Ruby Fiddle: Nested union of structs within a struct - ruby

I have seen this question asked a few times on this site, and others, and have yet to see a legitimate and actual answer aside from posting links to the Ruby docs that don't answer the question either.
Is it possible, and if so how, to have a union of structs within another struct using Ruby Fiddle? Everything within the documentation simply indicates how to create structs/unions using primitive types, but not how it would be possible to nest them, as is a common convention to do.
The Fiddle::CParser cannot parse anything other than primitive types, as well as manual creation using signatures.
I have attempted to simply use TYPE_VOIDP and use that pointer to as a location to the address create the struct, which I was fairly sure should work, but I get only junk, as if the address is incorrect. I imagine this is because not enough memory is allocated, but I since the structs within the union are different sizes, I cannot allocate it ahead of time, leading me in circles.
The basic format is something like this: (this is psuedo-code just to give idea)
struct1 = [float, float, float, int]
struct2 = [int, int]
struct3 = [float, enum, enum, float, double, float]
structMaster = [
int, // Determines the type of the within the union
char[16],
char[16],
union[struct1, struct2, struct3]
]
I have looked extensively over all the Fiddle documentation, and it never indicates if this is even possible. I am familiar with Fiddle::CStructBuilder and related classes, and posting links to it is not the answer, as I have seen in other posts asking a similar question.
I have successfully done it accomplished this with old Win32API and using binary blobs, but am now trying to accomplish this with Fiddle, and am getting myself very frustrated.
EDIT:
I did manage to find some success by calculating the offset and reading the memory directly, and casting the pointer to the proper type, but I would still love to know if there is a way to do this cleaner with a nested struct, instead of the "hackish" way I am accomplishing it.

Related

In go language, may I define allowed values of a string in a struct and/or force creation only via constructor? Or avoid direct creation of a struct? [duplicate]

This question already has answers here:
Creating a Constant Type and Restricting the Type's Values
(2 answers)
What is an idiomatic way of representing enums in Go?
(14 answers)
Closed 8 months ago.
I have a struct Direction with a value of type string. Direction should be N, S, W or E.
type Direction struct {
value string
}
Inspired by an answer of this question: Does Go have "if x in" construct similar to Python? I guess a good way to create Direction in a valid manner can be this one:
func NewDirection(direction string) Direction {
switch direction {
case "N","S","W","E": return Direction{direction}
}
panic("invalid direction")
}
But this is not enough for me because I can still create invalid Direction:
d := Direction{"X"}
I also found this interesting article about enforcing the use of constructor in go. Reading this article I can see that is necessary the usage of another package. May I have a "protected" struct in, for example, main package?
You've already done almost everything you should do by convention:
make the field unexported
provide a constructor
put a comment on the type stating that the constructor should be used, and explain how zero-values are treated (if that matters)
Now users of the package can't modify the field, and the existence of the constrictor makes it clear that it should be called to create valid instances. This is the convention that is set by the standard library.
Sure, there are other ways that you can make it even harder to invalidate values but this is essentially just wasting time and overcomplicating your code for the sake of an unwinnable arms race against an imaginary opponent.
If someone doesn't understand the language and doesn't read documentation, then they're always going to find a way to misuse it. If they are actively trying to sabotage themselves, there's nothing you can do to stop them and no reason to either.
Packages are the smallest functional unit of code organization in Go. There is no way to protect field at, for example, the file level. Even files within the same package effectively operate as if all their code was in the same file. Therefore, any code in the same package as the constructor will have the same privileges as the constructor.

Linux kernel variables ending in 'i' meaning

It's a random and stupid question, but I have no clue what the i stands for in structs with members like:
[starting character]i_[some specifier]
Examples are like: bio struct, everytime dm_target is referenced, bvec_iter.
Whenever I read such a variable I read the complete name in my head, and it's very frustrating to me that I can't do it with these.
There no meaning in i_, it's not special.
A loooong time ago structure members shared the same namespace as variables and such, they had to be unique - some people are used to that. And it is subjectively nice to have structure members starting with a unique prefix - IDE autocompletion works better, and it's easier to do lookup.
In the case of struct bio members, bi_ is just a shortcut for... bio_.
In the case of struct dm_target *ti variable name, ti looks like a nice shorter form of this used in C++ and Python for referencing the current object.
In the case of struct bvec_iter, bi_ is just a shorthand of bvec_iter. Above, you have struct bio_vec that uses bv_ for struct members.
These are just conventions that a specific developer used to mark some abstractions in their source code. It has no specific meaning.
It's also easier to look sometimes - when I see iter->bi_stuff, I can "suspect" that iter is a pointer to something bi related (bio? bvec_iter?). In the context of many, many variables, such small clues are nice for the eye.
This all is subjective. It is way more important to follow one convention, rather that what convention it is.

