I've written a predicate, shuffle/3, which generates "shuffles" of two lists. When the second and third argument are instantiated, the first argument becomes a list which has all the elements of both Left and Right, in the same order that they appear in Left and Right.
For example:
?- shuffle(X, [1, 2], [3, 4]).
X = [1, 3, 2, 4] ;
X = [1, 3, 4, 2] ;
X = [1, 2, 3, 4] ;
X = [3, 4, 1, 2] ;
X = [3, 1, 2, 4] ;
X = [3, 1, 4, 2] ;
false.
Here's the code I've come up with to implement it:
shuffle([], [], []).
shuffle([H|R], [H|Left], Right) :- shuffle(R, Right, Left).
shuffle([H|R], Left, [H|Right]) :- shuffle(R, Right, Left).
This works well, and even generates reasonable results for "the most general query", but it fails to be deterministic for any query, even one where all arguments are fully instantiated: shuffle([1, 2, 3, 4], [1, 2], [3, 4]).
My real question is: is there anything I can do, while maintaining purity (so, no cuts), which makes this predicate deterministic when all arguments are fully instantiated?
And while I'm here, I'm new to Prolog, I wonder if anyone has advice on why I would care about determinism. Is it important for real prolog programs?
No, there is no way to make this predicate deterministic while still maintaining pure code. To see this, consider:
?- shuffle([1, 1], [1], [1]).
true
; true.
There are two answers to this. Why? The best is not to use a debugger to understand this, but rather to use a generalized query:
?- shuffle([X1, X2], [Y1], [Y2]).
X1 = Y1, X2 = Y2
; X1 = Y2, X2 = Y1.
So here you can see the "true" connection between the arguments! And now our specific query is an instance of this more general query. Thus, no way to remove the two answers.
However, you might use cut in a pure way, provided it is guarded such that the result will always be pure. Like testing ground(shuffe(Xs, Ys, Zs)) but all of this is quite ad hoc.
On second thought, there might be a pure, determinate answer, but only if the answers to shuffle([X1, X2], [Y1], [Y2]). are changed somehow. The answer actually should be:
?- shuffledet([X1, X2], [Y1], [Y2]).
X1 = X2, X2 = Y1, Y1 = Y2 % all equal
; dif(X1, X2), X1 = Y1, X2 = Y2
; dif(X1, X2), X1 = Y2, X2 = Y1.
So that might be a possibility... I will had put a 500 bounty on this ASAP, but no response. And again I try another one.
The way to make the more det version of shuffle is using if_/3 from library module reif:
shuffle_det1( A,B,C):-
if_( B=[], A=C,
if_( C=[], A=B,
( B=[BH|BT], C=[CH|CT], A=[AH|AT], (
AH=BH, shuffle_det1( AT, BT, C)
;
AH=CH, shuffle_det1( AT, B, CT) ) ))).
Working positionally, it's OK, and indeed eliminates some (most?) spurious choice points:
40 ?- shuffle_det1(X, [1, 2], [3, 4]).
X = [1, 2, 3, 4] ;
X = [1, 3, 2, 4] ;
X = [1, 3, 4, 2] ;
X = [3, 1, 2, 4] ;
X = [3, 1, 4, 2] ;
X = [3, 4, 1, 2].
41 ?- shuffle_det1(X, [11,12], [11,22]).
X = [11, 12, 11, 22] ;
X = [11, 11, 12, 22] ;
X = [11, 11, 22, 12] ;
X = [11, 11, 12, 22] ;
X = [11, 11, 22, 12] ;
X = [11, 22, 11, 12].
81 ?- shuffle_det1([1,2,3,4], [3, 4], [1, 2]).
true.
But:
82 ?- shuffle_det1([1,2,3,4], [1, 2], [3, 4]).
true ;
false.
Also, as [user:false] points out, if two lists' head elements are equal, there's some redundancy in the answers:
11 12 13 .. B
21 22 23 .. C
11 (12.. + 21..) | 21 (11.. + 22..)
