I need to implement a non-recursive function to determine if a binary tree is balanced or not.
Anyone?
Thanks!!!
Assuming that by "balanced", you mean "height-balanced" in the AVL-tree sense, and you can store arbitrary information for each node,
For each node in post-order,
if either child doesn't exist, assume its respective height is 0.
if the height of both children differs by more than one, the tree is not balanced.
otherwise, this node's height is the larger of both children's heights.
If this point is reached, the tree is balanced.
One way to perform post-order traversal:
start at the root
loop
if this node's left child exists and does not have its height computed, visit its left child next.
else if this node's right child exists and does not have its height computed, visit its right child next.
else
compute this node's height, possibly returning early
if this node is not the root, visit its parent next.
If this point is reached, the tree is balanced.
Try this,
public class BalancedBinaryTree {
public static class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
public boolean isBalanced(TreeNode root) {
if (root==null) {
return true;
}
Stack<TreeNode> stack = new Stack<>();
Map<TreeNode, Integer> map = new HashMap<>();
stack.push(root);
while(!stack.isEmpty()) {
TreeNode node = stack.pop();
if ((node.left==null || (node.left!=null && map.containsKey(node.left))) && (node.right==null || (node.right!=null && map.containsKey(node.right)))) {
int right = (node.right==null) ? 0 : map.get(node.right);
int left = (node.left==null) ? 0 : map.get(node.left);
if (Math.abs(right-left)>1) {
return false;
} else {
map.put(node, Math.max(right, left)+1);
}
} else {
if (node.left!=null && !map.containsKey(node.left)) {
stack.push(node);
stack.push(node.left);
} else {
stack.push(node);
stack.push(node.right);
}
}
}
return true;
}
public static void main(String[] args) {
BalancedBinaryTree b = new BalancedBinaryTree();
boolean v = b.isBalanced(new TreeNode(3, new TreeNode(9), new TreeNode(20, new TreeNode(15), new TreeNode(7))));
System.out.println(v);
v = b.isBalanced(new TreeNode(1, new TreeNode(2, new TreeNode(3, new TreeNode(4), new TreeNode(4)), new TreeNode(3)), new TreeNode(2)));
System.out.println(v);
v = b.isBalanced(new TreeNode(1, new TreeNode(2, new TreeNode(4, new TreeNode(8), null), new TreeNode(5)), new TreeNode(3, new TreeNode(6), null)));
System.out.println(v);
}
}
Here is a c++ code that works, inspired by the postorder traversal. The code is not commented because i do not think a simple comment is enough to explain the whole algorithm. You can execute this code manually with the example below and then you will understand everything.
bool IsBalance(const Node *head)
{
std::stack<const Node *> s;
std::stack<int> sV;
const Node *curr = head, *lastVisit = nullptr;
int deep = 0;
while (curr || !s.empty())
{
while (curr)
{
s.push(curr);
sV.push(-1);
curr = curr->m_pLeft;
}
curr = s.top();
if (sV.top() == -1)
{
sV.top() = deep;
}
if (!curr->m_pRight || curr->m_pRight == lastVisit)
{
if (!curr->m_pRight)
{
deep = 0;
}
if (std::abs(sV.top() - deep) > 1)
{
return false;
}
deep = std::max(sV.top(), deep) + 1;
lastVisit = curr;
s.pop();
sV.pop();
curr = nullptr;
}
else
{
deep = 0;
curr = curr->m_pRight;
}
}
return true;
}
examples:
(1) 21,10,3,1,#,#,5,#,6,#,#,15,12,#,#,18,16,#,#,20,#,#,35,30,22,#,#,#,40,36,#,#,42,#,45,#,#
(2) 1,2,#,4,#,5,#,#,3,6,8,#,#,#,7,#,#
(3) 3,1,#,2,#,#,#
Where nodes are arranged by PreOrder, separated by commas, and # indicates an empty node.
Find the height of left subtree and right subtree for a node of the tree, using Level order traversal and check if that node is balanced.
