new File("bla", "Test"));
List<File> filtered = filter_and_find_only_selected_Data(source, File::getName, "test");
to demonstrate the flexibility of a truly generic method.
Why not put all in the filter? try this
return genericList.stream().filter(item ->
(item instanceof Customer && ((Customer) item).getCustomerName().equalsIgnoreCase(dataFilter)
|| (item instanceof Employee && ((Employee) item).getEmpDept().equalsIgnoreCase(dataFilter))))
.collect(Collectors.toList());
or extract a function for this filter
public boolean isAllow(T item, String dataFilter) {
return (item instanceof Customer && ((Customer) item).getCustomerName().equalsIgnoreCase(dataFilter))
|| (item instanceof Employee && ((Employee) item).getEmpDept().equalsIgnoreCase(dataFilter)))
}
//then use it in filter
return genericList.stream().filter(item -> isAllow(item, dataFilter)
.collect(Collectors.toList());
Hope it helps
The generics doesn't help you much here since Customer and Employee seem not mutually compatible. As long as you want to use a generic type <T>, you have to assure that this type is consistent across all the method scope execution. All you can do is using the explicit cast.
I'd start with a static Map extracting a mapping function based on the incoming Class<?>. The Function<Object, String> results in String as long as you wish to compare these with dataFilter:
static Map<Class<?>, Function<Object, String>> exctractionMap() {
Map<Class<?>, Function<Object, String>> map = new HashMap<>();
map.put(Customer.class, item -> Customer.class.cast(item).getCustomerName());
map.put(Employee.class, item -> Employee.class.cast(item).getEmpDept());
return map;
}
Putting this static map aside for a while, I think your whole stream might be simplified anyway. This should work together:
static List<String> findSelectedData(List<?> genericList, String dataFilter) {
return genericList.stream() // Stream<Object>
.map(item -> exctractionMap() // Stream<String> using the function
.get(item.getClass()) // ... get through Class<Object>
.apply(item)) // ... applied Function<Object,String>
.filter(s-> s.equalsIgnoreCase(dataFilter)) // Stream<String> equal to dataFilter
.collect(Collectors.toList()); // List<String>
}
A note: Please, respect the Java conventions and name the method filterAndFindOnlySelectedData1.

parallel call using rxjava 1

Scenario - To make a service call for certain items (suppose 4 items) which will update DB. Sequence doesn't matter. All service calls are independent of each other but wait till all the calls are completed, so want to go for parallel calls using rxjava 1.x
Now, the problem that I'm facing is update service doesn't return anything if it is successful.
public class DbClient {
public void update(SomeObject someObject) {
//update logic
}
}
//client code to call update method
public void processUpdate(Map<String, SomeObject> map) {
map.entrySet.stream.forEach(entry -> {
dbClient.update(entry.getValue()); // how can I call this parallely using rxjava 1.x
});
}
Note that RxJava 1 is outdated and no longer supported or maintained as a library.
You can flatMap each map element onto its own reactive action to have them run concurrently:
Observable.from(map.entrySet())
.flatMap(entry ->
Observable.create(emitter -> {
dbClient.update(entry.getValue());
emitter.onCompleted();
})
.subscribeOn(Schedulers.io()),
true, // <------------ aggregate all errors
8 // <---------------- number of concurrent updates you want
)
You can use flatMap operator for parallel executing. Create List<Observable> using map and then executes them using Observable.flatMap. Focus on it.subscribeOn line. The line changes sequence to parallel.
Refer to here
public class MultipleExecutes {
public class DbClient {
Observable<String> update(String someObject) {
// replace what you want.
// Observable.fromCallable() <- consider this
return Observable.just(someObject);
}
}
// client code to call update method
private List<Observable<String>> processUpdate(Map<String, String> map) {
DbClient dbClient = new DbClient();
return map
.entrySet()
.stream()
.map(entry -> dbClient.update(entry.getValue()))
.collect(Collectors.toList());
}
public static void main(String[] args) {
Map<String, String> map = new HashMap<>();
map.put("1", "1");
map.put("2", "2");
map.put("3", "3");
map.put("4", "4");
List<Observable<String>> o = new MultipleExecutes().processUpdate(map);
Observable
.fromIterable(o)
.flatMap(it -> it.subscribeOn(Schedulers.computation())) <-- important line
.subscribe(System.out::println);
Thread.sleep(500);
}
}
Output
4
1
2
3

Java8 to Java7 - Migrate Comparators

I'm having troubles understanding how to "migrate" a simple Comparator in Java7.