12 (13.. + 21..) 11 (12.. + 22..) *
| 21 (12.. + 22..) * | 22 (11.. + 23..)
Here the two cases marked with * actually conflate when 11 == 21. To combat that, we "unroll" the picking by doing two in a row in such cases:
shuffle_det( A,B,C):-
if_( B=[], A=C,
if_( C=[], A=B,
( B=[BH|BT], C=[CH|CT], A=[AH|AT],
if_( \X^(dif(BH,CH),X=true ; BH=CH,X=false),
(
AH=BH, shuffle_det( AT, BT, C)
;
AH=CH, shuffle_det( AT, B, CT) ),
(
AH=BH, AT=[CH|A2], shuffle_det( A2, BT, CT) % **
;
pull_twice( A,B,C)
;
pull_twice( A,C,B)
))))).
pull_twice([BH|AT],[BH|BT],C):- % B,C guaranteed to be non-empty
if_( BT=[], AT=C,
( BT=[BH2|B2], AT=[BH2|A2], shuffle_det(A2,B2,C) )).
Testing:
35 ?- shuffle_det(A, [11,12], [11,22]).
A = [11, 11, 12, 22] ;
A = [11, 11, 22, 12] ;
A = [11, 12, 11, 22] ;
A = [11, 22, 11, 12].
This is already much better than shuffle_det1. But it's not fully right yet:
38 ?- shuffle_det(A, [1], [1]).
A = [1, 1] ;
A = [1, 1] ;
A = [1, 1].
The two pull_twice calls are probably the culprit. Somehow there must be only one, which would decide whether to do the other one or not...
Related
this is my code, I don't understand why this does not look like what I thought
com([],[]).
com([H|T1],[H|T2]):-
com(T1,T2).
com([_|T1],T2):-
com(T1,T2).
three([X1,X2|T]) :-
X2 is X1 + 1,
(
T = []
; three([X2|T])
).
then I tried "findall(Tests, (com([6,7,8,8,9],Tests),three(Tests),Length(Test,N)), N>=3,Alltests)", this is to find all possible cases that continuous number with at least length 3,
'com' return all the tests
'three' is to find all continuous number with at least length 3.
but, the results were wrong.
[trace] findall(..,....,[[6, 7, 8, 9], [6, 7, 8], [6, 7, 8], [7, 8, 9]])
why I just got one [6,7,8,9] and [7,8,9], it should return both I think
findall(Tests, (com([6,7,8,8,9],Tests),three(Tests),Length(Test,N)), N>=3,Alltests)
You have Test instead of Tests here, so it's a different variable.
And Length with a capital needs to be length
And you have N>=3 outside the () so you are using findall/4 instead of findall/3.
With those changes, it seems to work for me:
?- findall(Tests, (com([6,7,8,8,9],Tests),three(Tests),length(Tests,N), N>=3),Alltests).
Alltests = [[6, 7, 8, 9], [6, 7, 8], [6, 7, 8, 9], [6, 7, 8], [7, 8, 9], [7, 8, 9]]
Everything seems to work alright:
?- com([6,7,8,8,9],Tests), three(Tests), length(Tests,N), N >= 3.
N = 4, Tests = [6,7,8,9]
; N = 3, Tests = [6,7,8]
; N = 4, Tests = [6,7,8,9]
; N = 3, Tests = [6,7,8]
; N = 3, Tests = [7,8,9]
; N = 3, Tests = [7,8,9]
; false.
Tip: always do the pure parts first; aggregate later.
Just wanted to give an easy way to define three/1
three(Lst) :-
LstDigits = [1, 2, 3, 4, 5, 6, 7, 8, 9],
between(3, 9, Len),
length(Lst, Len),
append([_, Lst, _], LstDigits).
Result in swi-prolog:
?- three(L).
L = [1,2,3] ;
L = [2,3,4] ;
L = [3,4,5] ;
L = [4,5,6] ;
L = [5,6,7] ;
L = [6,7,8] ;
L = [7,8,9] ;
L = [1,2,3,4] ;
L = [2,3,4,5] ;
etc.