Repeat this for every node of the tree. For traversing all the nodes we can use level order traversal to avoid recursion.
int height(TreeNode* root){
if(!root){
return 0;
}
queue<TreeNode*> q;
q.push(root);
int count=0;
while(!q.empty()){
int size=q.size();
for(int i=0;i<size;++i){
TreeNode* temp=q.front();
q.pop();
if(temp->left){
q.push(temp->left);
}
if(temp->right){
q.push(temp->right);
}
}
count++;
}
return count;
}
bool checkEveryNode(TreeNode* root){
if(!root){
return true;
}
queue<TreeNode*> q;
q.push(root);
while(!q.empty()){
int count=q.size();
for(int i=0;i<count;++i){
TreeNode* temp=q.front();
q.pop();
int left=height(temp->left);
int right=height(temp->right);
if(abs(left-right)>1){
return false;
}
if(temp->left){
q.push(temp->left);
}
if(temp->right){
q.push(temp->right);
}
}
}
return true;
}
bool isBalanced(TreeNode* root) {
return checkEveryNode(root);
}
Time complexity of this approach is O(n^2), as we need to traverse all the descendant nodes for finding the height of a node(N) and we need to do this for all the nodes(N)
This is a programming question asked during a written test for an interview.
"You have two singly linked lists that are already sorted, you have to merge them and return a the head of the new list without creating any new extra nodes. The returned list should be sorted as well"
The method signature is:
Node MergeLists(Node list1, Node list2);
Node class is below:
class Node{
int data;
Node next;
}
I tried many solutions but not creating an extra node screws things. Please help.
Here is the accompanying blog entry http://techieme.in/merging-two-sorted-singly-linked-list/
Node MergeLists(Node list1, Node list2) {
if (list1 == null) return list2;
if (list2 == null) return list1;
if (list1.data < list2.data) {
list1.next = MergeLists(list1.next, list2);
return list1;
} else {
list2.next = MergeLists(list2.next, list1);
return list2;
}
}
Recursion should not be needed to avoid allocating a new node:
Node MergeLists(Node list1, Node list2) {
if (list1 == null) return list2;
if (list2 == null) return list1;
Node head;
if (list1.data < list2.data) {
head = list1;
} else {
head = list2;
list2 = list1;
list1 = head;
}
while(list1.next != null) {
if (list1.next.data > list2.data) {
Node tmp = list1.next;
list1.next = list2;
list2 = tmp;
}
list1 = list1.next;
}
list1.next = list2;
return head;
}
Node MergeLists(Node node1, Node node2)
{
if(node1 == null)
return node2;
else (node2 == null)
return node1;
Node head;
if(node1.data < node2.data)
{
head = node1;
node1 = node1.next;
else
{
head = node2;
node2 = node2.next;
}
Node current = head;
while((node1 != null) ||( node2 != null))
{
if (node1 == null) {
current.next = node2;
return head;
}
else if (node2 == null) {
current.next = node1;
return head;
}
if (node1.data < node2.data)
{
current.next = node1;
current = current.next;
node1 = node1.next;
}
else
{
current.next = node2;
current = current.next;
node2 = node2.next;
}
}
current.next = NULL // needed to complete the tail of the merged list
return head;
}
Look ma, no recursion!
struct llist * llist_merge(struct llist *one, struct llist *two, int (*cmp)(struct llist *l, struct llist *r) )
{
struct llist *result, **tail;
for (result=NULL, tail = &result; one && two; tail = &(*tail)->next ) {
if (cmp(one,two) <=0) { *tail = one; one=one->next; }
else { *tail = two; two=two->next; }
}
*tail = one ? one: two;
return result;
}
Here is the algorithm on how to merge two sorted linked lists A and B:
while A not empty or B not empty:
if first element of A < first element of B:
remove first element from A
insert element into C
end if
else:
remove first element from B
insert element into C
end while
Here C will be the output list.
Iteration can be done as below. Complexity = O(n)
public static LLNode mergeSortedListIteration(LLNode nodeA, LLNode nodeB) {
LLNode mergedNode ;
LLNode tempNode ;
if (nodeA == null) {
return nodeB;
}
if (nodeB == null) {
return nodeA;
}
if ( nodeA.getData() < nodeB.getData())
{
mergedNode = nodeA;
nodeA = nodeA.getNext();
}
else
{
mergedNode = nodeB;
nodeB = nodeB.getNext();
}
tempNode = mergedNode;
while (nodeA != null && nodeB != null)
{
if ( nodeA.getData() < nodeB.getData())
{
mergedNode.setNext(nodeA);
nodeA = nodeA.getNext();
}
else
{
mergedNode.setNext(nodeB);
nodeB = nodeB.getNext();
}
mergedNode = mergedNode.getNext();
}
if (nodeA != null)
{
mergedNode.setNext(nodeA);
}
if (nodeB != null)
{
mergedNode.setNext(nodeB);
}
return tempNode;
}
Node mergeList(Node h1, Node h2) {
if (h1 == null) return h2;
if (h2 == null) return h1;
Node head;
if (h1.data < h2.data) {
head = h1;
} else {
head = h2;
h2 = h1;
h1 = head;
}
while (h1.next != null && h2 != null) {
if (h1.next.data < h2.data) {
h1 = h1.next;
} else {
Node afterh2 = h2.next;
Node afterh1 = h1.next;
h1.next = h2;
h2.next = afterh1;
if (h2.next != null) {
h2 = afterh2;
}
}
}
return head;
}
This could be done without creating the extra node, with just an another Node reference passing to the parameters (Node temp).
