I am trying to run a keras model in Go. First I train the model in python:
import keras as krs
from keras import backend as K
import tensorflow as tf
sess = tf.Session()
K.set_session(sess)
K._LEARNING_PHASE = tf.constant(0)
K.set_learning_phase(0)
m1 = krs.models.Sequential()
m1.Add(krs.layers.Dense(..., name="inputNode"))
...
m1.Add(krs.layers.Dense(..., activation="softmax", name="outputNode"))
m1.compile(...)
m1.fit(...)
Then I understand that it is advised that the model is frozen - to convert placeholder to constants.
saver = tf.train.Saver()
tf.train.write_graph(sess.graph_def, '.', 'my_model.pbtxt')
saver.save(sess, save_path="my_model.ckpt")
from tensorflow.python.tools import freeze_graph
from tensorflow.python.tools import optimize_for_inference_lib
freeze_graph.freeze_graph(input_graph = 'my_model.pbtxt', input_saver = "",
input_binary = False, input_checkpoint = "my_model.ckpt", output_node_names = "outputNode/Softmax",
restore_op_name = "save/restore_all", filename_tensor_name = "save/Const:0",
output_graph = "frozen_my_model.pb", clear_devices = True, initializer_nodes = "")
When trying to use the frozen model in Golang:
model, err := tf.LoadSavedModel("frozen_my_model.pb", []string{"serve"}, nil)
It returns an error that the tag serve is not found SavedModel load for tags { serve }; Status: fail.
My questions are therefore:
How do you freeze a model in python, then load it in Go
I do this to speed up inference in Go - is it correct that freezing
models will improve inference speed?
I have noted that another function exists optimize_for_inference, how would this implemented in the above setting?
You have to "tag" the trained model, using
# Create a builder to export the model
builder = tf.saved_model.builder.SavedModelBuilder("export")
# Tag the model in order to be capable of restoring it specifying the tag set
builder.add_meta_graph_and_variables(sess, ["tag"])
builder.save()
After that, you can load it in Go.
However, a more handy solution is to use tfgo
As you can see in the README, there's the code for both: train in python and inference in Go.
I'll report here for you:
Python: train LeNet on MNIST (example)
import sys
import tensorflow as tf
from dytb.inputs.predefined.MNIST import MNIST
from dytb.models.predefined.LeNetDropout import LeNetDropout
from dytb.train import train
def main():
"""main executes the operations described in the module docstring"""
lenet = LeNetDropout()
mnist = MNIST()
info = train(
model=lenet,
dataset=mnist,
hyperparameters={"epochs": 2},)
checkpoint_path = info["paths"]["best"]
with tf.Session() as sess:
# Define a new model, import the weights from best model trained
# Change the input structure to use a placeholder
images = tf.placeholder(tf.float32, shape=(None, 28, 28, 1), name="input_")
# define in the default graph the model that uses placeholder as input
_ = lenet.get(images, mnist.num_classes)
# The best checkpoint path contains just one checkpoint, thus the last is the best
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint(checkpoint_path))
# Create a builder to export the model
builder = tf.saved_model.builder.SavedModelBuilder("export")
# Tag the model in order to be capable of restoring it specifying the tag set
builder.add_meta_graph_and_variables(sess, ["tag"])
builder.save()
return 0
if __name__ == '__main__':
sys.exit(main())
Go: inference
package main
import (
"fmt"
tg "github.com/galeone/tfgo"
tf "github.com/tensorflow/tensorflow/tensorflow/go"
)
func main() {
model := tg.LoadModel("test_models/export", []string{"tag"}, nil)
fakeInput, _ := tf.NewTensor([1][28][28][1]float32{})
results := model.Exec([]tf.Output{
model.Op("LeNetDropout/softmax_linear/Identity", 0),
}, map[tf.Output]*tf.Tensor{
model.Op("input_", 0): fakeInput,
})
predictions := results[0].Value().([][]float32)
fmt.Println(predictions)
}
Related
I am trying to input a dataset from Kaggle into this notebook from the Tensorflow docs in order to train a CycleGAN model. My current approach is to download the folders into my notebook and loop through the paths of each image and use cv2.imread(path) to add the uint8 image data to a list. But this doesn't work and I know my current approach is wrong because the code provided by google requires a Prefetch dataset.
