I have an existing flutter application, that I would like to configure with a couple of simple unit tests. I followed instructions from https://codelabs.developers.google.com/codelabs/flutter-app-testing#0 with pointers on how to configure a project with unit tests, and applied those steps to my own project.
After applying those steps flutter test is not behaving like how I would expect, and blatantly just doesn't work. In specific, it yields the following output Connection closed before test suite loaded.
While trying to resolve the error a couple of oddities:
When I ran unit tests (from vscode) I noticed that the application was "paused" on an unhandled exception.
When I looked into the exception, it was about a dependency my actual application relies on. Specifically, about SQLite not being able to find the .so/.dll
When I looked into the callstack, I noticed that it was basically just loading my actual application instead of the unit tests own entry point. Specifically, it was loading all of my app providers.
After I removed that specific exception, it would continue to fail on other parts. For example about unhandled exceptions over missing assets. This is something I could work around with --[no-]test-assets to force the compilation of assets.
The behavior I have witnessed above. I sort of came to a conclusion that it's trying to execute the actual application instead of the tests altogether (hence the various missing dependencies etc). So as a theory, I removed the main function from my main.dart. Running flutter test then fails to compile some autogenerated generated_main.dart, because the entrypoint is missing.
//
// Generated file. Do not edit.
// This file is generated from template in file `flutter_tools/lib/src/flutter_plugins.dart`.
//
// #dart = 2.6
import 'package:liquid/main.dart' as entrypoint;
import 'dart:io'; // flutter_ignore: dart_io_import.
import 'package:path_provider_linux/path_provider_linux.dart';
import 'package:path_provider_windows/path_provider_windows.dart';
... //stripped for brevity
typedef _UnaryFunction = dynamic Function(List<String> args);
typedef _NullaryFunction = dynamic Function();
void main(List<String> args) {
if (entrypoint.main is _UnaryFunction) {
(entrypoint.main as _UnaryFunction)(args);
} else {
(entrypoint.main as _NullaryFunction)();
}
}
From what I observed, most of the issues seem to come from the fact that's choosing to run my actual application instead of the unit test. That first line import 'package:liquid/main.dart' as entrypoint; is basically referencing the application entrypoint.
According to https://github.com/flutter/flutter/issues/8516 there used to be a time where flutter test wasn't supported but it's already been closed. So I assume there are no fundamental broken issues "just because windows platform".
However, it appears that something is not completely right on my setup and I am not really sure what I need to do to get a simple test case working.
This is question about unit test (jest + #testing-library/react)
Hi. I started using #nrwl/react these days.
This is amazing products and I'm excited monorepos project with nx.
Btw, there is afterEach(cleanup); in generated template test file.
This is my sample project.
https://github.com/tyankatsu0105/reproducibility-react-test-nx/blob/master/apps/client/src/app/app.spec.tsx#L7
However react-testing-library doesn't need cleanup when using jest.
https://testing-library.com/docs/react-testing-library/api#cleanup
Please note that this is done automatically if the testing framework you're using supports the afterEach global (like mocha, Jest, and Jasmine). If not, you will need to do manual cleanups after each test.
In fact, I see error when remove afterEach(cleanup); from test files.
Found multiple elements with the text:
thanks!
When developing a small Google Cloud Function in Go. I noticed it will throw an error if you have everything in your package main - eg. import "<whatever>" is a program, not an importable package
So the solution is switch it out to its own package, then deploy. If something goes wrong, throw it back into a package main and work on it locally, then switch it back.
Is this the best workflow? The other option i see is possibly making the Cloud Function its own module and importing it into a main.go file.
I was able to create a cli folder in project's top level and then put main.go file using package main and main() function inside it. That allowed me to have separate file cloud_functions.go in root with different package name that has one or more google cloud functions in it.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 4 years ago.
Improve this question
I want to build an API based application using GO and MongoDB. I'm from Asp.net MVC background. Probably if I make an architecture with MVC web application things to be consider are
Separation of concerns(SoC)
DataModel
BusinessEntities
BusinessServices
Controllers
Dependeny Injection and Unity of Work
Unit Testing
MoQ or nUnit
Integration with UI frameworks
Angularjs or others
RESTful urls that enables SEO
Below architecture could be a solution for my need in MVC based appications
There are resources around the web to build Asp.Net or Java based applications, but I have not find solution to Golang application architecture.
