Preprocess conditional arch/make file to get non-conditional file - makefile

I have a conditional makefile (well, actually I am dealing with the arch file that will be called when invoking make) that is quite involved and I would like to preprocess it to get rid of all the 'ifeq', 'ifneq' parts that only worsen the readability, in order to see better what is being actually done. I tried doing
make -n -d
where I get the whole calls to the compiler, but that is also a pain since then I need to separate manually all the flags. I just want to get my nice makefile with my separate FLAGS, DFLAGS, LIBS sentences etc etc.
(My apologies if this has been said anywhere, but I am unable to find it).
Thanks!

Related

Make - Parameter for not recompiling existing .o-Files?

Yes, that is the question, how can I prevent make, or better the compiler, from recompiling already existing libraries (.o-Files)?
I call the makefile simply via make [-parameters], and if possible, I don't like to rewrite the makefile itself (the reason is, I have to work with a lot of them)?
Edit: Whoops, sorry, yes, I meant the object-files.
The problem is, I got a directory with several hundred .mk-Files for several hundred sub-programs/libraries/whatever. I call the mk-files in a loop:
foreach i ('ls *.ml')
make CFLAGS='[some parameters]' -f $i -B
end
Now when I do it like this, everytime a makefile gets called, it recompiles not only the programs, but for each mk-file the needed libraries and objects, which slow down the whole process a lot. So I don't want it to recompile these.
These makefiles were not written by me, and I really don't want to edit several hundreds of them, so I'm asking whether there is a parameter especially prohibiting overwriting.

Can MinGW Make be sped up without disabling implicit rules?

GNU Make under MinGW is known to be very slow under certain conditions due to how it executes implicit rules and how Windows exposes file information (per "MinGW “make” starts very slowly").
That previous question and all other resources on the issue that I've found on the internet suggest working around the problem by disabling implicit rules entirely with the -r flag. But is there another way?
I have a "portable" Makefile that relies on them, and I'd like to make it so that it does not take around a minute to start it up each time, rather than having to get the Makefile owner to alter it just for me.
You should use make -d to see all the things make is doing and try to see where the time is going. One common reason for lengthy make times are match-anything rules which are used to determine whether or not a makefile needs to be rebuilt. Most of the match-anything rules CAN be removed; they're rarely needed anymore.
You can add this to your makefile and see if it helps:
%:: %,v
%:: RCS/%,v
%:: RCS/%
%:: s.%
%:: SCCS/s.%
And, if you don't need to auto-create your makefile you can add:
Makefile: ;
(also put any included makefiles there that you don't need to auto-create).
ETA
It seems your real question can be summed up as, "why does make take so much longer to start on Windows than on Linux, and what can I do to fix that without changing makefiles?"
The answer is, nothing. Make does exactly the same amount of work on both Windows and Linux: there are no extra rules or procedures happening on Windows that could be removed. The problem is that Windows NTFS is slower than typical Linux filesystems for these lookups. I know of no system setting, etc. that will fix this problem. Your only choice is to get make to do less work so that it's faster, and the only way to do that is by removing built-in rules you don't need.
If the problem is you really don't want to edit the actual makefiles, that's simple enough to solve: just write the rules above into a small separate makefile, maybe something like speedup.mk, then set the environment variable MAKEFILES=speedup.mk before invoking make. Make will parse that makefile as well without you having to change any makefiles.

How to deal with a script that outputs multiple files in a Makefile?

So I have a script, myscript.py, that produces a few output files, out/a.pickle, out/b.pickle, and out/c.pickle
And I have a Makefile that has the rule:
out/a.pickle: data/data.csv
myscript.py
Now, If I update the script, firstly, make out/a.pickle says there's nothing to be done here, even though the script has been modified. Isn't make supposed to check to see if things have been updated and then run them? Do I need to add myscript.py as a dependency to out/a.pickle, or something?
Secondly, is there a way to handle the fact that the script has multiple output files? Do I need to create a rule for each?
Make does not examine time stamps on executables. Otherwise, you would have to recompile the universe if gcc or echo or the shell is upgraded, and it's a slippery slope anyway; what if libraries or the kernel also changed in a way which requires you to recompile? You need human intervention at some point anyhow. So the designers of make simply drew the line at explicit dependencies.
(GNU Make has a lot of other built-in implicit dependencies, which are convenient. I vaguely believe that the original make didn't have any built-in dependencies at all. Anybody able to confirm?)
You can declare all the outputs in one rule:
out/a.pickle out/b.pickle out/c.pickle: myscript.py data/data.csv
./$^
(Notice how the script is included in the dependencies now. You might want to change that after the script is considered stable. Then you'll need to change the action as well.)

Is it a best practice to list down all the object files in a C++ makefile and are wildcards acceptable?

I'm a Java developer learning C++. I'm using eclipse as my IDE and MinGW as my toolset. Is it considered a best practice to list down every single object in a makefile? Also, is it just as acceptable to use wildcards to include all the files?
The use of wildcards is common, and accepted, but not really good practice.
If extra source files get into your source directories, they could wind up causing conflicts or -- worse -- riding silently in your libraries as useless baggage (introns?). Also, if a needed source file goes missing, your linker will complain about a missing {function|typename|whatever} and it might not be obvious what file has been lost (not really a problem if you have good source control, but still annoying). Finally, if your build system is expected to produce different targets using different subsets of the source files, wildcards will require you to either divide your source directories Venn-diagram-style, or resort to filename conventions that do the same thing (gah!).
Maintaining explicit lists of object files in a makefile really isn't that hard to do, and it keeps things simple.

Syntax Checking with unsupported languages

I have some files that have a particular syntax that is similar to ada (not identical though), however I would like to verify the syntax before going and running them. There isn't a compiler for these files, so I can't check them before using them. I tried to use the following:
gcc -c -gnats <file>
However this says compilation unit expected. I've tried a few variations on this, but to no avail.
I just want to make sure the file is syntactically correct before using it, but I'm not sure how to do it, and I really don't want to write an entire syntax checker just for this.
Is there some way to include an additional unsupported language to gcc without going through a recompile? Also is this simply a file that details to gcc what the syntax constructs are, or what would be entailed? I don't need a full compile, only a syntax check.
Alternately, are there any syntax checkers I can use that I can update an ada syntax check with the small number of changes required for this language?
I've listed Ada as a tag, since the syntax is nearly identical, and finding something that will do ada syntax checking without compiling will be a 90% solution for me.
You could try running the files through gnatchop first. The GCC Ada compiler is rather unique in that it expects filenames to match up with the main unit names inside the file. That may be what your error message is trying to say.
gnatchop will go through any files you give it and write out Ada source files with the appropriate names to make gcc happy (even splitting files into multiple files if needed).
Another option you might be interested in is OpenToken. It is a parser construction toolkit, written in Ada, that allows you to build your own parsers fairly easily. It comes with a syntax recognizer for Ada, so you may just be able to tweak that a bit for your needs.

Resources