Here's my current code (excluding the opencv part)
import os
# specify the img directory path
art_path = "/content/abstract-art-gallery/Abstract_gallery/Abstract_gallery/"
land_path = "/content/landscape-pictures/"
def grab_path(folder, i_count=100):
res = []
for file in range(i_count):
if os.listdir(folder)[0].endswith(('.jpg', '.png', 'jpeg')):
img_path = folder + os.listdir(folder)[0]
res.append(img_path)
return res
art_path, land_path = grab_path(art_path), grab_path(land_path)
print(art_path)
print(land_path)
The error in the code comes here:
train_horses = train_horses.cache().map(
preprocess_image_train, num_parallel_calls=AUTOTUNE).shuffle(
BUFFER_SIZE).batch(BATCH_SIZE)
Is there a simpler approach to this problem?
import pathlib
import tensorflow as tf
import numpy as np
#tf.autograph.experimental.do_not_convert
def read_image(path):
image_string = tf.io.read_file(path)
image = DataUtils.decode_image(image_string,(image_size))
return image
AUTO = tf.data.experimental.AUTOTUNE
paths = np.array([x for x in pathlib.Path(IMAGE_PATHS_DIR).rglob('*.jpg')])
dataset = tf.data.Dataset.from_tensor_slices((paths.astype(str)))
dataset = dataset.map(self.read_image)
dataset = dataset.shuffle(2048)
dataset = dataset.prefetch(AUTOTUNE)
I'm a beginner using coral devboard mini.
I want to start a Smart Bird Feeder project.
https://coral.ai/projects/bird-feeder/
I've been trying to execute the code by referring to
I can't run bird_classify.py.
The error is as follows
untimeError: Internal: Unsupported data type in custom op handler: 0Node number 0 (edgetpu-custom-op) failed to prepare.
Originally, the samples in this project seemed to be deprecated, and
The edgetpu requires an old runtimeversion of 13, instead of the current 14.
(tflite is 2.5 ) I have downloaded it directly and re-installed it in
/usr/lib/python3/dist-packagesm
, but I cannot uninstall the new version and cannot match the version.
Is there a better way to do this?
Also, I've decided to give up on running the same environment as the sample, and use the pycoralapi to run the
If there is a good way to rewrite the code to use pycoral, please let me know.
Thanks
#!/usr/bin/python3
"""
Coral Smart Bird Feeder
Uses ClassificationEngine from the EdgeTPU API to analyze animals in
camera frames. Sounds a deterrent if a squirrel is detected.
Users define model, labels file, storage path, deterrent sound, and
optionally can set this to training mode for collecting images for a custom
model.
"""
import argparse
import time
import re
import imp
import logging
import gstreamer
import sys
sys.path.append('/usr/lib/python3/dist-packages/edgetpu')
from edgetpu.classification.engine import ClassificationEngine
from PIL import Image
from playsound import playsound
from pycoral.adapters import classify
from pycoral.adapters import common
from pycoral.utils.dataset import read_label_file
from pycoral.utils.edgetpu import make_interpreter
def save_data(image,results,path,ext='png'):
"""Saves camera frame and model inference results
to user-defined storage directory."""
tag = '%010d' % int(time.monotonic()*1000)
name = '%s/img-%s.%s' %(path,tag,ext)
image.save(name)
print('Frame saved as: %s' %name)
logging.info('Image: %s Results: %s', tag,results)
def load_labels(path):
"""Parses provided label file for use in model inference."""
p = re.compile(r'\s*(\d+)(.+)')
with open(path, 'r', encoding='utf-8') as f:
lines = (p.match(line).groups() for line in f.readlines())
return {int(num): text.strip() for num, text in lines}
def print_results(start_time, last_time, end_time, results):
"""Print results to terminal for debugging."""