private static Node mergeTwoLists(Node nodeList1, Node nodeList2, Node temp) {
if(nodeList1 == null) return nodeList2;
if(nodeList2 == null) return nodeList1;
if(nodeList1.data <= nodeList2.data){
temp = nodeList1;
temp.next = mergeTwoLists(nodeList1.next, nodeList2, temp);
}
else{
temp = nodeList2;
temp.next = mergeTwoLists(nodeList1, nodeList2.next, temp);
}
return temp;
}
I would like to share how i thought the solution... i saw the solution that involves recursion and they are pretty amazing, is the outcome of well functional and modular thinking. I really appreciate the sharing.
I would like to add that recursion won't work for big lits, the stack calls will overflow; so i decided to try the iterative approach... and this is what i get.
The code is pretty self explanatory, i added some inline comments to try to assure this.
If you don't get it, please notify me and i will improve the readability (perhaps i am having a misleading interpretation of my own code).
import java.util.Random;
public class Solution {
public static class Node<T extends Comparable<? super T>> implements Comparable<Node<T>> {
T data;
Node next;
#Override
public int compareTo(Node<T> otherNode) {
return data.compareTo(otherNode.data);
}
#Override
public String toString() {
return ((data != null) ? data.toString() + ((next != null) ? "," + next.toString() : "") : "null");
}
}
public static Node merge(Node firstLeft, Node firstRight) {
combine(firstLeft, firstRight);
return Comparision.perform(firstLeft, firstRight).min;
}
private static void combine(Node leftNode, Node rightNode) {
while (leftNode != null && rightNode != null) {
// get comparision data about "current pair of nodes being analized".
Comparision comparision = Comparision.perform(leftNode, rightNode);
// stores references to the next nodes
Node nextLeft = leftNode.next;
Node nextRight = rightNode.next;
// set the "next node" of the "minor node" between the "current pair of nodes being analized"...
// ...to be equals the minor node between the "major node" and "the next one of the minor node" of the former comparision.
comparision.min.next = Comparision.perform(comparision.max, comparision.min.next).min;
if (comparision.min == leftNode) {
leftNode = nextLeft;
} else {
rightNode = nextRight;
}
}
}
/** Stores references to two nodes viewed as one minimum and one maximum. The static factory method populates properly the instance being build */
private static class Comparision {
private final Node min;
private final Node max;
private Comparision(Node min, Node max) {
this.min = min;
this.max = max;
}
private static Comparision perform(Node a, Node b) {
Node min, max;
if (a != null && b != null) {
int comparision = a.compareTo(b);
if (comparision <= 0) {
min = a;
max = b;
} else {
min = b;
max = a;
}
} else {
max = null;
min = (a != null) ? a : b;
}
return new Comparision(min, max);
}
}
// Test example....
public static void main(String args[]) {
Node firstLeft = buildList(20);
Node firstRight = buildList(40);
Node firstBoth = merge(firstLeft, firstRight);
System.out.println(firstBoth);
}
// someone need to write something like this i guess...
public static Node buildList(int size) {
Random r = new Random();
Node<Integer> first = new Node<>();
first.data = 0;
first.next = null;
Node<Integer> current = first;
Integer last = first.data;
for (int i = 1; i < size; i++) {
Node<Integer> node = new Node<>();
node.data = last + r.nextInt(5);
last = node.data;
node.next = null;
current.next = node;
current = node;
}
return first;
}
}
A simple iterative solution.
Node* MergeLists(Node* A, Node* B)
{
//handling the corner cases
//if both lists are empty
if(!A && !B)
{
cout << "List is empty" << endl;
return 0;
}
//either of list is empty
else if(!A) return B;
else if(!B) return A;
else
{
Node* head = NULL;//this will be the head of the newList
Node* previous = NULL;//this will act as the
/* In this algorithm we will keep the
previous pointer that will point to the last node of the output list.
And, as given we have A & B as pointer to the given lists.
The algorithm will keep on going untill either one of the list become empty.
Inside of the while loop, it will divide the algorithm in two parts:
- First, if the head of the output list is not obtained yet
- Second, if head is already there then we will just compare the values and keep appending to the 'previous' pointer.