The actual version I'm using in Java8 is like:
private static final Comparator<Entry> ENTRY_COMPARATOR = Comparator.comparing(new Function<Entry, EntryType>() {
#Override
public EntryType apply(Entry t) {
return t.type;
}
})
.thenComparing(Comparator.comparingLong(new ToLongFunction<Entry>() {
#Override
public long applyAsLong(Entry value) {
return value.count;
}
}).reversed());
But in build phase I get this error:
static interface method invocations are not supported in -source 7
How can I migrate the same comparator to Java7? I'm googling and searching for solution but the only thing I can think of, is to implement my own class as a Comparator interface implementation.
But If I go down that road, how can I apply both "comparing", "then comparing" and "reverse" in the same "compare" method?
Thanks in advance
Even your java-8 version can be made a lot shorter and easier to read with:
Comparator.comparing(Entry::getType)
.thenComparingLong(Entry::getCount)
.reversed();
With guava (java-7 compatible), this looks a bit more verbose:
#Override
public int compare(Entry left, Entry right) {
return ComparisonChain.start()
.compare(left.getType(), right.getCount(), Ordering.natural().reversed())
.compare(left.getCount(), right.getCount(), Ordering.natural().reversed())
.result();
}
You can write the logic in a single compare method:
public int compare (Entry one,Entry two) {
int result = two.getType().compareTo(one.getType());
if (result == 0) {
result = Long.compare(two.getCount(),one.getCount());
}
return result;
}
Note that the reversed order in achieved by swapping the order of the compared Entry instances.
You can construct a Comparator<Entry> the java 7 way, afterward, you can chain the default methods as you can do in java 8, but without using lambda expressions or method references as a parameter :
private static final Comparator<Entry> ENTRY_COMPARATOR = new Comparator<Entry>() {
#Override
public int compare(Entry left, Entry right) {
return left.type.compareTo(right.type);
}
}
.thenComparingLong(new ToLongFunction<Entry>() {
#Override
public long applyAsLong(Entry entry) {
return entry.value;
}
})
.reversed();
The code above is compiled with -source 1.7.

Java 8 - Streams - exception handling is mandatory in stream processing? [duplicate]

I know how to create a reference to a method that has a String parameter and returns an int, it's:
Function<String, Integer>
However, this doesn't work if the function throws an exception, say it's defined as:
Integer myMethod(String s) throws IOException
How would I define this reference?
You'll need to do one of the following.
If it's your code, then define your own functional interface that declares the checked exception:
#FunctionalInterface
public interface CheckedFunction<T, R> {
R apply(T t) throws IOException;
}
and use it:
void foo (CheckedFunction f) { ... }
Otherwise, wrap Integer myMethod(String s) in a method that doesn't declare a checked exception:
public Integer myWrappedMethod(String s) {
try {
return myMethod(s);
}
catch(IOException e) {
throw new UncheckedIOException(e);
}
}
and then:
Function<String, Integer> f = (String t) -> myWrappedMethod(t);
or:
Function<String, Integer> f =
(String t) -> {
try {
return myMethod(t);
}
catch(IOException e) {
throw new UncheckedIOException(e);
}
};
You can actually extend Consumer (and Function etc.) with a new interface that handles exceptions -- using Java 8's default methods!
Consider this interface (extends Consumer):
#FunctionalInterface
public interface ThrowingConsumer<T> extends Consumer<T> {
#Override
default void accept(final T elem) {
try {
acceptThrows(elem);
} catch (final Exception e) {
// Implement your own exception handling logic here..
// For example:
System.out.println("handling an exception...");
// Or ...
throw new RuntimeException(e);
}
}
void acceptThrows(T elem) throws Exception;
}
Then, for example, if you have a list:
final List<String> list = Arrays.asList("A", "B", "C");
If you want to consume it (eg. with forEach) with some code that throws exceptions, you would traditionally have set up a try/catch block:
final Consumer<String> consumer = aps -> {
try {
// maybe some other code here...
throw new Exception("asdas");
} catch (final Exception ex) {
System.out.println("handling an exception...");
}
};
list.forEach(consumer);
But with this new interface, you can instantiate it with a lambda expression and the compiler will not complain:
final ThrowingConsumer<String> throwingConsumer = aps -> {
// maybe some other code here...
throw new Exception("asdas");
};
list.forEach(throwingConsumer);
Or even just cast it to be more succinct!:
list.forEach((ThrowingConsumer<String>) aps -> {
// maybe some other code here...
throw new Exception("asda");
});
Update
Looks like there's a very nice utility library part of Durian called Errors which can be used to solve this problem with a lot more flexibility. For example, in my implementation above I've explicitly defined the error handling policy (System.out... or throw RuntimeException), whereas Durian's Errors allow you to apply a policy on the fly via a large suite of utility methods. Thanks for sharing it, #NedTwigg!.
