How does OpenCL distribute work items? - performance

I'm testing and comparing GPU speed up with different numbers of work-items (no work-groups). The kernel I'm using is a very simple but long operation. When I test with multiple work-items, I use a barrier function and split the work in smaller chunks to get the same result as with just one work-item. I measure the kernel execution time using cl_event and the results are the following:
1 work-item: 35735 ms
2 work-items: 11822 ms (3 times faster than with 1 work-item)
10 work-items: 2380 ms (5 times faster than with 2 work-items)
100 work-items: 239 ms (10 times faster than with 10 work-items)
200 work-items: 122 ms (2 times faster than with 100 work-items)
CPU takes about 580 ms on average to do the same operation.
The only result I don't understand and can't explain is the one with 2 work items. I would expect the speed up to be about 2 times faster compared to the result with just one work item, so why is it 3?
I'm trying to make sense of these numbers by looking at how these work-items were distributed on processing elements. I'm assuming if I have just one kernel, only one compute unit (or multiprocessor) will be activated and the work items distributed on all processing elements (or CUDA cores) of that compute unit. What I'm also not sure about is whether a processing element can process multiple work-items at the same time, or is it just one work-item per processing element?
CL_DEVICE_MAX_WORK_ITEM_SIZES are 1024 / 1024 / 64 and CL_DEVICE_MAX_WORK_GROUP_SIZE 1024. Since I'm using just one dimension, does that mean I can have 1024 work-items running at the same time per processing element or per compute unit? When I tried with 1000 work-items, the result was a smaller number so I figured not all of them got executed, but why would that be?
My GPU info: Nvidia GeForce GT 525M, 96 CUDA cores (2 compute units, 48 CUDA cores per unit)

The only result I don't understand and can't explain is the one with 2
work items. I would expect the speed up to be about 2 times faster
compared to the result with just one work item, so why is it 3?
The exact reasons will probably be hard to pin down, but here are a few suggestions:
GPUs aren't optimised at all for small numbers of work items. Benchmarking that end of the scale isn't especially useful.
35 seconds is a very long time for a GPU. Your GPU probably has other things to do, so your work-item is probably being interrupted many times, with its context saved and resumed every time.
It will depend very much on your algorithm. For example, if your kernel uses local memory, or a work-size dependent amount of private memory, it might "spill" to global memory, which will slow things down.
Depending on your kernel's memory access patterns, you might be running into the effects of read/write coalescing. More work items means fewer memory accesses.
What I'm also not sure about is whether a processing element can process multiple work-items at the same time, or is it just one work-item per processing element?
Most GPU hardware supports a form of SMT to hide memory access latency. So a compute core will have up to some fixed number of work items in-flight at a time, and if one of them is blocked waiting for a memory access or barrier, the core will continue executing commands on another work item. Note that the maximum number of simultaneous threads can be further limited if your kernel uses a lot of local memory or private registers, because those are a finite resource shared by all cores in a compute unit.
Work-groups will normally run on only one compute unit at a time, because local memory and barriers don't work across units. So you don't want to make your groups too large.
One final note: compute hardware tends to be grouped in powers of 2, so it's usually a good idea to make your work group sizes a multiple of e.g. 16 or 64. 1000 is neither, which usually means some cores will be doing nothing.
When I tried with 1000 work-items, the result was a smaller number so I figured not all of them got executed, but why would that be?
Please be more precise in this question, it's not clear what you're asking.

Related

How can CPU's have FLOPS much higher than their clock speeds?

For example, a modern i7-8700k can supposedly do ~60 GFLOPS (single-precision, source) while its maximum frequency is 4.7GHz. As far as I am aware, an instruction has to take at least one cycle to complete, so how is this possible?
There are multiple factors that are all multiplied together for this large effect:
SIMD, Intel 8700k and similar processors support AVX and AVX2, which includes many instructions that operate on registers that can hold 8 floats at the same time.
multiple cores, 8700k has 6 cores.
fused multiply-add, part of AVX2, has both a multiplication and addition in the same instruction.
high throughput execution. The latency (time an individual instruction takes) is not directly important to how much computation a processor can do in a unit of time. A modern CPU such as 8700k can start executing two (independent) FMAs in the same cycle (and keep in mind these are still SIMD instructions so that represents a lot of floating point operations) even through the latency of the operation is actually 4 cycles.
Multiplying all those factors together we get: 8 * 6 * 2 * 2 * 4.3 = 825 GFLOPS (matching the stats reported here). This calculation certainly does not mean that it can actually be attained. For example the processor may downclock significantly under such a workload in order to stay within its power budget, which is what Intel has been doing at least since Haswell (though the specifics have changed and it applied to server parts). Also, most real code has significant trouble feeding that many FMAs with data. Large matrix multiplications can get close though, and for example according to these stats the 8700k reached 496.7 Gflops in their SGEMM benchmark. Possibly the 8700k's max AVX2 turbo speed on 6 cores is 2.6GHz but as far as I can find it does not have an AVX offset by default (only needed when overclocked), or that GEMM is just not that close to hitting peak FLOPS.