Yes GO is different to C# or Java, but still there are Structs, Interfaces to create reusable code and a generic application architecture.
Consider above points in mind, how we can make a clean and reusable project structure in GO applications and a generic repositories for DB(Mongodb) transactions. Any web resources also a great point to start.
It depends on your own style and rules, in my company, we develop our projects this way:
Configuration is determined by environment variables, so we have a company/envs/project.sh file which has to be evaluated before service (outside the project in the image).
We add a zscripts folder that contains all extra scripts, like adding users or publishing a post. Intended to be used only for debug proposes.
Data models (entities) are in a package called project/models.
All controllers and views (HTML templates) are categorized into "apps" or "modules". We use the REST path as main group delimiter, so path /dogs goes to package project/apps/dogs and /cats to project/apps/cats.
Managers are in their separated package at project's root project/manager.
Static files (.css, .png, .js, etc.) are located at project/static/[app/]. Sometimes is required to have the optional [app/] folder, but it only happens when two apps have dashboards or conflicting file names. Most of cases you won't need to use [app/] for static resources.
Managers
We call a manager, a package that contains pure functions which helps apps to perform its task, for example, databases, cache, S3 storage, etc. We initialize each manager calling package.Startup() before we start to listen, and finalize calling package.Finalize() when program is interrupted.
An example of a manager could be project/cache/cache.go:
type Config struct {
RedisURL string `envconfig:"redis_url"`
}
var config Config
var client *redis.Client
func Startup(c Config) error {
config = c
client, err := redis.Dial(c.RedisURL)
return err
}
func Set(k,v string) error {
return client.Set(k, v)
}
in main.go (or your_thing_test.go):
var spec cache.Config
envconfig.Process("project", &spec)
cache.Startup(spec)
And in a app (or module):
func SetCacheHandler(_ http.ResponseWriter, _ *http.Request){
cache.Set("this", "rocks")
}
Modules
A module is a container of views and controllers that are isolated from other modules, using our configuration I would recommend to not create dependencies between modules. Modules are also called apps.
Each module configures its routes using a router, sub-router or what your framework provides, for example (file project/apps/dogs/configure.go):
func Configure(e *echo.Echo) {
e.Get("/dogs", List)
}
Then, all handlers live in project/apps/dogs/handlers.go:
// List outputs a dog list of all stored specimen.
func List(c *echo.Context) error {
// Note the use of models.Xyz
var res := make([]models.Dog, 0) // A little trick to not return nil.
err := store.FindAll("dogs", nil, &res) // Call manager to find all dogs.
// handle error ...
return c.JSON(200, res) // Output the dogs.
}
Finally you configure the app in main (or in a test):
e := echo.New()
dogs.Configure(e)
// more apps
e.Run(":8080")
Note: for views, you can add them to project/apps/<name>/views folder and configure them the using the same function.
Other
Sometimes we also add a project/constants and a project/utils package.
Here is what it looks like:
Note that in above sample, templates are separated from apps, thats because its a placeholder, directory is empty.
Hope it was useful. Greetings from México :D.
I've also struggled about how to structure my Go web APIs in the past and don't know any web resources that tell you exactly how to write a Go web API.
What I did was just check out other projects on Github and try out how they structured their code, for example, the Docker repo has very idomatic Go code on it's API.
Also, Beego is a RESTful framework that generates the project structure for you in a MVC way and according to their docs, it can also be used for APIs.
I've been building a web APIs in golang for a little while now.
You'll have to do some research but I can give you some starting points:
Building Web Apps with Go -- ebook
github.com/julienschmidt/httprouter -- for routing addresses
github.com/unrolled/render/ -- for rendering various forms of responses(JSON, HTML, etc..)
github.com/dgrijalva/jwt-go -- JSON Web Tokens
www.gorillatoolkit.org/pkg/sessions -- Session Management
And for reference on how some things work together in the end:
Go Web API Repo -- personal project
1. Separation of concerns (SoC)
I haven't worked with SoC directly, but I have my own pattern. You can adapt to whatever pattern (MVC, your own, etc.).
In my code, I separate my code into different packages:
myprojectname (package main) — Holds the very basic setup and configuration/project consts
* handlers (package handlers) — Holds the code that does the raw HTTP work
* models (package models) — Holds the models
* apis (NOT a package)
- redis (package redis) — Holds the code that wraps a `sync.Pool`
- twilio (package twilio) — Example of layer to deal with external API
Notes:
In each package other than main, I have a Setup() function (with relevant arguments) that is called by the main package.