Sample usage:
list.forEach(Errors.rethrow().wrap(c -> somethingThatThrows(c)));
I think Durian's Errors class combines many of the pros of the various suggestions above.
Wrap a throwing function to a standard Java 8 functional interface.
Easily specify various policies for handling errors
When wrapping a method that returns a value, there is an important distinction between specifying a default value or rethrowing a RuntimeException.
Throwing versions of Java 8's functional interfaces
Similar to fge's answer
Standard interfaces for throwing specific exceptions
Which addresses Zoltán's concern
To include Durian in your project, you can either:
grab it from jcenter or maven central at com.diffplug.durian:durian:3.3.0
or just copy paste just two small classes into your code: Throwing.java and Errors.java
This is not specific to Java 8. You are trying to compile something equivalent to:
interface I {
void m();
}
class C implements I {
public void m() throws Exception {} //can't compile
}
Disclaimer: I haven't used Java 8 yet, only read about it.
Function<String, Integer> doesn't throw IOException, so you can't put any code in it that throws IOException. If you're calling a method that expects a Function<String, Integer>, then the lambda that you pass to that method can't throw IOException, period. You can either write a lambda like this (I think this is the lambda syntax, not sure):
(String s) -> {
try {
return myMethod(s);
} catch (IOException ex) {
throw new RuntimeException(ex);
// (Or do something else with it...)
}
}
Or, if the method you're passing the lambda to is one you wrote yourself, you can define a new functional interface and use that as the parameter type instead of Function<String, Integer>:
public interface FunctionThatThrowsIOException<I, O> {
O apply(I input) throws IOException;
}
If you don't mind to use a 3rd party lib (Vavr) you could write
CheckedFunction1<String, Integer> f = this::myMethod;
It also has the so-called Try monad which handles errors:
Try(() -> f.apply("test")) // results in a Success(Integer) or Failure(Throwable)
.map(i -> ...) // only executed on Success
...
Please read more here.
Disclaimer: I'm the creator of Vavr.
Sneaky throw idiom enables bypassing CheckedException of Lambda expression. Wrapping a CheckedException in a RuntimeException is not good for strict error handling.
It can be used as a Consumer function used in a Java collection.
Here is a simple and improved version of jib's answer.
import static Throwing.rethrow;
#Test
public void testRethrow() {
thrown.expect(IOException.class);
thrown.expectMessage("i=3");
Arrays.asList(1, 2, 3).forEach(rethrow(e -> {
int i = e.intValue();
if (i == 3) {
throw new IOException("i=" + i);
}
}));
}
This just wrapps the lambda in a rethrow. It makes CheckedException rethrow any Exception that was thrown in your lambda.
public final class Throwing {
private Throwing() {}
#Nonnull
public static <T> Consumer<T> rethrow(#Nonnull final ThrowingConsumer<T> consumer) {
return consumer;
}
/**
* The compiler sees the signature with the throws T inferred to a RuntimeException type, so it
* allows the unchecked exception to propagate.
*
* http://www.baeldung.com/java-sneaky-throws
*/
#SuppressWarnings("unchecked")
#Nonnull
public static <E extends Throwable> void sneakyThrow(#Nonnull Throwable ex) throws E {
throw (E) ex;
}
}
Find a complete code and unit tests here.
You could however create your own FunctionalInterface that throws as below..
#FunctionalInterface
public interface UseInstance<T, X extends Throwable> {
void accept(T instance) throws X;
}
then implement it using Lambdas or references as shown below.
import java.io.FileWriter;
import java.io.IOException;
//lambda expressions and the execute around method (EAM) pattern to
//manage resources
public class FileWriterEAM {
private final FileWriter writer;
private FileWriterEAM(final String fileName) throws IOException {
writer = new FileWriter(fileName);
}
private void close() throws IOException {
System.out.println("close called automatically...");
writer.close();
}
public void writeStuff(final String message) throws IOException {
writer.write(message);
}
//...
