How to call bash function properly - bash

I'm learning shell now and wrote small script for using functions:
#!/bin/bash
show_date () {
date;
}
show_ls () {
ls -la;
}
if [ hostname == "mbp" ]; then
show_ls;
elif [ hostname == "joe" ]; then
show_date;
fi
If I run it on hostname mbp it just exits with 0 and doesn't call 'show_ls' function. Any ideas?

If you don't want to create your own variable for hostname then use the following (a built-in Bash variable).
#!/bin/bash
show_date () {
date;
}
show_ls () {
ls -la;
}
if [[ $HOSTNAME = "mbp" ]]; then
show_ls;
elif [[ $HOSTNAME = "joe" ]]; then
show_date;
fi
Actually you haven't mentioned your host's name (I am assuming you have to compare your server name in if condition, if this is the case then you have to create a variable named hostname and keep its value to command hostname and then do comparison). Try following and let me know if this helps you.
#!/bin/bash
hostname=$(hostname)
show_date () {
date;
}
show_ls () {
ls -la;
}
if [[ "$hostname" = "mbp" ]]; then
show_ls;
elif [[ "$hostname" = "joe" ]]; then
show_date;
fi

The shell does not work like other programming languages. Barewords are literal strings, not variable references or subprogram calls or anything like that. The hostname in your if condition is therefore the literal string hostname and nothing else (you could put it in double quotes like you did mbp and joe and not change anything here; double quotes mainly serve to let you put spaces inside a string while having it stay a single value instead of two successive ones).
Anyway, since "hostname" is not the same string as either "mbp" or "joe", neither clause of the if gets executed.
If hostname is a variable (technically a "shell parameter") whose value you want to compare, you need to use $hostname to get that value. If it's a command whose output you want to compare, you need to use $(hostname) to get that output:
if [[ $hostname == mbp ]]; then
or
if [[ $(hostname) == mbp ]]; then

Related

How to pass an argument passed to a bashrc function? [duplicate]