When one of the list become empty we will append the other 'left over' list to the output list.
*/
while(A && B)
{
if(!head)
{
if(A->data <= B->data)
{
head = A;//setting head of the output list to A
previous = A; //initializing previous
A = A->next;
}
else
{
head = B;//setting head of the output list to B
previous = B;//initializing previous
B = B->next;
}
}
else//when head is already set
{
if(A->data <= B->data)
{
if(previous->next != A)
previous->next = A;
A = A->next;//Moved A forward but keeping B at the same position
}
else
{
if(previous->next != B)
previous->next = B;
B = B->next; //Moved B forward but keeping A at the same position
}
previous = previous->next;//Moving the Output list pointer forward
}
}
//at the end either one of the list would finish
//and we have to append the other list to the output list
if(!A)
previous->next = B;
if(!B)
previous->next = A;
return head; //returning the head of the output list
}
}
I show below an iterative solution. A recursive solution would be more compact, but since we don't know the length of the lists, recursion runs the risk of stack overflow.
The basic idea is similar to the merge step in merge sort; we keep a pointer corresponding to each input list; at each iteration, we advance the pointer corresponding to the smaller element. However, there's one crucial difference where most people get tripped. In merge sort, since we use a result array, the next position to insert is always the index of the result array. For a linked list, we need to keep a pointer to the last element of the sorted list. The pointer may jump around from one input list to another depending on which one has the smaller element for the current iteration.
With that, the following code should be self-explanatory.
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
if (l1 == null) {
return l2;
}
if (l2 == null) {
return l1;
}
ListNode first = l1;
ListNode second = l2;
ListNode head = null;
ListNode last = null;
while (first != null && second != null) {
if (first.val < second.val) {
if (last != null) {
last.next = first;
}
last = first;
first = first.next;
} else {
if (last != null) {
last.next = second;
}
last = second;
second = second.next;
}
if (head == null) {
head = last;
}
}
if (first == null) {
last.next = second;
}
if (second == null) {
last.next = first;
}
return head;
}
Simple code in javascript to merge two linked list inplace.
function mergeLists(l1, l2) {
let head = new ListNode(0); //dummy
let curr = head;
while(l1 && l2) {
if(l2.val >= l1.val) {
curr.next = l1;
l1 = l1.next;
} else {
curr.next = l2;
l2=l2.next
}
curr = curr.next;
}
if(!l1){
curr.next=l2;
}
if(!l2){
curr.next=l1;
}
return head.next;
}
First of all understand the mean of "without creating any new extra nodes", As I understand it does not mean that I can not have pointer(s) which points to an existing node(s).
You can not achieve it without talking pointers to existing nodes, even if you use recursion to achieve the same, system will create pointers for you as call stacks. It is just like telling system to add pointers which you have avoided in your code.
Simple function to achieve the same with taking extra pointers:
typedef struct _LLNode{
int value;
struct _LLNode* next;
}LLNode;
LLNode* CombineSortedLists(LLNode* a,LLNode* b){
if(NULL == a){
return b;
}
if(NULL == b){
return a;
}
LLNode* root = NULL;
if(a->value < b->value){
root = a;
a = a->next;
}
else{
root = b;
b = b->next;
}
LLNode* curr = root;
while(1){
if(a->value < b->value){
curr->next = a;
curr = a;
a=a->next;
if(NULL == a){
curr->next = b;
break;
}
}
else{
curr->next = b;
curr = b;
b=b->next;
if(NULL == b){
curr->next = a;
break;
}
}
}
return root;
}
Node * merge_sort(Node *a, Node *b){
Node *result = NULL;
if(a == NULL)
return b;
else if(b == NULL)
return a;
/* For the first node, we would set the result to either a or b */
if(a->data <= b->data){
result = a;
/* Result's next will point to smaller one in lists
starting at a->next and b */
result->next = merge_sort(a->next,b);
}
else {
result = b;
/*Result's next will point to smaller one in lists
starting at a and b->next */
result->next = merge_sort(a,b->next);
}
return result;
}
Please refer to my blog post for http://www.algorithmsandme.com/2013/10/linked-list-merge-two-sorted-linked.html
Node MergeLists(Node list1, Node list2) {
//if list is null return other list
if(list1 == null)
{
return list2;
}
else if(list2 == null)
{
return list1;
}
else
{
Node head;
//Take head pointer to the node which has smaller first data node
if(list1.data < list2.data)
{
head = list1;
list1 = list1.next;
}
else
{
head = list2;
list2 = list2.next;
}
Node current = head;
//loop till both list are not pointing to null
while(list1 != null || list2 != null)
{
//if list1 is null, point rest of list2 by current pointer
if(list1 == null){
current.next = list2;
return head;
}
//if list2 is null, point rest of list1 by current pointer
else if(list2 == null){
current.next = list1;
return head;
}
//compare if list1 node data is smaller than list2 node data, list1 node will be
//pointed by current pointer
else if(list1.data < list2.data)
{
current.next = list1;
current = current.next;
list1 = list1.next;
}
else
{
current.next = list2;
current = current.next;
list2 = list2.next;
}
}
return head;
}
}
Here is a complete working example that uses the linked list implemented java.util. You can just copy paste the code below inside a main() method.