public static void use(final String fileName, final UseInstance<FileWriterEAM, IOException> block) throws IOException {
final FileWriterEAM writerEAM = new FileWriterEAM(fileName);
try {
block.accept(writerEAM);
} finally {
writerEAM.close();
}
}
public static void main(final String[] args) throws IOException {
FileWriterEAM.use("eam.txt", writerEAM -> writerEAM.writeStuff("sweet"));
FileWriterEAM.use("eam2.txt", writerEAM -> {
writerEAM.writeStuff("how");
writerEAM.writeStuff("sweet");
});
FileWriterEAM.use("eam3.txt", FileWriterEAM::writeIt);
}
void writeIt() throws IOException{
this.writeStuff("How ");
this.writeStuff("sweet ");
this.writeStuff("it is");
}
}
You can use unthrow wrapper
Function<String, Integer> func1 = s -> Unthrow.wrap(() -> myMethod(s));
or
Function<String, Integer> func2 = s1 -> Unthrow.wrap((s2) -> myMethod(s2), s1);
You can.
Extending #marcg 's UtilException and adding generic <E extends Exception> where necessary: this way, the compiler will force you again to add throw clauses and everything's as if you could throw checked exceptions natively on java 8's streams.
public final class LambdaExceptionUtil {
#FunctionalInterface
public interface Function_WithExceptions<T, R, E extends Exception> {
R apply(T t) throws E;
}
/**
* .map(rethrowFunction(name -> Class.forName(name))) or .map(rethrowFunction(Class::forName))
*/
public static <T, R, E extends Exception> Function<T, R> rethrowFunction(Function_WithExceptions<T, R, E> function) throws E {
return t -> {
try {
return function.apply(t);
} catch (Exception exception) {
throwActualException(exception);
return null;
}
};
}
#SuppressWarnings("unchecked")
private static <E extends Exception> void throwActualException(Exception exception) throws E {
throw (E) exception;
}
}
public class LambdaExceptionUtilTest {
#Test
public void testFunction() throws MyTestException {
List<Integer> sizes = Stream.of("ciao", "hello").<Integer>map(rethrowFunction(s -> transform(s))).collect(toList());
assertEquals(2, sizes.size());
assertEquals(4, sizes.get(0).intValue());
assertEquals(5, sizes.get(1).intValue());
}
private Integer transform(String value) throws MyTestException {
if(value==null) {
throw new MyTestException();
}
return value.length();
}
private static class MyTestException extends Exception { }
}
I had this problem with Class.forName and Class.newInstance inside a lambda, so I just did:
public Object uncheckedNewInstanceForName (String name) {
try {
return Class.forName(name).newInstance();
}
catch (ClassNotFoundException | InstantiationException | IllegalAccessException e) {
throw new RuntimeException(e);
}
}
Inside the lambda, instead of calling Class.forName("myClass").newInstance() I just called uncheckedNewInstanceForName ("myClass")
Create a custom return type that will propagate the checked exception. This is an alternative to creating a new interface that mirrors the existing functional interface with the slight modification of a "throws exception" on the functional interface's method.
Definition
CheckedValueSupplier
public static interface CheckedValueSupplier<V> {
public V get () throws Exception;
}
CheckedValue
public class CheckedValue<V> {
private final V v;
private final Optional<Exception> opt;
public Value (V v) {
this.v = v;
}
public Value (Exception e) {
this.opt = Optional.of(e);
}
public V get () throws Exception {
if (opt.isPresent()) {
throw opt.get();
}
return v;
}
public Optional<Exception> getException () {
return opt;
}
public static <T> CheckedValue<T> returns (T t) {
return new CheckedValue<T>(t);
}
public static <T> CheckedValue<T> rethrows (Exception e) {
return new CheckedValue<T>(e);
}
public static <V> CheckedValue<V> from (CheckedValueSupplier<V> sup) {
try {
return CheckedValue.returns(sup.get());
} catch (Exception e) {
return Result.rethrows(e);
}
}
public static <V> CheckedValue<V> escalates (CheckedValueSupplier<V> sup) {
try {
return CheckedValue.returns(sup.get());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
Usage
// Don't use this pattern with FileReader, it's meant to be an
// example. FileReader is a Closeable resource and as such should
// be managed in a try-with-resources block or in another safe
// manner that will make sure it is closed properly.
// This will not compile as the FileReader constructor throws
// an IOException.
Function<String, FileReader> sToFr =
(fn) -> new FileReader(Paths.get(fn).toFile());
// Alternative, this will compile.
Function<String, CheckedValue<FileReader>> sToFr = (fn) -> {
return CheckedValue.from (
() -> new FileReader(Paths.get("/home/" + f).toFile()));
};
// Single record usage
// The call to get() will propagate the checked exception if it exists.