I am trying to search how to pass parameters in a Bash function, but what comes up is always how to pass parameter from the command line.
I would like to pass parameters within my script. I tried:
myBackupFunction("..", "...", "xx")
function myBackupFunction($directory, $options, $rootPassword) {
...
}
But the syntax is not correct. How can I pass a parameter to my function?
There are two typical ways of declaring a function. I prefer the second approach.
function function_name {
command...
}
or
function_name () {
command...
}
To call a function with arguments:
function_name "$arg1" "$arg2"
The function refers to passed arguments by their position (not by name), that is $1, $2, and so forth. $0 is the name of the script itself.
Example:
function_name () {
echo "Parameter #1 is $1"
}
Also, you need to call your function after it is declared.
#!/usr/bin/env sh
foo 1 # this will fail because foo has not been declared yet.
foo() {
echo "Parameter #1 is $1"
}
foo 2 # this will work.
Output:
./myScript.sh: line 2: foo: command not found
Parameter #1 is 2
Reference: Advanced Bash-Scripting Guide.
Knowledge of high level programming languages (C/C++, Java, PHP, Python, Perl, etc.) would suggest to the layman that Bourne Again Shell (Bash) functions should work like they do in those other languages.
Instead, Bash functions work like shell commands and expect arguments to be passed to them in the same way one might pass an option to a shell command (e.g. ls -l). In effect, function arguments in Bash are treated as positional parameters ($1, $2..$9, ${10}, ${11}, and so on). This is no surprise considering how getopts works. Do not use parentheses to call a function in Bash.
(Note: I happen to be working on OpenSolaris at the moment.)
# Bash style declaration for all you PHP/JavaScript junkies. :-)
# $1 is the directory to archive
# $2 is the name of the tar and zipped file when all is done.
function backupWebRoot ()
{
tar -cvf - "$1" | zip -n .jpg:.gif:.png "$2" - 2>> $errorlog &&
echo -e "\nTarball created!\n"
}
# sh style declaration for the purist in you. ;-)
# $1 is the directory to archive
# $2 is the name of the tar and zipped file when all is done.
backupWebRoot ()
{
tar -cvf - "$1" | zip -n .jpg:.gif:.png "$2" - 2>> $errorlog &&
echo -e "\nTarball created!\n"
}
# In the actual shell script
# $0 $1 $2
backupWebRoot ~/public/www/ webSite.tar.zip
Want to use names for variables? Just do something this.
local filename=$1 # The keyword declare can be used, but local is semantically more specific.
Be careful, though. If an argument to a function has a space in it, you may want to do this instead! Otherwise, $1 might not be what you think it is.
local filename="$1" # Just to be on the safe side. Although, if $1 was an integer, then what? Is that even possible? Humm.
Want to pass an array to a function by value?
callingSomeFunction "${someArray[#]}" # Expands to all array elements.
Inside the function, handle the arguments like this.
function callingSomeFunction ()
{
for value in "$#" # You want to use "$#" here, not "$*" !!!!!
do
:
done
}
Need to pass a value and an array, but still use "$#" inside the function?
function linearSearch ()
{
local myVar="$1"
shift 1 # Removes $1 from the parameter list
for value in "$#" # Represents the remaining parameters.
do
if [[ $value == $myVar ]]
then
echo -e "Found it!\t... after a while."
return 0
fi
done
return 1
}
linearSearch $someStringValue "${someArray[#]}"
In Bash 4.3 and above, you can pass an array to a function by reference by defining the parameter of a function with the -n option.
function callingSomeFunction ()
{
local -n someArray=$1 # also ${1:?} to make the parameter mandatory.
for value in "${someArray[#]}" # Nice!
do
:
done
}
callingSomeFunction myArray # No $ in front of the argument. You pass by name, not expansion / value.
If you prefer named parameters, it's possible (with a few tricks) to actually pass named parameters to functions (also makes it possible to pass arrays and references).
The method I developed allows you to define named parameters passed to a function like this:
function example { args : string firstName , string lastName , integer age } {
echo "My name is ${firstName} ${lastName} and I am ${age} years old."
}
You can also annotate arguments as #required or #readonly, create ...rest arguments, create arrays from sequential arguments (using e.g. string[4]) and optionally list the arguments in multiple lines:
function example {
args
: #required string firstName
: string lastName
: integer age
: string[] ...favoriteHobbies
echo "My name is ${firstName} ${lastName} and I am ${age} years old."
echo "My favorite hobbies include: ${favoriteHobbies[*]}"
}
In other words, not only you can call your parameters by their names (which makes up for a more readable core), you can actually pass arrays (and references to variables - this feature works only in Bash 4.3 though)! Plus, the mapped variables are all in the local scope, just as $1 (and others).
The code that makes this work is pretty light and works both in Bash 3 and Bash 4 (these are the only versions I've tested it with). If you're interested in more tricks like this that make developing with bash much nicer and easier, you can take a look at my Bash Infinity Framework, the code below is available as one of its functionalities.
shopt -s expand_aliases
function assignTrap {
local evalString
local -i paramIndex=${__paramIndex-0}
local initialCommand="${1-}"
if [[ "$initialCommand" != ":" ]]
then
echo "trap - DEBUG; eval \"${__previousTrap}\"; unset __previousTrap; unset __paramIndex;"
return
fi
while [[ "${1-}" == "," || "${1-}" == "${initialCommand}" ]] || [[ "${##}" -gt 0 && "$paramIndex" -eq 0 ]]
do
shift # First colon ":" or next parameter's comma ","
paramIndex+=1
local -a decorators=()
while [[ "${1-}" == "#"* ]]
do
decorators+=( "$1" )
shift
done
local declaration=
local wrapLeft='"'
local wrapRight='"'
local nextType="$1"
local length=1
case ${nextType} in
string | boolean) declaration="local " ;;
integer) declaration="local -i" ;;
reference) declaration="local -n" ;;
arrayDeclaration) declaration="local -a"; wrapLeft= ; wrapRight= ;;
assocDeclaration) declaration="local -A"; wrapLeft= ; wrapRight= ;;
"string["*"]") declaration="local -a"; length="${nextType//[a-z\[\]]}" ;;
"integer["*"]") declaration="local -ai"; length="${nextType//[a-z\[\]]}" ;;
esac
if [[ "${declaration}" != "" ]]
then
shift
local nextName="$1"
for decorator in "${decorators[#]}"
do
case ${decorator} in
#readonly) declaration+="r" ;;
#required) evalString+="[[ ! -z \$${paramIndex} ]] || echo \"Parameter '$nextName' ($nextType) is marked as required by '${FUNCNAME[1]}' function.\"; " >&2 ;;
#global) declaration+="g" ;;
esac
done
local paramRange="$paramIndex"
if [[ -z "$length" ]]
then
# ...rest
paramRange="{#:$paramIndex}"
# trim leading ...
nextName="${nextName//\./}"
if [[ "${##}" -gt 1 ]]
then
echo "Unexpected arguments after a rest array ($nextName) in '${FUNCNAME[1]}' function." >&2
fi
elif [[ "$length" -gt 1 ]]
then
paramRange="{#:$paramIndex:$length}"
paramIndex+=$((length - 1))
fi
evalString+="${declaration} ${nextName}=${wrapLeft}\$${paramRange}${wrapRight}; "
# Continue to the next parameter:
shift
fi
done
echo "${evalString} local -i __paramIndex=${paramIndex};"
}
alias args='local __previousTrap=$(trap -p DEBUG); trap "eval \"\$(assignTrap \$BASH_COMMAND)\";" DEBUG;'
Drop the parentheses and commas:
myBackupFunction ".." "..." "xx"
And the function should look like this:
function myBackupFunction() {
# Here $1 is the first parameter, $2 the second, etc.
}
A simple example that will clear both during executing script or inside script while calling a function.
#!/bin/bash
echo "parameterized function example"
function print_param_value(){
value1="${1}" # $1 represent first argument
value2="${2}" # $2 represent second argument
echo "param 1 is ${value1}" # As string
echo "param 2 is ${value2}"
sum=$(($value1+$value2)) # Process them as number
echo "The sum of two value is ${sum}"
}
print_param_value "6" "4" # Space-separated value
# You can also pass parameters during executing the script
print_param_value "$1" "$2" # Parameter $1 and $2 during execution
# Suppose our script name is "param_example".
# Call it like this:
#
# ./param_example 5 5
#
# Now the parameters will be $1=5 and $2=5
It takes two numbers from the user, feeds them to the function called add (in the very last line of the code), and add will sum them up and print them.
#!/bin/bash
read -p "Enter the first value: " x
read -p "Enter the second value: " y
add(){
arg1=$1 # arg1 gets to be the first assigned argument (note there are no spaces)
arg2=$2 # arg2 gets to be the second assigned argument (note there are no spaces)
echo $(($arg1 + $arg2))
}
add x y # Feeding the arguments
Another way to pass named parameters to Bash... is passing by reference. This is supported as of Bash 4.0
#!/bin/bash
function myBackupFunction(){ # directory options destination filename
local directory="$1" options="$2" destination="$3" filename="$4";
echo "tar cz ${!options} ${!directory} | ssh root#backupserver \"cat > /mnt/${!destination}/${!filename}.tgz\"";
}
declare -A backup=([directory]=".." [options]="..." [destination]="backups" [filename]="backup" );
myBackupFunction backup[directory] backup[options] backup[destination] backup[filename];
An alternative syntax for Bash 4.3 is using a nameref.
Although the nameref is a lot more convenient in that it seamlessly dereferences, some older supported distros still ship an older version, so I won't recommend it quite yet.