LinkedList<Integer> dList1 = new LinkedList<Integer>();
LinkedList<Integer> dList2 = new LinkedList<Integer>();
LinkedList<Integer> dListMerged = new LinkedList<Integer>();
dList1.addLast(1);
dList1.addLast(8);
dList1.addLast(12);
dList1.addLast(15);
dList1.addLast(85);
dList2.addLast(2);
dList2.addLast(3);
dList2.addLast(12);
dList2.addLast(24);
dList2.addLast(85);
dList2.addLast(185);
int i = 0;
int y = 0;
int dList1Size = dList1.size();
int dList2Size = dList2.size();
int list1Item = dList1.get(i);
int list2Item = dList2.get(y);
while (i < dList1Size || y < dList2Size) {
if (i < dList1Size) {
if (list1Item <= list2Item || y >= dList2Size) {
dListMerged.addLast(list1Item);
i++;
if (i < dList1Size) {
list1Item = dList1.get(i);
}
}
}
if (y < dList2Size) {
if (list2Item <= list1Item || i >= dList1Size) {
dListMerged.addLast(list2Item);
y++;
if (y < dList2Size) {
list2Item = dList2.get(y);
}
}
}
}
for(int x:dListMerged)
{
System.out.println(x);
}
Recursive way(variant of Stefan answer)
MergeList(Node nodeA, Node nodeB ){
if(nodeA==null){return nodeB};
if(nodeB==null){return nodeA};
if(nodeB.data<nodeA.data){
Node returnNode = MergeNode(nodeA,nodeB.next);
nodeB.next = returnNode;
retturn nodeB;
}else{
Node returnNode = MergeNode(nodeA.next,nodeB);
nodeA.next=returnNode;
return nodeA;
}
Consider below linked list to visualize this
2>4 list A
1>3 list B
Almost same answer(non recursive) as Stefan but with little more comments/meaningful variable name. Also covered double linked list in comments if someone is interested
Consider the example
5->10->15>21 // List1
2->3->6->20 //List2
Node MergeLists(List list1, List list2) {
if (list1 == null) return list2;
if (list2 == null) return list1;
if(list1.head.data>list2.head.data){
listB =list2; // loop over this list as its head is smaller
listA =list1;
} else {
listA =list2; // loop over this list
listB =list1;
}
listB.currentNode=listB.head;
listA.currentNode=listA.head;
while(listB.currentNode!=null){
if(listB.currentNode.data<listA.currentNode.data){
Node insertFromNode = listB.currentNode.prev;
Node startingNode = listA.currentNode;
Node temp = inserFromNode.next;
inserFromNode.next = startingNode;
startingNode.next=temp;
startingNode.next.prev= startingNode; // for doubly linked list
startingNode.prev=inserFromNode; // for doubly linked list
listB.currentNode= listB.currentNode.next;
listA.currentNode= listA.currentNode.next;
}
else
{
listB.currentNode= listB.currentNode.next;
}
}
My take on the question is as below:
Pseudocode:
Compare the two heads A and B.
If A <= B, then add A and move the head of A to the next node.
Similarly, if B < A, then add B and move the head of B to the next node B.
If both A and B are NULL then stop and return.
If either of them is NULL, then traverse the non null head till it becomes NULL.