What is the rationale of Go not having the const qualifier?

I'm a C++ senior programmer. I'm currently doing some Go programming. The only feature I really miss is the const qualifier. In go, if you want to modify an object, you pass its pointer. If you don't want to modify it, you pass it by value. But if the struct is big, you should pass it by pointer, which overrides the no-modification feature. Worse, you can pass an object by value, but if it contains a pointer, you can actually modify its contents, with terrible race condition dangers. Some language types like maps and slices have this feature. This happens in a language that's supposed to be built for concurrency. So the issue of avoiding modification is really non-existent in Go, and you should pass small objects that do not contain pointers (you must be aware that the object does not contain a pointer) by value, if they aren't gonna be modified.
With const, you can pass objects by const pointer and don't worrying about modification. Type-safety is about having a contract that allows speed and prevents type-related bugs. Another feature that does this too is the const qualifier.
The const type qualifier in C/C++ has various meanings. When applied to a variable, it means that the variable is immutable. That's a useful feature, and one that is missing from Go, but it's not the one you seem to be talking about.
You are talking about the way that const can be used as a partially enforced contract for a function. A function can give a pointer parameter the const qualifier to mean that the function won't change any values using that pointer. (Unless, of course, the function uses a cast (a const_cast in C++). Or, in C++, the pointer points to a field that is declared mutable.)
Go has a very simple type system. Many languages have a complex type system in which you enforce the correctness of your program by writing types. In many cases this means that a good deal of programming involves writing type declarations. Go takes a different approach: most of your programming involves writing code, not types. You write correct code by writing correct code, not by writing types that catch cases where you write incorrect code. If you want to catch incorrect code, you write analyzers, like go vet that look for cases that are invalid in your code. These kinds of analyzers are much much easier to write for Go than for C/C++, because the language is simpler.
There are advantages and disadvantages to this kind of approach. Go is making a clear choice here: write code, not types. It's not the right choice for everyone.
Please treat it as an expanded comment. I'm not any programming language designer, so can't go deep inside the details here, but will present my opinion as a long-term developer in C++ and short-term developer in Go.
Const is a non-trivial feature for the compiler, so one would have to make sure whether it's providing enough advantage for the user to implement it as well as won't sacrifice the simplicity of syntax. You might think it's just a const qualifier we're talking about, but looking at C++ itself, it's not so easy – there're a lot of caveats.
You say const is a contract and you shouldn't be able to modify it at any circumstances. One of your arguments against using read only interfaces is that you can cast it to original type and do whatever you want. Sure you can. The same way you can show a middle finger to the contract in C++ by using const_cast. For some reason it was added to the language and, not sure I should be proud of it, I've used it once or twice.
There's another modifier in C++ allowing you to relax the contract – mutable. Someone realised that const structures might actually need to have some fields modified, usually mutexes protecting internal variables. I guess you would need something similar in Go in order to be able to implement thread-safe structures.
When it comes simple const int x people can easily follow. But then pointers jump in and people really get consfused. const int * x, int * const x, const int * const x – these are all valid declarations of x, each with different contract. I know it's not a rocket science to choose the right one, but does your experience as a senior C++ programmer tell you people widely understand these and are always using the right one? And I haven't even mentioned things like const int * const * * * const * const x. It blows my mind.
Before I move to point 4, I would like to cite the following:
Worse, you can pass an object by value, but if it contains a pointer,
you can actually modify its contents
Now this is interesting accusation. There's the same issue in C++; worse – it exists even if you declare object as const, which means you can't solve the problem with a simple const qualifier. See the next point:
Per 3, and pointers, it's not so easy to express the very right contract and things sometimes get unexpected. This piece of code surprised a few people:
struct S {
int *x;
};
int main() {
int n = 7;
const S s = {&n}; // don't touch s, it's read only!
*s.x = 666; // wait, what? s is const! is satan involved?
}
I'm sure it's natural for you why the code above compiles. It's the pointer value you can't modify (the address it points to), not the value behind it. You must admit there're people around that would raise their eyebrow.
I don't know if it makes any point, but I've been using const in C++ all the time. Very accurate. Going mental about it. Not sure whether is has ever saved my ass, but after moving to Go I must admit I've never missed it. And having in mind all these edge cases and exceptions I can really believe creators of a minimalistic language like Go would decide to skip on this one.
Type-safety is about having a contract that allows speed and prevents
type-related bugs.
Agreed. For example, in Go, I love there're no implicit conversions between types. This is really preventing me from type-related bugs.
Another feature that does this too is the const qualifier.
Per my whole answer – I don't agree. Where a general const contract would do this for sure, a simple const qualifier is not enough. You then need a mutable one, maybe kind of a const_cast feature and still – it can leave you with misleading believes of protection, because it's hard to understand what exactly is constant.
Hopefully some language creators will design a perfect way of defining constants all over in our code and then we'll see it in Go. Or move over to the new language. But personally, I don't think C++'s way is a particularly good one.
(Alternative would be to follow functional programming paradigms, which would love to see all their "variables" immutable.)