Is there a way to assing 2 times a different value in a variable inside a predicate?For example can we somehow make
X is 10,
X is 3.
produce true?
Please don't do it like this. is/2 is for evaluating arithmetic expressions.
Without any context whatsoever it is difficult impossible to suggest what is the right way to do it. The traditional way is to have a predicate that looks like this:
ten_or_three(10).
ten_or_three(3).
You can do all kinds of Prolog-y things with a predicate like that.
?- ten_or_three(10).
true.
?- ten_or_three(4).
false.
?- length(L, 3), maplist(ten_or_three, L), sumlist(L, Sum).
L = [10, 10, 10],
Sum = 30 ;
L = [10, 10, 3],
Sum = 23 ;
L = [10, 3, 10],
Sum = 23 ;
L = [10, 3, 3],
Sum = 16 ;
L = [3, 10, 10],
Sum = 23 ;
L = [3, 10, 3],
Sum = 16 ;
L = [3, 3, 10],
Sum = 16 ;
L = [3, 3, 3],
Sum = 9.
For example,
p(X) :- X is 3;X is 5.
is true of X = 3 or 5.
Eg:
List[1,2,3,4,5,6] with N equal to 6 should print true because there are exactly 3 values that add upto 6. 1+2+3.
List[2,5,7,9] with N equal to 12 should print false as there are no 3 elements that add upto 12.
Let's maybe start with a more general predicate that describes the relation between a list, a sublist of said list and the sum of numbers in the sublist. To make it obvious which argument is what, it is opportune to chose a descriptive name for the predicate, say sum_ofsub_fromlist/3. Now let's observe that if the first argument is the sum of the numbers in the sublist, then successively subtracting those numbers from the sum yields zero, e.g.: X=A+B → X-A-B=0. So there will be a base case that contains 0 as the sum and [] as the sublist (rule 1) and a recursive rule that subtracts the elements of the sublist from the sum (rule 2). And since a sublist does not contain all elements of the list it's taken from in general, there will be a recursive rule for skipping elements of the list that do not occur in the sublist (rule 3). This rule is only needed as long as there are still elements in the sublist, so a constraint would be beneficial, that prevents this rule from succeeding once the sublist is empty. These ideas can be realized in Prolog like so:
sum_ofsub_fromlist(0,[],_L). % rule 1
sum_ofsub_fromlist(X,[A|Bs],[A|As]) :- % rule 2
X0 is X-A,
sum_ofsub_fromlist(X0,Bs,As).
sum_ofsub_fromlist(X,Bs,[_A|As]) :- % rule 3
dif(Bs,[]), % constraint: sublist not empty
sum_ofsub_fromlist(X,Bs,As).
You can query this predicate to assure yourself that it delivers all sublists for the given sum in your examples:
?- sum_ofsub_fromlist(6,S,[1,2,3,4,5,6]).
S = [1, 2, 3] ;
S = [1, 5] ;
S = [2, 4] ;
S = [6] ;
false.
?- sum_ofsub_fromlist(12,S,[2,5,7,9]).
S = [5, 7] ;
false.
Building on this you can then write a calling predicate that only succeeds for sublists of length three:
sum_oftriple_fromlist(S,T,L) :-
T=[_,_,_], % T has to be a triple
sum_ofsub_fromlist(S,T,L).
This predicate yields the answers you desire:
?- sum_oftriple_fromlist(6,T,[1,2,3,4,5,6]).
T = [1, 2, 3] ;
false.
?- sum_oftriple_fromlist(12,T,[2,5,7,9]).
false.
Note that the predicate is also working with negative numbers:
?- sum_oftriple_fromlist(6,T,[-5,-3,-1,2,4,7,8,9]).
T = [-5, 2, 9] ;
T = [-5, 4, 7] ;
T = [-3, 2, 7] ;
false.