inference_rate = ((end_time - start_time) * 1000)
fps = (1.0/(end_time - last_time))
print('\nInference: %.2f ms, FPS: %.2f fps' % (inference_rate, fps))
for label, score in results:
print(' %s, score=%.2f' %(label, score))
def do_training(results,last_results,top_k):
"""Compares current model results to previous results and returns
true if at least one label difference is detected. Used to collect
images for training a custom model."""
new_labels = [label[0] for label in results]
old_labels = [label[0] for label in last_results]
shared_labels = set(new_labels).intersection(old_labels)
if len(shared_labels) < top_k:
print('Difference detected')
return True
def user_selections():
parser = argparse.ArgumentParser()
parser.add_argument('--model', required=True,
help='.tflite model path')
parser.add_argument('--labels', required=True,
help='label file path')
parser.add_argument('--top_k', type=int, default=3,
help='number of classes with highest score to display')
parser.add_argument('--threshold', type=float, default=0.1,
help='class score threshold')
parser.add_argument('--storage', required=True,
help='File path to store images and results')
parser.add_argument('--sound', required=True,
help='File path to deterrent sound')
parser.add_argument('--print', default=False, required=False,
help='Print inference results to terminal')
parser.add_argument('--training', default=False, required=False,
help='Training mode for image collection')
args = parser.parse_args()
return args
def main():
"""Creates camera pipeline, and pushes pipeline through ClassificationEngine
model. Logs results to user-defined storage. Runs either in training mode to
gather images for custom model creation or in deterrent mode that sounds an
'alarm' if a defined label is detected."""
args = user_selections()
print("Loading %s with %s labels."%(args.model, args.labels))
engine = ClassificationEngine(args.model)
labels = load_labels(args.labels)
storage_dir = args.storage
#Initialize logging file
logging.basicConfig(filename='%s/results.log'%storage_dir,
format='%(asctime)s-%(message)s',
level=logging.DEBUG)
last_time = time.monotonic()
last_results = [('label', 0)]
def user_callback(image,svg_canvas):
nonlocal last_time
nonlocal last_results
start_time = time.monotonic()
results = engine.classify_with_image(image, threshold=args.threshold, top_k=args.top_k)
end_time = time.monotonic()
results = [(labels[i], score) for i, score in results]
if args.print:
print_results(start_time,last_time, end_time, results)
if args.training:
if do_training(results,last_results,args.top_k):
save_data(image,results, storage_dir)
else:
#Custom model mode:
#The labels can be modified to detect/deter user-selected items
if results[0][0] !='background':
save_data(image, storage_dir,results)
if 'fox squirrel, eastern fox squirrel, Sciurus niger' in results:
playsound(args.sound)
logging.info('Deterrent sounded')
last_results=results
last_time = end_time
result = gstreamer.run_pipeline(user_callback)
if __name__ == '__main__':
main()
enter code here
I suggest that you follow one of the examples available from the coral examples. There is an example named classify_image.py which uses the edgetpu (tflite) that I found works. After you install the coral examples, you have to drill down through the directory hierarchy. So, in my case, from root it is: /home/pi/ml-projects/coral/pycoral/tensorflow/examples/lite/examples. There are 17 files in that last examples directory. I'm using: numpy 1.19.3, pycoral 2.0.0, scipy 1.7.1, tensorflow 2.4.0, tflite-runtime 2.5.0.post1. I've installed the following edgetpu-runtime: edgetpu_runtime_20201105.zip.