Change variable named in argument to bash function [duplicate]

This question already has answers here:
Dynamic variable names in Bash
(19 answers)
How to use a variable's value as another variable's name in bash [duplicate]
(6 answers)
Closed 5 years ago.
In my bash scripts, I often prompt users for y/n answers. Since I often use this several times in a single script, I'd like to have a function that checks if the user input is some variant of Yes / No, and then cleans this answer to "y" or "n". Something like this:
yesno(){
temp=""
if [[ "$1" =~ ^([Yy](es|ES)?|[Nn][Oo]?)$ ]] ; then
temp=$(echo "$1" | tr '[:upper:]' '[:lower:]' | sed 's/es//g' | sed 's/no//g')
break
else
echo "$1 is not a valid answer."
fi
}
I then would like to use the function as follows:
while read -p "Do you want to do this? " confirm; do # Here the user types "YES"
yesno $confirm
done
if [[ $confirm == "y" ]]; then
[do something]
fi
Basically, I want to change the value of the first argument to the value of $confirm, so that when I exit the yesno function, $confirm is either "y" or "n".
I tried using set -- "$temp" within the yesnofunction, but I can't get it to work.
You could do it by outputting the new value and overwriting the variable in the caller.
yesno() {
if [[ "$1" =~ ^([Yy](es|ES)?|[Nn][Oo]?)$ ]] ; then
local answer=${1,,}
echo "${answer::1}"
else
echo "$1 is not a valid answer." >&2
echo "$1" # output the original value
return 1 # indicate failure in case the caller cares
fi
}
confirm=$(yesno "$confirm")
However, I'd recommend a more direct approach: have the function do the prompting and looping. Move all of that repeated logic inside. Then the call site is super simple.
confirm() {
local prompt=$1
local reply
while true; do
read -p "$prompt" reply
case ${reply,,} in
y*) return 0;;
n*) return 1;;
*) echo "$reply is not a valid answer." >&2;;
esac
done
}
if confirm "Do you want to do this? "; then
# Do it.
else
# Don't do it.
fi
(${reply,,} is a bash-ism that converts $reply to lowercase.)
You could use the nameref attribute of Bash (requires Bash 4.3 or newer) as follows:
#!/bin/bash
yesno () {
# Declare arg as reference to argument provided
declare -n arg=$1
local re1='(y)(es)?'
local re2='(n)o?'
# Set to empty and return if no regex matches
[[ ${arg,,} =~ $re1 ]] || [[ ${arg,,} =~ $re2 ]] || { arg= && return; }
# Assign "y" or "n" to reference
arg=${BASH_REMATCH[1]}
}
while read -p "Prompt: " confirm; do
yesno confirm
echo "$confirm"
done
A sample test run looks like this:
Prompt: YES
y
Prompt: nOoOoOo
n
Prompt: abc
Prompt:
The expressions are anchored at the start, so yessss etc. all count as well. If this is not desired, an end anchor ($) can be added.
If neither expression matches, the string is set to empty.

