Is it possible to draw moving meshes only in WebGL? - performance

there is a car in my scene. Only the wheels is moving, but I still need to draw the other parts of the car.
I am wondering if there is any way to draw the moving part only so that the performance can be improve hugely.

Related

THREE.js adding bullets as sprites and rotating each individually

I have been working on programming a game where everything is rendered in 3d. Though the bullets are 2d sprites. this poses a problem. I have to rotate the bullet sprite by rotating the material. This turns every bullet possessing that material rather than the individual sprite I want to turn. It is also kind of inefficient to create a new sprite clone for every bullet. is there a better way to do this? Thanks in advance.
Rotate the sprite itself instead of the texture.
edit:
as OP mentioned.. the spritematerial controls the sprites rotation.y, so setting it manually does nothing...
So instead of using the Sprite type, you could use a regular planegeometry mesh with a meshbasic material or similar, and update the matrices yourself to both keep the sprite facing the camera, and rotated toward its trajectory..
Then at least you can share the material amongst all instances.
Then the performance bottleneck becomes the number of drawcalls.. (1 per sprite)..
You can improve on that by using a single BufferGeometry, and computing the 4 screen space vertices for each sprite, each frame. This moves the bottleneck away from drawCalls, and will be limited by the speed at which you can transform vertices in javascript, which is slow but not the end of the world. This is also how many THREE.js particle systems are implemented.
The next step beyond that is to use a custom vertex shader to do the heavy vertex computation.. you still update the buffergeometry each frame, but instead of transforming verts, you're just writing the position of the sprite into each of the 4 verts, and letting the vertex shader take care of figuring out which of the 4 verts it's transforming (possibly based on the UV coordinate, or stored in one of the vertex color channels..., .r for instace) and which sprite to render from your sprite atlas (a single texture/canvas with all your sprites layed out on a grid) encoded in the .g of the vertex color..
The next step beyond that, is to not update the BufferGeometry every frame, but store both position and velocity of the sprite in the vertex data.. and only pass a time offset uniform into the vertex shader.. then the vertex shader can handle integrating the sprite position over a longer time period. This only works for sprites that have deterministic behavior, or behavior that can be derived from a texture data source like a noise texture or warping texture. Things like smoke, explosions, etc.
You can extend these techniques to draw gigantic scrolling tilemaps. I've used these techniques to make multilayer scrolling/zoomable hexmaps that were 2048 hexes square, (which is a pretty huge map)(~4m triangles). with multiple layers of sprites on top of that, at 60hz.
Here the original stemkoski particle system for reference:
http://stemkoski.github.io/Three.js/Particle-Engine.html
and:
https://stemkoski.github.io/Three.js/ParticleSystem-Dynamic.html

Light 2D and Performance issues

I want to make a 2D game that will use 2 kinds of lights (Spotlight and Point Light). I need the game to be completly dark unless there is a light in the area and the light to not pass through walls. I tried lots of stuff and plugins to try and make this possible but nothing worked for me.
So I thought I would try to add 3D walls with an Orthographic camera so that I would have the light stop at the walls and cast shadows and make it look 2D at the same time. (Top-down View)
My questions are:
Is there a better way to do this without needing the 3D stuff?
I believe that I will probably have some performance issues if I keep the 3D stuff. Is there a way to fix that since the final output from the orthographic camera is 2D? Like maybe an option to render it as 2D and not having the game process all those triangles? (I want it as light as possible because I also want to port on phones)

Can points or meshes be drawn at infinite distance?

I'm interested in drawing a stardome in THREE.js using either mesh points or a particle system.
I don't want the camera to be able to move any closer to any part of the stardome, since the stars are effectively at infinite distance.
I can think of a couple of ways to do this:
A very large mesh (or very large point/particle distances)
Camera and stardome have their movement exactly linked.
Is there any way to specify a mesh, point, or particle system is automaticaly rendered at infinite distance so it is always drawn behind any foreground objects?
I haven't used three.js, but my guess is no. OpenGL camera's need a "near clipping plane" and "far clipping plane", which effectively denote the minimum and maximum distance that it'll render things in. If you've played video games where you move too close to a wall and start to see through it, or see things in the distance suddenly vanish as you move away, those were probably the clipping planes at work.
The workaround is usually one of 2 ways:
1) Set the far clipping plane distance as high as it'll let you go. I don't know what data type three.js would use for this, but my guess is a 32-bit float.
2) Render it in "layers". Render all the stars first before anything else in the scene.
Option 2 is the one I usually use.
Even if you used option 1, you would still synchronize the position of the camera and skybox.
If you do not depth cull, draw the skybox first and match its position, but not rotation, to the camera.
Also disable lighting on the skybox. Instead, bake an ambience directly into its texture.
You're don't want things infinitely away, you just want them not to move with respect to the viewer and to not appear in front of things. The best way to do that is to prevent the viewer from getting closer to them which produces the illusion of the object being far away. The second thing is to modify your depth culling function so that the skybox is always considered further away than whatever you are currently drawing.
If you create a very large mesh object, you'll have to set your camera's far plane large enough to include the mesh which means you'll end up drawing things that you really do want to cull.

Implementing terrains in XNA similar to Battle Zone (1980)

I am developing a 3D game for Windows Phone that includes terrains and volcanoes at infinite distance similar to Battle Zone (1980) by Atari Inc. The player can never touch the terrains no matter how far player drives. Currently, to implement this I am mapping a 2D texture inside the wall of cylinder. The cylinder is also moving with the player so that the player can never reach terrains. I am not sure whether this is a good method to implement terrains as I am facing problems like distortion of texture when mapping it on the wall of cylinder.
Please suggest me methods to implement a view of terrains in XNA similar to Battle Zone?
normally instead of cylinder developers use box (so-called SkyBox)
It has less polygons and in general less distortion (could be some at edges)
To make it look more real some devs like Valve use off-screen render in first pass that include skybox + some distant models with low details and moving cloud sprites or textured ring with alpha. Both points of view are synchronised (main camera and off-screen camera) then (without clearing colour buffer) they render final scene on top. Thanks to that far building will move a bit and scene surrounding will look less plain. To avoid z-buffer cleaning between passes they simply doing first pass under the floor(literally) of the scene of main pass.

How to draw 3D background in Games

I am trying to make a 3d car race in iphone using OPENGL ES 1.x.
I do not know how to draw the background sky in my scene. I tried using only planes for background but where should i placed that plane? I mean if i placed that plane outside the whole track then the frustum is not so big to show that planes in the scene.
Any suggestions will be of great help.
You can make a small skysphere or box, as suggested by Davido and turbovonce's link, which is centered around the viwer and fits into the frustum. You draw this first, without writing into the depth buffer. Then you draw the other stuff and as the skybox has not written to depth buffer it is just overwritten, except the parts where no scene objects are rendered, which are exactly the parts of the image where the sky should be visible.
You want a sky dome. Take a look at this website, it contains tons of references that should help you.
http://www.vterrain.org/Atmosphere/
Create a sphere in a 3d modeling app such as Maya or Blender and map a sky texture to the sphere. Export the model then load the model and its texture into the app, place in the scene. You should now have a background sky rendering in your game.

Resources