?- sum_oftriple_fromlist(-6,T,[-6,-5,-4,-3,-2,-1,2,4]).
T = [-6, -4, 4] ;
T = [-6, -2, 2] ;
T = [-5, -3, 2] ;
T = [-3, -2, -1] ;
false.
However, due to the use of is/2, the predicate only works if the first and the third arguments are ground:
?- sum_oftriple_fromlist(S,T,[1,2,3,4,5,6]).
ERROR: is/2: Arguments are not sufficiently instantiated
Exception: (7) sum_ofsub_fromlist(_G918, [_G1016, _G1019, _G1022], [1, 2, 3, 4, 5, 6]) ?
?- sum_oftriple_fromlist(6,T,[A,B,C,D,E,F]).
ERROR: is/2: Arguments are not sufficiently instantiated
Exception: (7) sum_ofsub_fromlist(6, [_G2121, _G2124, _G2127], [_G1945, _G1948, _G1951, _G1954, _G1957, _G1960]) ?
If that's fine with you, you can stop here. Alternatively, you could opt to make the predicate more versatile by using CLP(FD). Just apply these minor changes to your code:
:- use_module(library(clpfd)). % <- new
sum_oftriple_fromlist(S,T,L) :-
T=[_,_,_],
sum_ofsub_fromlist(S,T,L).
sum_ofsub_fromlist(0,[],_L).
sum_ofsub_fromlist(X,[A|Bs],[A|As]) :-
X0 #= X-A, % <- change
sum_ofsub_fromlist(X0,Bs,As).
sum_ofsub_fromlist(X,Bs,[_A|As]) :-
dif(Bs,[]),
sum_ofsub_fromlist(X,Bs,As).
Now the above queries deliver answers:
?- sum_oftriple_fromlist(S,T,[1,2,3,4,5,6]).
S = 6,
T = [1, 2, 3] ;
S = 7,
T = [1, 2, 4] ;
S = 8,
T = [1, 2, 5] ;
. % another
. % seventeen
. % results here
The second query, however, yields residual goals (see documentation for details) as results:
?- sum_oftriple_fromlist(6,T,[A,B,C,D,E,F]).
T = [A, B, C],
_G2424+A#=6,
C+B#=_G2424 ;
T = [A, B, D],
_G2424+A#=6,
D+B#=_G2424 ;
.
.
.
To get actual numbers, you have to restrict the range of the numbers and subsequently label the variables in the list:
?- L=[A,B,C,D,E,F], sum_oftriple_fromlist(6,T,L), L ins 1..6, label(L).
L = [1, 1, 4, 1, 1, 1],
A = B, B = D, D = E, E = F, F = 1,
C = 4,
T = [1, 1, 4] ;
L = [1, 1, 4, 1, 1, 2],
A = B, B = D, D = E, E = 1,
C = 4,
F = 2,
T = [1, 1, 4] ;
.
.
.
Possibly you are only interested in lists where every number only appears once:
?- L=[A,B,C,D,E,F], all_distinct(L), sum_oftriple_fromlist(6,T,L), L ins 1..6, label(L).
L = [1, 2, 3, 4, 5, 6],
A = 1,
B = 2,
C = 3,
D = 4,
E = 5,
F = 6,
T = [1, 2, 3] ;
L = [1, 2, 3, 4, 6, 5],
A = 1,
B = 2,
C = 3,
D = 4,
E = 6,
F = 5,
T = [1, 2, 3] ;
.
.
.
Or maybe you don't even want to restrict the sum:
?- L=[A,B,C,D,E,F], all_distinct(L), sum_oftriple_fromlist(S,T,L), L ins 1..6, label(L).
L = [1, 2, 3, 4, 5, 6],
A = 1,
B = 2,
C = 3,
D = 4,
E = 5,
F = S, S = 6, % sum = 6
T = [1, 2, 3] ;
.
.
.
L = [1, 2, 4, 3, 5, 6],
A = 1,
B = 2,
C = 4,
D = 3,
E = 5,
F = 6,
S = 7, % sum = 7
T = [1, 2, 4] ;
.