Code:
public Node mergeLists(Node headA, Node headB) {
Node merge = null;
// If we have reached the end, then stop.
while (headA != null || headB != null) {
// if B is null then keep appending A, else check if value of A is lesser or equal than B
if (headB == null || (headA != null && headA.data <= headB.data)) {
// Add the new node, handle addition separately in a new method.
merge = add(merge, headA.data);
// Since A is <= B, Move head of A to next node
headA = headA.next;
// if A is null then keep appending B, else check if value of B is lesser than A
} else if (headA == null || (headB != null && headB.data < headA.data)) {
// Add the new node, handle addition separately in a new method.
merge = add(merge, headB.data);
// Since B is < A, Move head of B to next node
headB = headB.next;
}
}
return merge;
}
public Node add(Node head, int data) {
Node end = new Node(data);
if (head == null) {
return end;
}
Node curr = head;
while (curr.next != null) {
curr = curr.next;
}
curr.next = end;
return head;
}
/* Simple/Elegant Iterative approach in Java*/
private static LinkedList mergeLists(LinkedList list1, LinkedList list2) {
Node head1 = list1.start;
Node head2 = list2.start;
if (list1.size == 0)
return list2;
if (list2.size == 0)
return list1;
LinkedList mergeList = new LinkedList();
while (head1 != null && head2 != null) {
if (head1.getData() < head2.getData()) {
int data = head1.getData();
mergeList.insert(data);
head1 = head1.getNext();
} else {
int data = head2.getData();
mergeList.insert(data);
head2 = head2.getNext();
}
}
while (head1 != null) {
int data = head1.getData();
mergeList.insert(data);
head1 = head1.getNext();
}
while (head2 != null) {
int data = head2.getData();
mergeList.insert(data);
head2 = head2.getNext();
}
return mergeList;
}
/* Build-In singly LinkedList class in Java*/
class LinkedList {
Node start;
int size = 0;
void insert(int data) {
if (start == null)
start = new Node(data);
else {
Node temp = start;
while (temp.getNext() != null) {
temp = temp.getNext();
}
temp.setNext(new Node(data));
}
size++;
}
#Override
public String toString() {
String str = "";
Node temp=start;
while (temp != null) {
str += temp.getData() + "-->";
temp = temp.getNext();
}
return str;
}
}
LLNode *mergeSorted(LLNode *h1, LLNode *h2)
{
LLNode *h3=NULL;
LLNode *h3l;
if(h1==NULL && h2==NULL)
return NULL;
if(h1==NULL)
return h2;
if(h2==NULL)
return h1;
if(h1->data<h2->data)
{
h3=h1;
h1=h1->next;
}
else
{
h3=h2;
h2=h2->next;
}
LLNode *oh=h3;
while(h1!=NULL && h2!=NULL)
{
if(h1->data<h2->data)
{
h3->next=h1;
h3=h3->next;
h1=h1->next;
}
else
{
h3->next=h2;
h3=h3->next;
h2=h2->next;
}
}
if(h1==NULL)
h3->next=h2;
if(h2==NULL)
h3->next=h1;
return oh;
}
// Common code for insert at the end
private void insertEnd(int data) {
Node newNode = new Node(data);
if (head == null) {
newNode.next = head;
head = tail = newNode;
return;
}
Node tempNode = tail;
tempNode.next = newNode;
tail = newNode;
}
private void mergerTwoSortedListInAscOrder(Node tempNode1, Node tempNode2) {
if (tempNode1 == null && tempNode2 == null)
return;
if (tempNode1 == null) {
head3 = tempNode2;
return;
}
if (tempNode2 == null) {
head3 = tempNode1;
return;
}
while (tempNode1 != null && tempNode2 != null) {
if (tempNode1.mData < tempNode2.mData) {
insertEndForHead3(tempNode1.mData);
tempNode1 = tempNode1.next;
} else if (tempNode1.mData > tempNode2.mData) {
insertEndForHead3(tempNode2.mData);
tempNode2 = tempNode2.next;
} else {
insertEndForHead3(tempNode1.mData);
insertEndForHead3(tempNode2.mData);
tempNode1 = tempNode1.next;
tempNode2 = tempNode2.next;
}
}
if (tempNode1 != null) {
while (tempNode1 != null) {
insertEndForHead3(tempNode1.mData);
tempNode1 = tempNode1.next;
}
}
if (tempNode2 != null) {
while (tempNode2 != null) {
insertEndForHead3(tempNode2.mData);
tempNode2 = tempNode2.next;
}
}
}
:)GlbMP
public static Node merge(Node h1, Node h2) {
Node h3 = new Node(0);
Node current = h3;
boolean isH1Left = false;
boolean isH2Left = false;
while (h1 != null || h2 != null) {
if (h1.data <= h2.data) {
current.next = h1;
h1 = h1.next;
} else {
current.next = h2;
h2 = h2.next;
}
current = current.next;
if (h2 == null && h1 != null) {
isH1Left = true;
break;
}
if (h1 == null && h2 != null) {
isH2Left = true;
break;
}
}
if (isH1Left) {
while (h1 != null) {
current.next = h1;
current = current.next;
h1 = h1.next;
}
}
if (isH2Left) {
while (h2 != null) {
current.next = h2;
current = current.next;
h2 = h2.next;
}
}
h3 = h3.next;
return h3;
}
I created only one dummy node at the beginning to save myself many 'if' conditions.