Calculate CPU cycles and its handling bits per second

I've wondered about the amount of bits that a given CPU can handles and how should I manage to calculate this specific value.
I wanted to make sure that my thought and also my calculation are right.
Given that I have 64 bit CPU which feature 2.3 Ghz. The amount of bits that being handled per second should be the following :
(2.3 * 10^9) * 64
Is it that simple or I need consider any other variables?
Calculating throughput of a CPU is not as simple. Modern CPUs are pipelined and can execute multiple instructions concurrently if there are no data dependencies, yielding instructions per cycle (IPC) > 1. Some instructions may also have a higher latency than one cycle, meaning IPC can be < 1.
For some operations they might be constrained by memory bandwidth.
And then there are SIMD instructions which can process more data per instruction than the width of a single general purpose register.
http://www.agner.org/optimize/instruction_tables.pdf
https://en.wikipedia.org/wiki/Instruction_pipelining

why executation time of tf.nn.conv2d function different while the multiply times are the same?

I am using tensorflow to build cnn net in image classification experiment,I found such phenomenon as:
operation 1:tf.nn.conv2d(x, [3,3,32,32], strides=[1,1,1,1], padding='SAME')
the shape of x is [128,128,32],means convolution using 3x3 kernel on x,both input channels and output channels are 32,the total multiply times is
3*3*32*32*128*128=150994944
operation 2:tf.nn.conv2d(x, [3,3,64,64], strides=[1,1,1,1], padding='SAME')
the shape of x is [64,64,64],means convolution using 3x3 kernel on x,both input channels and output channels are 64,the total multiply times is
3*3*64*64*64*64=150994944
In contrast with operation 1,the feature map size of operation 2 scale down to 1/2 and the channel number doubled. The multiply times are the same so the running time should be same.But in practice the running time of operation 1 is longer than operation 2.
My measure method was shown below
eliminate an convolution of operation 1,the training time for one epoch reduced 23 seconds,means the running time of operation 1 is 23 seconds.
eliminate an convolution of operation 2,the training time for one epoch reduced 13 seconds,means the running time of operation 2 is 13 seconds.
the phenomenon can reproduction every time。
My gpu is nvidia gtx980Ti,os is ubuntu 16.04。
So that comes the question: Why the running time of operation 1 was longer than operation 2?
If I had to guess it has to do with how the image is ordered in memory. Remember that in memory everything is stored in a flattened format. This means that if you have a tensor of shape [128, 128, 32], the 32 features/channels are stored next to eachover. Then all of the rows, then all of the columns. https://en.wikipedia.org/wiki/Row-major_order
Accessing closely packed memory is very important to performance especially on a GPU which has a large memory bus and is optimized for aligned in order memory access. In case with the larger image you have to skip around the image more and the memory access is more out of order. In case 2 you can do more in order memory access which gives you more speed. Multiplications are very fast operations. I bet with a convolution memory access if the bottleneck which limits performance.
chasep255's answer is good and probably correct.
Another possibility (or alternative way of thinking about chasep255's answer) is to consider how caching (all the little hardware tricks that can speed up memory fetches, address mapping, etc) could be producing what you see...
You have basically two things: a stream of X input data and a static filter matrix. In case 1, you have 9*1024 static elements, in case 2 you have 4 times as many. Both cases have the same total multiplication count, but in case 2 the process is finding more of its data where it expects (i.e. where it was last time it was asked for.) Net result: less memory access stalls, more speed.