.
.
As you can see the CLP(FD) version of the predicate resembles a true relation as opposed to the non-CLP(FD) version. And of course your example queries yield the same answers with both versions.
Your code only considers the first 3 items in the list, and not any other combinations.
The most natural way to structure a solution involving a list is to base your recursion on the structure of the list. So:
If the first element of the list (say, X) is to be included in the 3 values that sum to N, we need to find a way to find 2 values in the rest of the list that sum to N-X.
If it isn't, just try to solve the problem using the rest of the list.
Note that you may need a "helper" version of your predicate that allows you to add other parameters. In this case, knowing how many values you need to add up would be helpful.
Basically what I want to achieve is :
Given a list of domain Variables set these Variables with a domain relative to a List of Numbers. Example:
......
List=[A1,A2,A3],
domain(List,1,5],
setDomain(List,[1,2]),
labeling([],List).
Result:
A1=1, A2=1, A3=1 or
A1=1, A2=1, A3=2 or
A1=1, A2=2, A3=1
and so on...
What I have tried:
setDomain(List,ListIntegers):-
element(X, List, Element),
member(Element,ListIntegers),
main(List):-
List=[A1,A2,A3],
domain(List,1,5],
setDomain(List,[1,2]),
labeling([],List).
but not success...
Can anyone help understand how can I accomplish this?
In your solution, you're using labeling/2 but haven't defined its arguments using CLP(FD), so it doesn't do anything for you. It's not very clear from your question or simple example, but it sounds like you want a list of a given length whose elements are each taken from a domain consisting of an arbitrary list of elements?
You could do so with something like this:
member_(List, Element) :- member(Element, List).
domain_list(Length, Domain, List) :-
length(List, Length),
maplist(member_(Domain), List).
This would give:
6 ?- domain_list(3, [1,3], L).
L = [1, 1, 1] ;
L = [1, 1, 3] ;
L = [1, 3, 1] ;
L = [1, 3, 3] ;
L = [3, 1, 1] ;
L = [3, 1, 3] ;
L = [3, 3, 1] ;
L = [3, 3, 3].
7 ?-
This also works for any kind of elements:
7 ?- domain_list(3, [tom, a(b)], L).
L = [tom, tom, tom] ;
L = [tom, tom, a(b)] ;
L = [tom, a(b), tom] ;
L = [tom, a(b), a(b)] ;
L = [a(b), tom, tom] ;
L = [a(b), tom, a(b)] ;
L = [a(b), a(b), tom] ;
L = [a(b), a(b), a(b)].
8 ?-
If you wanted to use CLP(FD), you'd need to keep a couple of things in mind. CLP(FD) is for integer domains, and CLP(FD) has its own way of specifying domains, which is not in list form.
For instance, if you wanted a list of length N whose elements were in the domain described by [1,2,3,5,6,8], you would write it as:
length(List, N),
List ins 1..3 \/ 5..6 \/ 8,
label(List).
Which would result in, for example:
2 ?- length(List, 3), List ins 1..3 \/ 5..6 \/ 8, label(List).
List = [1, 1, 1] ;
List = [1, 1, 2] ;
List = [1, 1, 3] ;
List = [1, 1, 5] ;
List = [1, 1, 6] ;
List = [1, 1, 8] ;
List = [1, 2, 1] ;
List = [1, 2, 2]
...
Using ECLiPSe Prolog you can write:
:-lib(fd).
applyDomain([],_).
applyDomain([H|T],D):-
var_fd(H,D),
applyDomain(T,D).
domainList(ListDomain,LengthList,ListOutput):-
length(ListOutput,LengthList),
list_to_dom(ListDomain,Domain),
applyDomain(ListOutput,Domain).
Query:
?- domainList([2,3,5,7,8],5,L).