By reference or value

if i had an instance of the following struct
type Node struct {
id string
name string
address string
conn net.Conn
enc json.Encoder
dec json.Decoder
in chan *Command
out chan *Command
clients map[string]ClientNodesContainer
}
i am failing to understand when i should send a struct by reference and when should i send it by value(considering that i do not want to make any changes to that instance), is there a rule of thumb that makes it easier to decide?
all i could find is send a struct by value when its small or inexpensive to copy, but does small really mean smaller than 64bit address for example?
would be glad if someone can point some more obvious rules
The rule is very simple:
There is no concept of "pass/send by reference" in Go, all you can do is pass by value.
Regarding the question whether to pass the value of your struct or a pointer to your struct (this is not call by reference!):
If you want to modify the value inside the function or method: Pass a pointer.
If you do not want to modify the value:
If your struct is large: Use pointer.
Otherwise: It just doesn't matter.
All this thinking about how much a copy costs you is wasted time. Copies are cheap, even for medium sized structs. Passing a pointer might be a suitable optimization after profiling.
Your struct is not large. A large struct contains fields like wholeWorldBuf [1000000]uint64.
Tiny structs like yours might or might not benefit from passing a pointer and anybody who gives advice which one is better is lying: It all depends on your code and call patterns.
If you run out of sensible options and profiling shows that time is spent copying your structs: Experiment with pointers.
The principle of "usually pass values for small structs you don't intend to mutate" I agree with, but this struct, right now, is 688 bytes on x64, most of those in the embedded json structs. The breakdown is:
16*4=64 for the three strings (pointer/len pairs) and the net.Conn (an interface value)
208 for the embedded json.Encoder
392 for the embedded json.Decoder
8*3=24 for the three chan/map values (must be pointers)
Here's the code I used to get that, though you need to save it locally to run it because it uses unsafe.Sizeof.
You could embed *Encoder/*Decoder instead of pointers, leaving you at 104 bytes. I think it's reasonable to keep as-is and pass *Nodes around, though.
The Go code review comments on receiver type say "How large is large? Assume it's equivalent to passing all its elements as arguments to the method. If that feels too large, it's also too large for the receiver." There is room for differences of opinion here, but for me, nine values, some multiple words, "feels large" even before getting precise numbers.
In the "Pass Values" section the review comments doc says "This advice does not apply to large structs, or even small structs that might grow." It doesn't say that the same standard for "large" applies to normal parameters as to receivers, but I think that's a reasonable approach.
Part of the subtlety of determining largeness, alluded to in the code review doc, is that many things in Go are internally pointers or small, reference-containing structs: slices (but not fixed-size arrays), strings, interface values, function values, channels, maps. Your struct may own a []byte pointing to a 64KB buffer, or a big struct via an interface, but still be cheap to copy. I wrote some about this in another answer, but nothing I said there prevents one from having to make some less-than-scientific judgement calls.
It's interesting to see what standard library methods do. bytes.Replace has ten words' worth of args, so that's at least sometimes OK to copy onto the stack. On the other hand go/ast tends to pass around references (either * pointers or interface values) even for non-mutating methods on its not-huge structs. Conclusion: it can be hard to reduce it to a couple simple rules. :)
Most of the time you should use passing by reference. Like:
func (n *Node) exampleFunc() {
...
}
Only situation when you would like to use passing instance by value is when you would like to be sure that your instance is safe from changes.