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
ListNode list1Cursor = l1;
ListNode list2Cursor = l2;
ListNode currentNode = new ListNode(-1); // Dummy node
ListNode head = currentNode;
while (list1Cursor != null && list2Cursor != null)
{
if (list1Cursor.val < list2Cursor.val) {
currentNode.next = list1Cursor;
list1Cursor = list1Cursor.next;
currentNode = currentNode.next;
} else {
currentNode.next = list2Cursor;
list2Cursor = list2Cursor.next;
currentNode = currentNode.next;
}
}
// Complete the rest
while (list1Cursor != null) {
currentNode.next = list1Cursor;
currentNode = currentNode.next;
list1Cursor = list1Cursor.next;
}
while (list2Cursor != null) {
currentNode.next = list2Cursor;
currentNode = currentNode.next;
list2Cursor = list2Cursor.next;
}
return head.next;
}
public ListNode MergeTwoLists(ListNode l1, ListNode l2) {//c#
ListNode _destNode=null;//Merged List
ListNode _srcNode=null;
ListNode _resHead=null;
if(l1==null || l2==null){//for scenario l1 null or l2 null or both null
return l1??l2??null;
}
if(l1.val<=l2.val){
_destNode=l1;//finding the dest list
_srcNode=l2;
_resHead=l1;
}
else{
_destNode=l2;
_srcNode=l1;
_resHead=l2;
}
while(_destNode!=null && _srcNode!=null){
if(_destNode.val<=_srcNode.val && (_destNode.next==null ||_destNode.next.val>=_srcNode.val)) {
//appending the values to dest list , if the element from dest list is less than element from _srcNode
var _temp_l2_currentnode=_srcNode;
_srcNode=_srcNode.next;
var _temp_l1_nextnode=_destNode.next;
_destNode.next=_temp_l2_currentnode;
_temp_l2_currentnode.next=_temp_l1_nextnode;
_destNode=_destNode.next;
}
else{
_destNode=_destNode.next;
}
}
return _resHead;
}
private static Node mergeLists(Node L1, Node L2) {
Node P1 = L1.val < L2.val ? L1 : L2;
Node P2 = L1.val < L2.val ? L2 : L1;
Node BigListHead = P1;
Node tempNode = null;
while (P1 != null && P2 != null) {
if (P1.next != null && P1.next.val >P2.val) {
tempNode = P1.next;
P1.next = P2;
P1 = P2;
P2 = tempNode;
} else if(P1.next != null)
P1 = P1.next;
else {
P1.next = P2;
break;
}
}
return BigListHead;
}
void printLL(){
NodeLL cur = head;
if(cur.getNext() == null){
System.out.println("LL is emplty");
}else{
//System.out.println("printing Node");
while(cur.getNext() != null){
cur = cur.getNext();
System.out.print(cur.getData()+ " ");
}
}
System.out.println();
}
void mergeSortedList(NodeLL node1, NodeLL node2){
NodeLL cur1 = node1.getNext();
NodeLL cur2 = node2.getNext();
NodeLL cur = head;
if(cur1 == null){
cur = node2;
}
if(cur2 == null){
cur = node1;
}
while(cur1 != null && cur2 != null){
if(cur1.getData() <= cur2.getData()){
cur.setNext(cur1);
cur1 = cur1.getNext();
}
else{
cur.setNext(cur2);
cur2 = cur2.getNext();
}
cur = cur.getNext();
}
while(cur1 != null){
cur.setNext(cur1);
cur1 = cur1.getNext();
cur = cur.getNext();
}
while(cur2 != null){
cur.setNext(cur2);
cur2 = cur2.getNext();
cur = cur.getNext();
}
printLL();
}
Here is the code on how to merge two sorted linked lists headA and headB:
Node* MergeLists1(Node *headA, Node* headB)
{
Node *p = headA;
Node *q = headB;
Node *result = NULL;
Node *pp = NULL;
Node *qq = NULL;
Node *head = NULL;
int value1 = 0;
int value2 = 0;
if((headA == NULL) && (headB == NULL))
{
return NULL;
}
if(headA==NULL)
{
return headB;
}
else if(headB==NULL)
{
return headA;
}
else
{
while((p != NULL) || (q != NULL))
{
if((p != NULL) && (q != NULL))
{
int value1 = p->data;
int value2 = q->data;
if(value1 <= value2)
{
pp = p->next;
p->next = NULL;
if(result == NULL)
{
head = result = p;
}
else
{
result->next = p;
result = p;
}
p = pp;
}
else
{
qq = q->next;
q->next = NULL;
if(result == NULL)
{
head = result = q;
}
else
{
result->next = q;
result = q;
}
q = qq;
}
}
else
{
if(p != NULL)
{
pp = p->next;
p->next = NULL;
result->next = p;
result = p;
p = pp;
}
if(q != NULL)
{
qq = q->next;
q->next = NULL;
result->next = q;
result = q;
q = qq;
}
}
}
}
return head;
}
I was reading through Introduction to algorithms i came across this problem about In-order Traversal of binary search tree without using a stack or recursion. Hint says to assume that testing of pointers for equality is a legitimate operation.I'm stuck finding the solution to this problem. Please give me some direction. I'm not looking for the code. Just give me the right direction.