Getting piped data to functions

Example output
Say I have a function, a:
function a() {
read -r VALUE
if [[ -n "$VALUE" ]]; then # empty variable check
echo "$VALUE"
else
echo "Default value"
fi
}
So, to demonstrate piping to that function:
nick#nick-lt:~$ echo "Something" | a
Something
However, piping data to this function should be optional. So, this should also be valid. and give the following output:
nick#nick-lt:~$ a
Default value
However, the function hangs, as the read command waits for data from stdin.
What I've tried
Honestly not a lot, because I don't know much about this, and searching on Google returned very little.
Conceptually, I thought there might be a way to "push" an empty (or whitespace, whatever works) value to the stdin stream, so that even empty stdin at least has this value appended/prepended, triggering read and then simply trim off that first/last character. I didn't find a way to do this.
Question
How can I, if possible, make both of the above scenarios work for function a, so that piping is optional?
EDIT: Apologies, quickly written question. Should work properly now.
One way is to check whether standard input (fd 0) is a terminal. If so, don't read, because that will cause the user to have to enter something.
function a() {
value=""
if [ \! -t 0 ] ; then # read only if fd 0 is a pipe (not a tty)
read -r value
fi
if [ "$value" ] ; then # if nonempty, print it!
echo "$value"
else
echo "Default value"
fi
}
I checked this on cygwin: a prints "Default value" and echo 42 | a prints "42".
Two issues:
Syntactic, You need a space, before closing ]]
Algorithmic, You need the -n (non-zero length) variable test, not -z (zero length)
So:
if [[ -n "$VALUE" ]]; then
Or simply:
if [[ "$VALUE" ]]; then
As [[ is a shell builtin, you don't strictly need the double quotes:
if [[ $VALUE ]]; then
Also refrain from using all uppercases as variable name, as these are usually used for denoting environment variables, and your defined one might somehow overwrite already existing one. So use lowercase variable name:
if [[ $value ]]; then
unless you are export-ing your variable, and strictly need it to be uppercased, also make sure it is not overwriting any already existing one.
Also, i would add a timeout to read e.g. -t 5 for 5 seconds, and if no input is entered, print the default value. Also change the function name to something more meaningful.
Do:
function myfunc () {
read -rt5 value
if [[ "$value" ]]; then
echo "$value"
else
echo "Default value"
fi
}
Example:
$ function myfunc () { read -rt5 value; if [[ "$value" ]]; then echo "$value"; else echo "Default value"; fi ;}
$ myfunc
Default value
$ echo "something" | myfunc
something
$ myfunc
foobar
foobar

Is there a way to avoid positional arguments in bash?