FileReader readMe = pToFr.apply("/home/README").get();
// List of records usage
List<String> paths = ...; //a list of paths to files
Collection<CheckedValue<FileReader>> frs =
paths.stream().map(pToFr).collect(Collectors.toList());
// Find out if creation of a file reader failed.
boolean anyErrors = frs.stream()
.filter(f -> f.getException().isPresent())
.findAny().isPresent();
What's going on?
A single functional interface that throws a checked exception is created (CheckedValueSupplier). This will be the only functional interface which allows checked exceptions. All other functional interfaces will leverage the CheckedValueSupplier to wrap any code that throws a checked exception.
The CheckedValue class will hold the result of executing any logic that throws a checked exception. This prevents propagation of a checked exception until the point at which code attempts to access the value that an instance of CheckedValue contains.
The problems with this approach.
We are now throwing "Exception" effectively hiding the specific type originally thrown.
We are unaware that an exception occurred until CheckedValue#get() is called.
Consumer et al
Some functional interfaces (Consumer for example) must be handled in a different manner as they don't provide a return value.
Function in lieu of Consumer
One approach is to use a function instead of a consumer, which applies when handling streams.
List<String> lst = Lists.newArrayList();
// won't compile
lst.stream().forEach(e -> throwyMethod(e));
// compiles
lst.stream()
.map(e -> CheckedValueSupplier.from(
() -> {throwyMethod(e); return e;}))
.filter(v -> v.getException().isPresent()); //this example may not actually run due to lazy stream behavior
Escalate
Alternatively, you can always escalate to a RuntimeException. There are other answers that cover escalation of a checked exception from within a Consumer.
Don't consume.
Just avoid functional interfaces all together and use a good-ole-fashioned for loop.
Another solution using a Function wrapper would be to return either an instance of a wrapper of your result, say Success, if everything went well, either an instance of, say Failure.
Some code to clarify things :
public interface ThrowableFunction<A, B> {
B apply(A a) throws Exception;
}
public abstract class Try<A> {
public static boolean isSuccess(Try tryy) {
return tryy instanceof Success;
}
public static <A, B> Function<A, Try<B>> tryOf(ThrowableFunction<A, B> function) {
return a -> {
try {
B result = function.apply(a);
return new Success<B>(result);
} catch (Exception e) {
return new Failure<>(e);
}
};
}
public abstract boolean isSuccess();
public boolean isError() {
return !isSuccess();
}
public abstract A getResult();
public abstract Exception getError();
}
public class Success<A> extends Try<A> {
private final A result;
public Success(A result) {
this.result = result;
}
#Override
public boolean isSuccess() {
return true;
}
#Override
public A getResult() {
return result;
}
#Override
public Exception getError() {
return new UnsupportedOperationException();
}
#Override
public boolean equals(Object that) {
if(!(that instanceof Success)) {
return false;
}
return Objects.equal(result, ((Success) that).getResult());
}
}
public class Failure<A> extends Try<A> {
private final Exception exception;
public Failure(Exception exception) {
this.exception = exception;
}
#Override
public boolean isSuccess() {
return false;
}
#Override
public A getResult() {
throw new UnsupportedOperationException();
}
#Override
public Exception getError() {
return exception;
}
}
A simple use case :
List<Try<Integer>> result = Lists.newArrayList(1, 2, 3).stream().
map(Try.<Integer, Integer>tryOf(i -> someMethodThrowingAnException(i))).
collect(Collectors.toList());
This problem has been bothering me as well; this is why I have created this project.
With it you can do:
final ThrowingFunction<String, Integer> f = yourMethodReferenceHere;
There are a totla of 39 interfaces defined by the JDK which have such a Throwing equivalent; those are all #FunctionalInterfaces used in streams (the base Stream but also IntStream, LongStream and DoubleStream).
And as each of them extend their non throwing counterpart, you can directly use them in lambdas as well:
myStringStream.map(f) // <-- works
The default behavior is that when your throwing lambda throws a checked exception, a ThrownByLambdaException is thrown with the checked exception as the cause. You can therefore capture that and get the cause.
Other features are available as well.
There are a lot of great responses already posted here. Just attempting to solve the problem with a different perspective. Its just my 2 cents, please correct me if I am wrong somewhere.
Throws clause in FunctionalInterface is not a good idea
I think this is probably not a good idea to enforce throws IOException because of following reasons
This looks to me like an anti-pattern to Stream/Lambda. The whole idea is that the caller will decide what code to provide and how to handle the exception. In many scenarios, the IOException might not be applicable for the client. For example, if the client is getting value from cache/memory instead of performing actual I/O.