L = [_530{[2, 3, 5, 7, 8]}, _547{[2, 3, 5, 7, 8]}, _564{[2, 3, 5, 7, 8]}, _581{[2, 3, 5, 7, 8]}, _598{[2, 3, 5, 7, 8]}]
Yes (0.00s cpu)
The output means that each variable (in this case _530, _547 and so on) in the list L has the specified domain {[2, 3, 5, 7, 8]}. If you want to label the list you can simply add
labeling(ListOutput).
as last line of domainList/3 and you get:
?- domainList([2, 3, 5, 7, 8], 5, L).
L = [2, 2, 2, 2, 2]
Yes (0.00s cpu, solution 1, maybe more)
L = [2, 2, 2, 2, 3]
Yes (0.00s cpu, solution 2, maybe more)
L = [2, 2, 2, 2, 5]
Yes (0.00s cpu, solution 3, maybe more)
and so on... If you want that all the list will be different, just add
alldifferent(ListOutput),
before labeling/1, and you'll get
?- domainList([2, 3, 5, 7, 8], 5, L).
L = [2, 3, 5, 7, 8]
Yes (0.00s cpu, solution 1, maybe more)
L = [2, 3, 5, 8, 7]
Yes (0.00s cpu, solution 2, maybe more)
L = [2, 3, 7, 5, 8]
Yes (0.00s cpu, solution 3, maybe more)
I usually don't use SWI prolog for clpfd problems, so i don't know if there is a similar solution in SWI...
I'm trying to figure out how to generate a list of sets, where each set has a length of N and the sum of each set is X.
I found this code:
num_split(0,[]).
num_split(N, [X | List]):-
between(1,N,X),
plus(X,Y,N),
num_split(Y,List).
And I can use that to get a list of sets with sum X:
num_split(6,List),length(List,5).
List = [1, 1, 1, 1, 2] ;
List = [1, 1, 1, 2, 1] ;
List = [1, 1, 2, 1, 1] ;
List = [1, 2, 1, 1, 1] ;
List = [2, 1, 1, 1, 1] ;
false.
The problem is that those are all permutations, and I'm looking for combinations. The output I'm looking for should be something like get_combos(Sum,Length,List):
get_combos(6,2,List).
List = [5,1];
List = [4,2];
List = [3,3];
false.
Any pointers?
If you have access to a CLP(FD) library, you can use this code:
:- [library(clpfd)].
get_combos(Sum, Length, List) :-
length(List, Length),
List ins 1 .. Sum,
% all_distinct(List), not really useful here
sum(List, #=, Sum),
chain(List, #<),
label(List).
test:
?- get_combos(10,3,L).
L = [1, 2, 7] ;
L = [1, 3, 6] ;
L = [1, 4, 5] ;
L = [2, 3, 5] ;
Maybe I misunderstood your question. Use this chain
...
chain(List, #=<),
....
to get possible duplicates values:
?- get_combos(10,3,L).
L = [1, 1, 8] ;
L = [1, 2, 7] ;
L = [1, 3, 6] ;
L = [1, 4, 5] ;
L = [2, 2, 6] ;
L = [2, 3, 5] ;
L = [2, 4, 4] ;
L = [3, 3, 4] ;
false.
Enforce an "equal or greater" restriction between successive values in the array.
You can add it on as another predicate:
is_combination([]).
is_combination([_]).
is_combination([A,B|List]) :- A =< B, is_combination([B|List]).
get_combos(Sum, Length, List) :-
num_split(Sum, Length, List),
is_combination(List).
Unfortunately, tacking it on the end of the num_split/3 does not necessarily increase its performance, so adding it directly into the algorithm would be marginally better:
get_combos(_, 0, []).
get_combos(Sum, 1, [Sum]).
get_combos(Sum, Length, [A, B|List]) :-
between(1, Sum, A),
plus(A, NextSum, Sum),
plus(1, NextLength, Length),
get_combos(NextSum, NextLength, [B|List]),
A =< B.
I'm not sure just how much more performance this gets, as the comparison has to be after the recursion, due to the less-than-or-equals operator (=<) requiring both operands to be fully instantiated for it to work.