For the packages under the apis folder, they are often just to initialize external Go libraries. You also can directly import existing libraries into the handlers/models without an apis package.
I setup my mux as an exported global in the handlers package like this...
Router := mux.NewRouter()
...and then create a file for each URL (different methods with the same URL are in the same file). In each file, I use Go's init() function, which is ran after global variables are initialized (so it's safe to use the router) but before main() is ran (so it's safe for main to assume everything has been setup). The great thing about init() is that you can have as many of those methods as you want in a single package, so they automatically get ran when the package is imported.
Main then imports myprojectname/handlers and then serves the handlers.Router in main.
2. Dependency Injection and Unity of Work
I haven't worked with Unity of Work, so I have no idea of possible Go implementations.
For DI, I build an interface that both the real object and the mock objects will implement.
In the package, I add this to the root:
var DatabaseController DatabaseControllerInterface = DefaultController
Then, the first line of each test I can change DatabaseController to whatever that test needs. When not testing, the unit tests should not be ran, and it defaults to DefaultController.
3. Unit Testing
Go provides a built in testing with the go test package command. You can use go test --cover to also emit a coverage percent. You can even have coverage displayed in your browser, highlighting the parts that are/aren't covered.
I use the testify/assert package to help me with testing where the standard library falls short:
// something_test.go
//
// The _test signifies it should only be compiled into a test
// Name the file whatever you want, but if it's testing code
// in a single file, I like to do filename_test.go.
package main
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestMath(t *testing.T) {
assert.Equal(t, 3+1, 4)
}
4. Integration with UI frameworks
I haven't seen any for Angular. Although I haven't used it, Go has a good template engine built into the standard lib.
5. RESTful URLs that enables SEO
Again, I can't help you here. It's up to you: send proper status codes (don't send a 200 with a 404 page as you'll get docked for duplicate pages), don't duplicate pages (pay attention to google.com/something vs google.com/something/; hopefully your framework will not mess this up), don't try to trick the search engine, and so on.
To my mind Go webapp project folder on production server can looks like on your picture just much simpler. Nothing special in assets structure - Static, Templates, Content, Styles, Img, JSlibs, DBscripts etc. usual folders. Nothing special in WebAPI - as usual you design which URI will respond required functionality and route requests to handlers accordingly. Some specifics - many gophers don't believe in MVC architecture, it's up to you surely. And you deploy one staticaly linked executable without dependencies. In your development environment you structure yours and imported/vendored sorce files in $GOPATH as in stdlib done but deploy only one executable in production environment, sure with static assets needed. You can see how to orginize Go source packages just in stdlib. Having just one executable what would you structure on production?
I have a small web application written in Go. It is created a base for a larger system and I would like it to be extendable where components can be added/removed without needing this base to be modified in any way.
The structure is currently:
App
Modules
Core
... Core Files Here ...
app.go
main.go
app.go will contain a routing method which should take a web request and based on the request path know which module is responsible for handling the request. Each module/component having its on controller.
Each component will have its own package name so i think this is going to be impossible since go forces an explicit import.
For example i may add a new module/component called say blog such as:
App
Modules
Core
... Core Files Here ...
controller.go
Blog
... Blog Files Here ...
controller.go
app.go
main.go
There are several ways to achieve your goal. Since Go does not support dynamically loaded libraries at the moment, you need to probably recompile your application whenever you add/remove any components. The simplest way therefore would be a yourapp/core package with the following:
an Application type with an ServeHTTP method that acts as your main application
a Component interface that all your components have to implement. Your might want include a BaseUrl() string and a ServeHTTP method there.
a Register method to your Application type, that can be used to add new components to your app.
Your components can then be implemented in separate packages (e.g. yourapp/blog) and they will probably depend on your yourapp/core package.
The only thing that still needs to be "user-editable" is the main.go file, which might look like this:
func main() {
app := core.NewApplication()
app.Register(blog.Blog{
Title: "My Personal Blog",
})
app.Register(...)
app.Run()
}
Another approach might be to define an RPC interface for your components (which might include functions like RegisterComponent, UnregisterComponent and a GetGlobalConfig).
Then, you can run those components in separate processes which has the advantage that you can start/stop/reload those components dynamically and they can not break your main app. Take a look at the net/rpc package and maybe even httputil.NewSingleHostReverseProxy if you want to use this approach instead.