Also, the exceptions handling in streams becomes really hideous. For example, here is my code will look like if I use your API
acceptMyMethod(s -> {
try {
Integer i = doSomeOperation(s);
return i;
} catch (IOException e) {
// try catch block because of throws clause
// in functional method, even though doSomeOperation
// might not be throwing any exception at all.
e.printStackTrace();
}
return null;
});
Ugly isn't it? Moreover, as I mentioned in my first point, that the doSomeOperation method may or may not be throwing IOException (depending on the implementation of the client/caller), but because of the throws clause in your FunctionalInterface method, I always have to write the try-catch.
What do I do if I really know this API throws IOException
Then probably we are confusing FunctionalInterface with typical Interfaces. If you know this API will throw IOException, then most probably you also know some default/abstract behavior as well. I think you should define an interface and deploy your library (with default/abstract implementation) as follows
public interface MyAmazingAPI {
Integer myMethod(String s) throws IOException;
}
But, the try-catch problem still exists for the client. If I use your API in stream, I still need to handle IOException in hideous try-catch block.
Provide a default stream-friendly API as follows
public interface MyAmazingAPI {
Integer myMethod(String s) throws IOException;
default Optional<Integer> myMethod(String s, Consumer<? super Exception> exceptionConsumer) {
try {
return Optional.ofNullable(this.myMethod(s));
} catch (Exception e) {
if (exceptionConsumer != null) {
exceptionConsumer.accept(e);
} else {
e.printStackTrace();
}
}
return Optional.empty();
}
}
The default method takes the consumer object as argument, which will be responsible to handle the exception. Now, from client's point of view, the code will look like this
strStream.map(str -> amazingAPIs.myMethod(str, Exception::printStackTrace))
.filter(Optional::isPresent)
.map(Optional::get).collect(toList());
Nice right? Of course, logger or other handling logic could be used instead of Exception::printStackTrace.
You can also expose a method similar to https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#exceptionally-java.util.function.Function- . Meaning that you can expose another method, which will contain the exception from previous method call. The disadvantage is that you are now making your APIs stateful, which means that you need to handle thread-safety and which will be eventually become a performance hit. Just an option to consider though.
By default, Java 8 Function does not allow to throw exception and as suggested in multiple answers there are many ways to achieve it, one way is:
#FunctionalInterface
public interface FunctionWithException<T, R, E extends Exception> {
R apply(T t) throws E;
}
Define as:
private FunctionWithException<String, Integer, IOException> myMethod = (str) -> {
if ("abc".equals(str)) {
throw new IOException();
}
return 1;
};
And add throws or try/catch the same exception in caller method.
I use an overloaded utility function called unchecked() which handles multiple use-cases.
SOME EAMPLE USAGES
unchecked(() -> new File("hello.txt").createNewFile());
boolean fileWasCreated = unchecked(() -> new File("hello.txt").createNewFile());
myFiles.forEach(unchecked(file -> new File(file.path).createNewFile()));
SUPPORTING UTILITIES
public class UncheckedUtils {
#FunctionalInterface
public interface ThrowingConsumer<T> {
void accept(T t) throws Exception;
}
#FunctionalInterface
public interface ThrowingSupplier<T> {
T get() throws Exception;
}
#FunctionalInterface
public interface ThrowingRunnable {
void run() throws Exception;
}
public static <T> Consumer<T> unchecked(
ThrowingConsumer<T> throwingConsumer
) {
return i -> {
try {
throwingConsumer.accept(i);
} catch (Exception ex) {
throw new RuntimeException(ex);
}
};
}
public static <T> T unchecked(
ThrowingSupplier<T> throwingSupplier
) {
try {
return throwingSupplier.get();
} catch (Exception ex) {
throw new RuntimeException(ex);
}
}
public static void unchecked(
ThrowingRunnable throwing
) {
try {
throwing.run();
} catch (Exception ex) {
throw new RuntimeException(ex);
}
}
}
You can use ET for this. ET is a small Java 8 library for exception conversion/translation.
With ET it looks like this:
// Do this once
ExceptionTranslator et = ET.newConfiguration().done();
...
// if your method returns something
Function<String, Integer> f = (t) -> et.withReturningTranslation(() -> myMethod(t));
// if your method returns nothing
Consumer<String> c = (t) -> et.withTranslation(() -> myMethod(t));
ExceptionTranslator instances are thread safe an can be shared by multiple components. You can configure more specific exception conversion rules (e.g. FooCheckedException -> BarRuntimeException) if you like.
If no other rules are available, checked exceptions are automatically converted to RuntimeException.