Exact duplicate here
No stack nor recursion means you have to use pointers. Not giving you code nor the exact answer, since you asked not to :)
Think about how to explore the tree without using recursion: what would you need to do? What pointer(s) do you need to keep? Can a tree node have a pointer to the parent?
Hope it helps.
We need a Threaded Binary Tree to do in-order Traversal without recursion / stack.
Wiki says 'A binary tree is threaded by making all right child pointers that would normally be null point to the inorder successor of the node, and all left child pointers that would normally be null point to the inorder predecessor of the node'
So you are given a normal Binary Tree , Convert it into a Threaded Binary Tree which can be done using Morris Traversal.
What you are going to do in Morris Traversal is to connect each node with its in-order successor. So while visiting a node ,Search for its in-order predecessor and let it be Pred.
then make Pred->right=Current node and we have to revert back the changes too. You can better refer this http://www.geeksforgeeks.org/archives/6358 for a great explanation.
Hello Parminder i have implemented your question in java.Please check it once
class InorderWithoutRecursion {
public static void morrisTraversal(TreeNode root) {
TreeNode current,pre;
if(root == null)
return;
current = root;
while(current != null){
if(current.left == null){
System.out.println(current.data);
current = current.right;
}
else {
/* Find the inorder predecessor of current */
pre = current.left;
while(pre.right != null && pre.right != current)
pre = pre.right;
/* Make current as right child of its inorder predecessor */
if(pre.right == null){
pre.right = current;
current = current.left;
}
/* Revert the changes made in if part to restore the original
tree i.e., fix the right child of predecssor */
else {
pre.right = null;
System.out.println(current.data);
current = current.right;
}
}
}
}
public static void main(String[] args) {
int[] nodes_flattened = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
TreeNode root = TreeNode.createMinimalBST(nodes_flattened);
morrisTraversal(root);
}
}
For TreeNode class below code will help you..
public class TreeNode {
public int data;
public TreeNode left;
public TreeNode right;
public TreeNode parent;
public TreeNode(int d) {
data = d;
}
public void setLeftChild(TreeNode left) {
this.left = left;
if (left != null) {
left.parent = this;
}
}
public void setRightChild(TreeNode right) {
this.right = right;
if (right != null) {
right.parent = this;
}
}
public void insertInOrder(int d) {
if (d <= data) {
if (left == null) {
setLeftChild(new TreeNode(d));
} else {
left.insertInOrder(d);
}
} else {
if (right == null) {
setRightChild(new TreeNode(d));
} else {
right.insertInOrder(d);
}
}
}
public boolean isBST() {
if (left != null) {
if (data < left.data || !left.isBST()) {
return false;
}
}
if (right != null) {
if (data >= right.data || !right.isBST()) {
return false;
}
}
return true;
}
public int height() {
int leftHeight = left != null ? left.height() : 0;
int rightHeight = right != null ? right.height() : 0;
return 1 + Math.max(leftHeight, rightHeight);
}
public TreeNode find(int d) {
if (d == data) {
return this;
} else if (d <= data) {
return left != null ? left.find(d) : null;
} else if (d > data) {
return right != null ? right.find(d) : null;
}
return null;
}
private static TreeNode createMinimalBST(int arr[], int start, int end){
if (end < start) {
return null;
}
int mid = (start + end) / 2;
TreeNode n = new TreeNode(arr[mid]);
n.setLeftChild(createMinimalBST(arr, start, mid - 1));
n.setRightChild(createMinimalBST(arr, mid + 1, end));
return n;
}
public static TreeNode createMinimalBST(int array[]) {
return createMinimalBST(array, 0, array.length - 1);
}
}