Why isn't DRY considered a good thing for type declarations?

It seems like people who would never dare cut and paste code have no problem specifying the type of something over and over and over. Why isn't it emphasized as a good practice that type information should be declared once and only once so as to cause as little ripple effect as possible throughout the source code if the type of something is modified? For example, using pseudocode that borrows from C# and D:
MyClass<MyGenericArg> foo = new MyClass<MyGenericArg>(ctorArg);
void fun(MyClass<MyGenericArg> arg) {
gun(arg);
}
void gun(MyClass<MyGenericArg> arg) {
// do stuff.
}
Vs.
var foo = new MyClass<MyGenericArg>(ctorArg);
void fun(T)(T arg) {
gun(arg);
}
void gun(T)(T arg) {
// do stuff.
}
It seems like the second one is a lot less brittle if you change the name of MyClass, or change the type of MyGenericArg, or otherwise decide to change the type of foo.
I don't think you're going to find a lot of disagreement with your argument that the latter example is "better" for the programmer. A lot of language design features are there because they're better for the compiler implementer!
See Scala for one reification of your idea.
Other languages (such as the ML family) take type inference much further, and create a whole style of programming where the type is enormously important, much more so than in the C-like languages. (See The Little MLer for a gentle introduction.)
It isn't considered a bad thing at all. In fact, C# maintainers are already moving a bit towards reducing the tiring boilerplate with the var keyword, where
MyContainer<MyType> cont = new MyContainer<MyType>();
is exactly equivalent to
var cont = new MyContainer<MyType>();
Although you will see many people who will argue against var usage, which kind of shows that many people is not familiar with strong typed languages with type inference; type inference is mistaken for dynamic/soft typing.
Repetition may lead to more readable code, and sometimes may be required in the general case. I've always seen the focus of DRY being more about duplicating logic than repeating literal text. Technically, you can eliminate 'var' and 'void' from your bottom code as well. Not to mention you indicate scope with indentation, why repeat yourself with braces?
Repetition can also have practical benefits: parsing by a program is easier by keeping the 'void', for example.
(However, I still strongly agree with you on prefering "var name = new Type()" over "Type name = new Type()".)
It's a bad thing. This very topic was mentioned in Google's Go language Techtalk.
Albert Einstein said, "Everything should be made as simple as possible, but not one bit simpler."
Your complaint makes no sense in the case of a dynamically typed language, so you must intend this to refer to statically typed languages. In that case, your replacement example implicitly uses Generics (aka Template Classes), which means that any time that fun or gun is used, a new definition based upon the type of the argument. That could result in dozens of extra methods, regardless of the intent of the programmer. In particular, you're throwing away the benefit of compiler-checked type-safety for a runtime error.
If your goal was to simply pass through the argument without checking its type, then the correct type would be Object not T.
Type declarations are intended to make the programmer's life simpler, by catching errors at compile-time, instead of failing at runtime. If you have an overly complex type definition, then you probably don't understand your data. In your example, I would have suggested adding fun and gun to MyClass, instead of defining them separately. If fun and gun don't apply to all possible template types, then they should be defined in an explicit subclass, not as separate functions that take a templated class argument.
Generics exist as a way to wrap behavior around more specific objects. List, Queue, Stack, these are fine reasons for Generics, but at the end of the day, the only thing you should be doing with a bare Generic is creating an instance of it, and calling methods on it. If you really feel the need to do more than that with a Generic, then you probably need to embed your Generic class as an instance object in a wrapper class, one that defines the behaviors you need. You do this for the same reason that you embed primitives into a class: because by themselves, numbers and strings do not convey semantic information about their contents.
Example:
What semantic information does List convey? Just that you're working with multiple triples of integers. On the other hand, List, where a color has 3 integers (red, blue, green) with bounded values (0-255) conveys the intent that you're working with multiple Colors, but provides no hint as to whether the List is ordered, allows duplicates, or any other information about the Colors. Finally a Palette can add those semantics for you: a Palette has a name, contains multiple Colors, but no duplicates, and order isn't important.
This has gotten a bit far afield from the original question, but what it means to me is that DRY (Don't Repeat Yourself) means specifying information once, but that specification should be as precise as is necessary.

Resources