(Disclaimer: I am the author of ET)
If you don't mind using a third party library, with cyclops-react, a library I contribute to, you can use the FluentFunctions API to write
Function<String, Integer> standardFn = FluentFunctions.ofChecked(this::myMethod);
ofChecked takes a jOOλ CheckedFunction and returns the reference softened back to a standard (unchecked) JDK java.util.function.Function.
Alternatively you can keep working with the captured function via the FluentFunctions api!
For example to execute your method, retrying it up to 5 times and logging it's status you can write
FluentFunctions.ofChecked(this::myMethod)
.log(s->log.debug(s),e->log.error(e,e.getMessage())
.try(5,1000)
.apply("my param");
What I'm doing is to allow the user to give the value he actually want in case of exception .
So I've something looking like this
public static <T, R> Function<? super T, ? extends R> defaultIfThrows(FunctionThatThrows<? super T, ? extends R> delegate, R defaultValue) {
return x -> {
try {
return delegate.apply(x);
} catch (Throwable throwable) {
return defaultValue;
}
};
}
#FunctionalInterface
public interface FunctionThatThrows<T, R> {
R apply(T t) throws Throwable;
}
And this can then be call like :
defaultIfThrows(child -> child.getID(), null)
Use Jool Library or say jOOλ library from JOOQ. It not only provides unchecked exception handled interfaces but also provides Seq class with lots of useful methods.
Also, it contains Functional Interfaces with up to 16 parameters. Also, it provides Tuple class which is used in different scenarios.
Jool Git Link
Specifically in library lookup for org.jooq.lambda.fi.util.function package. It contains all the Interfaces from Java-8 with Checked prepended. See below for reference:-
If you have lombok, you can annotate your method with #SneakyThrows
SneakyThrow does not silently swallow, wrap into RuntimeException, or otherwise modify any exceptions of the listed checked exception types. The JVM does not check for the consistency of the checked exception system; javac does, and this annotation lets you opt out of its mechanism.
https://projectlombok.org/features/SneakyThrows
Several of the offered solutions use a generic argument of E to pass in the type of the exception which gets thrown.
Take that one step further, and rather than passing in the type of the exception, pass in a Consumer of the type of exception, as in...
Consumer<E extends Exception>
You might create several re-usable variations of Consumer<Exception> which would cover the common exception handling needs of your application.
I will do something generic:
public interface Lambda {
#FunctionalInterface
public interface CheckedFunction<T> {
T get() throws Exception;
}
public static <T> T handle(CheckedFunction<T> supplier) {
try {
return supplier.get();
} catch (Exception exception) {
throw new RuntimeException(exception);
}
}
}
usage:
Lambda.handle(() -> method());
I'm the author of a tiny lib with some generic magic to throw any Java Exception anywhere without the need of catching them nor wrapping them into RuntimeException.
Usage:
unchecked(() -> methodThrowingCheckedException())
public class UncheckedExceptions {
/**
* throws {#code exception} as unchecked exception, without wrapping exception.
*
* #return will never return anything, return type is set to {#code exception} only to be able to write <code>throw unchecked(exception)</code>
* #throws T {#code exception} as unchecked exception
*/
#SuppressWarnings("unchecked")
public static <T extends Throwable> T unchecked(Exception exception) throws T {
throw (T) exception;
}
#FunctionalInterface
public interface UncheckedFunction<R> {
R call() throws Exception;
}
/**
* Executes given function,
* catches and rethrows checked exceptions as unchecked exceptions, without wrapping exception.
*
* #return result of function
* #see #unchecked(Exception)
*/
public static <R> R unchecked(UncheckedFunction<R> function) {
try {
return function.call();
} catch (Exception e) {
throw unchecked(e);
}
}
#FunctionalInterface
public interface UncheckedMethod {
void call() throws Exception;
}
/**
* Executes given method,
* catches and rethrows checked exceptions as unchecked exceptions, without wrapping exception.
*
* #see #unchecked(Exception)
*/
public static void unchecked(UncheckedMethod method) {
try {
method.call();
} catch (Exception e) {
throw unchecked(e);
}
}
}
source: https://github.com/qoomon/unchecked-exceptions-java
For me the preferred solution is to use Lombok. It is a nice library anyway.