I am trying to deploy model to AKS. I am using AML SDK to register the model in the aml workspace. I am using PipelineModel module to save the model. And I am trying to load the model using PipelineModel.load. My entry script looks like below:
`
import os
import json
import pandas as pd
from azureml.core.model import Model
from pyspark.ml import PipelineModel
from mmlspark import ComputeModelStatistics
def init():
import mmlspark # this is needed to load mmlspark libraries
import logging
# extract and load model
global model, model_path
model_path = Model.get_model_path("{model_name}")
print(model_path)
print(os.stat(model_path))
print(os.path.exists(model_path))
#model_path = os.path.join(os.getenv("AZUREML_MODEL_DIR"), "{model_name}")
logging.basicConfig(level=logging.DEBUG)
#print(model_path)
#with ZipFile(model_path, 'r') as f:
# f.extractall('model')
model = PipelineModel.load(model_path)
#model = PipelineModel.read().load(model_path)
def run(input_json):
try:
output_df = model.transform(pd.read_json(input_json))
evaluator = ComputeModelStatistics().setScoredLabelsCol("prediction").setLabelCol("label").setEvaluationMetric("AUC")
result = evaluator.transform(predictions)
auc = result.select("AUC").collect()[0][0]
result = auc
except Exception as e:
result = str(e)
return json.dumps({{"result": result}})
`
It's giving error like below:
org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: file:/var/azureml-app/azureml-models/lightgbm.model/2/lightgbm.model/metadata\n\tat org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:287)\n\tat org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)\n\tat org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315).
os.path.exists returns true the path fetched from Model.get_model_path.
Am I missing something here?
I am trying to deploy my tensorflow model in a tensorflow serving using tensorflow saved model. Input for my tf model is a string value and i have defined my signature as below
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'input_path': tensor_info_input},
outputs={'output_prediction': tensor_info_output},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict_images':
prediction_signature,
})
My objective is to read a image from the path specified in signature definition. How do i get the input_path from input definition and convert the tensor into actual string value to read the path
I think you need to add some "reading operation" in your model file.
Like this:
def inference(image_path_string):
# read image from a image path string
image_file = tf.read_file(image_path_string)
image_raw = tf.cond(tf.image.is_jpeg(image_file),
lambda: tf.image.decode_jpeg(image_file, channels= 3 if rgb, else 1),
lambda: tf.image.decode_bmp(image_file))
# image preprocessing code
...
...
# your prediction model code
...
...
You can place the below mentioned code in a Python file say, Client.py. And for inference, you can run the below mentioned command in the Terminal
python Client.py --image abc/0.png --model mnist --signature_name predict
This will take the path of the image, "abc/0.png" and will convert it to Numeric Values, and will run the inference.
Code for Client.py is mentioned below. The below code is for MNIST Images. You can reshape your images accordingly:
from __future__ import print_function
import argparse
import time
import numpy as np
from scipy.misc import imread
import grpc
from tensorflow.contrib.util import make_tensor_proto
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
def run(host, port, image, model, signature_name):
channel = grpc.insecure_channel('{host}:{port}'.format(host=host, port=port))
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
# Read an image
data = imread(image)
data = data.astype(np.float32)
print(data)
start = time.time()
# Call classification model to make prediction on the image
request = predict_pb2.PredictRequest()
request.model_spec.name = model
request.model_spec.signature_name = signature_name
request.inputs['image'].CopyFrom(make_tensor_proto(data, shape=[1, 28, 28, 1]))
result = stub.Predict(request, 10.0)
end = time.time()
time_diff = end - start
# Reference:
# How to access nested values
# https://stackoverflow.com/questions/44785847/how-to-retrieve-float-val-from-a-predictresponse-object
print(result)
print('time elapased: {}'.format(time_diff))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--host', help='Tensorflow server host name', default='localhost', type=str)
parser.add_argument('--port', help='Tensorflow server port number', default=8500, type=int)
parser.add_argument('--image', help='input image', type=str)
parser.add_argument('--model', help='model name', type=str)
parser.add_argument('--signature_name', help='Signature name of saved TF model',
default='serving_default', type=str)
args = parser.parse_args()
run(args.host, args.port, args.image, args.model, args.signature_name)
For more information, you can refer this beautiful article on Tensorflow Serving,
https://medium.com/#yuu.ishikawa/serving-pre-modeled-and-custom-tensorflow-estimator-with-tensorflow-serving-12833b4be421
I have retrained an InceptionV3 model on my own data and am trying to modify the code from the Tensorflow image classification tutorial here https://www.tensorflow.org/tutorials/image_recognition.