Python 3 multiprocessing: optimal chunk size

How do I find the optimal chunk size for multiprocessing.Pool instances?
I used this before to create a generator of n sudoku objects:
processes = multiprocessing.cpu_count()
worker_pool = multiprocessing.Pool(processes)
sudokus = worker_pool.imap_unordered(create_sudoku, range(n), n // processes + 1)
To measure the time, I use time.time() before the snippet above, then I initialize the pool as described, then I convert the generator into a list (list(sudokus)) to trigger generating the items (only for time measurement, I know this is nonsense in the final program), then I take the time using time.time() again and output the difference.
I observed that the chunk size of n // processes + 1 results in times of around 0.425 ms per object. But I also observed that the CPU is only fully loaded the first half of the process, in the end the usage goes down to 25% (on an i3 with 2 cores and hyper-threading).
If I use a smaller chunk size of int(l // (processes**2) + 1) instead, I get times of around 0.355 ms instead and the CPU load is much better distributed. It just has some small spikes down to ca. 75%, but stays high for much longer part of the process time before it goes down to 25%.
Is there an even better formula to calculate the chunk size or a otherwise better method to use the CPU most effective? Please help me to improve this multiprocessing pool's effectiveness.
This answer provides a high level overview.
Going into detais, each worker is sent a chunk of chunksize tasks at a time for processing. Every time a worker completes that chunk, it needs to ask for more input via some type of inter-process communication (IPC), such as queue.Queue. Each IPC request requires a system call; due to the context switch it costs anywhere in the range of 1-10 μs, let's say 10 μs. Due to shared caching, a context switch may hurt (to a limited extent) all cores. So extremely pessimistically let's estimate the maximum possible cost of an IPC request at 100 μs.
You want the IPC overhead to be immaterial, let's say <1%. You can ensure that by making chunk processing time >10 ms if my numbers are right. So if each task takes say 1 μs to process, you'd want chunksize of at least 10000.
The main reason not to make chunksize arbitrarily large is that at the very end of the execution, one of the workers might still be running while everyone else has finished -- obviously unnecessarily increasing time to completion. I suppose in most cases a delay of 10 ms is a not a big deal, so my recommendation of targeting 10 ms chunk processing time seems safe.
Another reason a large chunksize might cause problems is that preparing the input may take time, wasting workers capacity in the meantime. Presumably input preparation is faster than processing (otherwise it should be parallelized as well, using something like RxPY). So again targeting the processing time of ~10 ms seems safe (assuming you don't mind startup delay of under 10 ms).
Note: the context switches happen every ~1-20 ms or so for non-real-time processes on modern Linux/Windows - unless of course the process makes a system call earlier. So the overhead of context switches is no more than ~1% without system calls. Whatever overhead you're creating due to IPC is in addition to that.
Nothing will replace the actual time measurements. I wouldn't bother with a formula and try a constant such as 1, 10, 100, 1000, 10000 instead and see what works best in your case.

What is the performance of 10 processors capable of 200 MFLOPs running code which is 10% sequential and 90% parallelelizable?

simple problem from Wilkinson and Allen's Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers. Working through the exercises at the end of the first chapter and want to make sure that I'm on the right track. The full question is:
1-11 A multiprocessor consists of 10 processors, each capable of a peak execution rate of 200 MFLOPs (millions of floating point operations per second). What is the performance of the system as measured in MFLOPs when 10% of the code is sequential and 90% is parallelizable?
I assume the question wants me to find the number of operations per second of a serial processor which would take the same amount of time to run the program as the multiprocessor.
I think I'm right in thinking that 10% of the program is run at 200 MFLOPs, and 90% is run at 2,000 MFLOPs, and that I can average these speeds to find the performance of the multiprocessor in MFLOPs:
1/10 * 200 + 9/10 * 2000 = 1820 MFLOPs
So when running a program which is 10% serial and 90% parallelizable the performance of the multiprocessor is 1820 MFLOPs.
Is my approach correct?
ps: I understand that this isn't exactly how this would work in reality because it's far more complex, but I would like to know if I'm grasping the concepts.
Your calculation would be fine if 90% of the time, all 10 processors were fully utilized, and 10% of the time, just 1 processor was in use. However, I don't think that is a reasonable interpretation of the problem. I think it is more reasonable to assume that if a single processor were used, 10% of its computations would be on the sequential part, and 90% of its computations would be on the parallelizable part.
One possibility is that the sequential part and parallelizable parts can be run in parallel. Then one processor could run the sequential part, and the other 9 processors could do the parallelizable part. All processors would be fully used, and the result would be 2000 MFLOPS.
Another possibility is that the sequential part needs to be run first, and then the parallelizable part. If a single processor needed 1 hour to do the first part, and 9 hours to do the second, then it would take 10 processors 1 + 0.9 = 1.9 hours total, for an average of about (1*200 + 0.9*2000)/1.9 ~ 1053 MFLOPS.

Resources