Instead of:
Integer myMethod(String s) throws IOException
you will have
import lombok.SneakyThrows;
#SneakyThrows
Integer myMethod(String s)
The exception is still thrown but you do not need to declare it with throws.
public void frankTest() {
int pageId= -1;
List<Book> users= null;
try {
//Does Not Compile: Object page=DatabaseConnection.getSpringConnection().queryForObject("SELECT * FROM bookmark_page", (rw, n) -> new Portal(rw.getInt("id"), "", users.parallelStream().filter(uu -> uu.getVbid() == rw.getString("user_id")).findFirst().get(), rw.getString("name")));
//Compiles:
Object page= DatabaseConnection.getSpringConnection().queryForObject("SELECT * FROM bookmark_page", (rw, n) -> {
try {
final Book bk= users.stream().filter(bp -> {
String name= null;
try {
name = rw.getString("name");
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return bp.getTitle().equals(name);
}).limit(1).collect(Collectors.toList()).get(0);
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return new Portal(rw.getInt("id"), "", users.get(0), rw.getString("name"));
} );
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}

How do streams stop?

I was wondering when I created my own infinite stream with Stream.generate how the Streams which are in the standard library stop...
For example when you have a list with records:
List<Record> records = getListWithRecords();
records.stream().forEach(/* do something */);
The stream won't be infinite and running forever, but it will stop when all items in the list are traversed. But how does that work? The same functionality applies for the stream created by Files.lines(path) (source: http://www.mkyong.com/java8/java-8-stream-read-a-file-line-by-line/).
And a second question, how can a stream created with Stream.generate be stopped in the same manner then?
Finite streams simply aren’t created via Stream.generate.
The standard way of implementing a stream, is to implement a Spliterator, sometimes using the Iterator detour. In either case, the implementation has a way to report an end, e.g. when Spliterator.tryAdvance returns false or its forEachRemaining method just returns, or in case of an Iterator source, when hasNext() returns false.
A Spliterator may even report the expected number of elements before the processing begins.
Streams, created via one of the factory methods inside the Stream interface, like Stream.generate may be implemented either, by a Spliterator as well or using internal features of the stream implementation, but regardless of how they are implemented, you don’t get hands on this implementation to change their behavior, so the only way to make such a stream finite, is to chain a limit operation to the stream.
If you want to create a non-empty finite stream that is not backed by an array or collection and none of the existing stream sources fits, you have to implement your own Spliterator and create a stream out of it. As told above, you can use an existing method to create a Spliterator out of an Iterator, but you should resists the temptation to use an Iterator just because it’s familiar. A Spliterator is not hard to implement:
/** like {#code Stream.generate}, but with an intrinsic limit */
static <T> Stream<T> generate(Supplier<T> s, long count) {
return StreamSupport.stream(
new Spliterators.AbstractSpliterator<T>(count, Spliterator.SIZED) {
long remaining=count;
public boolean tryAdvance(Consumer<? super T> action) {
if(remaining<=0) return false;
remaining--;
action.accept(s.get());
return true;
}
}, false);
}
From this starting point, you can add overrides for the default methods of the Spliterator interface, weighting development expense and potential performance improvements, e.g.
static <T> Stream<T> generate(Supplier<T> s, long count) {
return StreamSupport.stream(
new Spliterators.AbstractSpliterator<T>(count, Spliterator.SIZED) {
long remaining=count;
public boolean tryAdvance(Consumer<? super T> action) {
if(remaining<=0) return false;
remaining--;
action.accept(s.get());
return true;
}
/** May improve the performance of most non-short-circuiting operations */
#Override
public void forEachRemaining(Consumer<? super T> action) {
long toGo=remaining;
remaining=0;
for(; toGo>0; toGo--) action.accept(s.get());
}
}, false);
}
I have created a generic workaround for this
public class GuardedSpliterator<T> implements Spliterator<T> {
final Supplier<? extends T> generator;
final Predicate<T> termination;
final boolean inclusive;
public GuardedSpliterator(Supplier<? extends T> generator, Predicate<T> termination, boolean inclusive) {
this.generator = generator;
this.termination = termination;
this.inclusive = inclusive;
}
#Override
public boolean tryAdvance(Consumer<? super T> action) {
T next = generator.get();
boolean end = termination.test(next);
if (inclusive || !end) {
action.accept(next);
}
return !end;
}
#Override
public Spliterator<T> trySplit() {
throw new UnsupportedOperationException("Not supported yet.");
}
#Override
public long estimateSize() {
throw new UnsupportedOperationException("Not supported yet.");
}
#Override
public int characteristics() {
return Spliterator.ORDERED;
}
}
Usage is pretty easy:
GuardedSpliterator<Integer> source = new GuardedSpliterator<>(
() -> rnd.nextInt(),
(i) -> i > 10,
true
);
Stream<Integer> ints = StreamSupport.stream(source, false);
ints.forEach(i -> System.out.println(i));

Resources