I attempted reading in the directory as a list and looping over it but this didn't work:
load_graph(FLAGS.graph)
filelist = os.listdir(FLAGS.image)
for i in filelist:
# load image
image_data = load_image(i)
I just get an error saying that FLAGS hasn't been defined, so I guess FLAGS has to go together with the load_image function? This is the original program:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import os
import tensorflow as tf
parser = argparse.ArgumentParser()
parser.add_argument(
'--image', required=True, type=str, help='Absolute path to image file.')
parser.add_argument(
'--num_top_predictions',
type=int,
default=5,
help='Display this many predictions.')
parser.add_argument(
'--graph',
required=True,
type=str,
help='Absolute path to graph file (.pb)')
parser.add_argument(
'--labels',
required=True,
type=str,
help='Absolute path to labels file (.txt)')
parser.add_argument(
'--output_layer',
type=str,
default='final_result:0',
help='Name of the result operation')
parser.add_argument(
'--input_layer',
type=str,
default='DecodeJpeg/contents:0',
help='Name of the input operation')
def load_image(filename):
"""Read in the image_data to be classified."""
return tf.gfile.FastGFile(filename, 'rb').read()
def load_labels(filename):
"""Read in labels, one label per line."""
return [line.rstrip() for line in tf.gfile.GFile(filename)]
def load_graph(filename):
"""Unpersists graph from file as default graph."""
with tf.gfile.FastGFile(filename, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
def run_graph(image_data, labels, input_layer_name, output_layer_name,
num_top_predictions):
with tf.Session() as sess:
# Feed the image_data as input to the graph.
# predictions will contain a two-dimensional array, where one
# dimension represents the input image count, and the other has
# predictions per class
softmax_tensor = sess.graph.get_tensor_by_name(output_layer_name)
predictions, = sess.run(softmax_tensor, {input_layer_name: image_data})
# Sort to show labels in order of confidence
top_k = predictions.argsort()[-num_top_predictions:][::-1]
for node_id in top_k:
human_string = labels[node_id]
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
return 0
def main(argv):
"""Runs inference on an image."""
if argv[1:]:
raise ValueError('Unused Command Line Args: %s' % argv[1:])
if not tf.gfile.Exists(FLAGS.image):
tf.logging.fatal('image file does not exist %s', FLAGS.image)
if not tf.gfile.Exists(FLAGS.labels):
tf.logging.fatal('labels file does not exist %s', FLAGS.labels)
if not tf.gfile.Exists(FLAGS.graph):
tf.logging.fatal('graph file does not exist %s', FLAGS.graph)
# load image
image_data = load_image(FLAGS.image)
# load labels
labels = load_labels(FLAGS.labels)
# load graph, which is stored in the default session
load_graph(FLAGS.graph)
run_graph(image_data, labels, FLAGS.input_layer, FLAGS.output_layer,
FLAGS.num_top_predictions)
if __name__ == '__main__':
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=sys.argv[:1]+unparsed)
Try tf.flags.FLAGS, or at the top, from tf.flags import FLAGS
Try the following,
import os
import tensorflow as tf
# Define this after your imports. This is similar to python argparse except more verbose
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('image', '/Users/photos',
"""
Define your 'image' folder here
or as an argument to your script
for eg, test.py --image /Users/..
""")
# use listdir to list the images in the target folder
filelist = os.listdir(FLAGS.image)
# now iterate over the objects in the list
for i in filelist:
# load image
image_data = load_image(i)
This should work. Hope it helps.
Thanks for the help given, The FLAGS come from the argparser module and not the TensorFlow flags module, and FLAGS may have to be called from within a function. I eventually solved this by making a separate function so I think that's what is happening:
def get_image_list(path):
return glob.glob(path + '*.jpg')
Then further down calling a loop:
filelist = get_image_list(FLAGS.image)
for i in filelist:
image_data = load_image(i)
run_graph(image_data, labels, FLAGS.input_layer, FLAGS.output_layer,
FLAGS.num_top_predictions)