I have to write a function in bash. The function will take about 7 arguments. I know that I can call a function like this:
To call a function with parameters:
function_name $arg1 $arg2
And I can refer my parameters like this inside the function:
function_name () {
echo "Parameter #1 is $1"
}
My question is, is there a better way refer to the parameters inside the function? Can I avoid the $1, $2, $3, .... thing and simply use the $arg1, $arg2, ...?
Is there a proper method for this or do I need to re-assign these parameters to some other variables inside the function? E.g.:
function_name () {
$ARG1=$1
echo "Parameter #1 is $ARG1"
}
Any example would be much appreciated.
The common way of doing that is assigning the arguments to local variables in the function, i.e.:
copy() {
local from=${1}
local to=${2}
# ...
}
Another solution may be getopt-style option parsing.
copy() {
local arg from to
while getopts 'f:t:' arg
do
case ${arg} in
f) from=${OPTARG};;
t) to=${OPTARG};;
*) return 1 # illegal option
esac
done
}
copy -f /tmp/a -t /tmp/b
Sadly, bash can't handle long options which would be more readable, i.e.:
copy --from /tmp/a --to /tmp/b
For that, you either need to use the external getopt program (which I think has long option support only on GNU systems) or implement the long option parser by hand, i.e.:
copy() {
local from to
while [[ ${1} ]]; do
case "${1}" in
--from)
from=${2}
shift
;;
--to)
to=${2}
shift
;;
*)
echo "Unknown parameter: ${1}" >&2
return 1
esac
if ! shift; then
echo 'Missing parameter argument.' >&2
return 1
fi
done
}
copy --from /tmp/a --to /tmp/b
Also see: using getopts in bash shell script to get long and short command line options
You can also be lazy, and just pass the 'variables' as arguments to the function, i.e.:
copy() {
local "${#}"
# ...
}
copy from=/tmp/a to=/tmp/b
and you'll have ${from} and ${to} in the function as local variables.
Just note that the same issue as below applies — if a particular variable is not passed, it will be inherited from parent environment. You may want to add a 'safety line' like:
copy() {
local from to # reset first
local "${#}"
# ...
}
to ensure that ${from} and ${to} will be unset when not passed.
And if something very bad is of your interest, you could also assign the arguments as global variables when invoking the function, i.e.:
from=/tmp/a to=/tmp/b copy
Then you could just use ${from} and ${to} within the copy() function. Just note that you should then always pass all parameters. Otherwise, a random variable may leak into the function.
from= to=/tmp/b copy # safe
to=/tmp/b copy # unsafe: ${from} may be declared elsewhere
If you have bash 4.1 (I think), you can also try using associative arrays. It will allow you to pass named arguments but it will be ugly. Something like:
args=( [from]=/tmp/a [to]=/tmp/b )
copy args
And then in copy(), you'd need to grab the array.
You can always pass things through the environment:
#!/bin/sh
foo() {
echo arg1 = "$arg1"
echo arg2 = "$arg2"
}
arg1=banana arg2=apple foo
All you have to do is name variables on the way in to the function call.
function test() {
echo $a
}
a='hello world' test
#prove variable didnt leak
echo $a .
This isn't just a feature of functions, you could have that function in it's own script and call a='hello world' test.sh and it would work just the same
As an extra little bit of fun, you can combine this method with positional arguments (say you were making a script and some users mightn't know the variable names).
Heck, why not let it have defaults for those arguments too? Well sure, easy peasy!
function test2() {
[[ -n "$1" ]] && local a="$1"; [[ -z "$a" ]] && local a='hi'
[[ -n "$2" ]] && local b="$2"; [[ -z "$b" ]] && local b='bye'
echo $a $b
}
#see the defaults
test2
#use positional as usual
test2 '' there
#use named parameter
a=well test2
#mix it up
b=one test2 nice
#prove variables didnt leak
echo $a $b .
Note that if test was its own script, you don't need to use the local keyword.
Shell functions have full access to any variable available in their calling scope, except for those variable names that are used as local variables inside the function itself. In addition, any non-local variable set within a function is available on the outside after the function has been called. Consider the following example:
A=aaa
B=bbb
echo "A=$A B=$B C=$C"
example() {
echo "example(): A=$A B=$B C=$C"
A=AAA
local B=BBB
C=CCC
echo "example(): A=$A B=$B C=$C"
}
example
echo "A=$A B=$B C=$C"
This snippet has the following output:
A=aaa B=bbb C=
example(): A=aaa B=bbb C=
example(): A=AAA B=BBB C=CCC
A=AAA B=bbb C=CCC
The obvious disadvantage of this approach is that functions are not self-contained any more and that setting a variable outside a function may have unintended side-effects. It would also make things harder if you wanted to pass data to a function without assigning it to a variable first, since this function is not using positional parameters any more.
The most common way to handle this is to use local variables for arguments and any temporary variable within a function:
example() {
local A="$1" B="$2" C="$3" TMP="/tmp"
...
}
This avoids polluting the shell namespace with function-local variables.
I think I have a solution for you.
With a few tricks you can actually pass named parameters to functions, along with arrays.
The method I developed allows you to access parameters passed to a function like this:
testPassingParams() {
#var hello
l=4 #array anArrayWithFourElements
l=2 #array anotherArrayWithTwo
#var anotherSingle
#reference table # references only work in bash >=4.3
#params anArrayOfVariedSize
test "$hello" = "$1" && echo correct
#
test "${anArrayWithFourElements[0]}" = "$2" && echo correct
test "${anArrayWithFourElements[1]}" = "$3" && echo correct
test "${anArrayWithFourElements[2]}" = "$4" && echo correct
# etc...
#
test "${anotherArrayWithTwo[0]}" = "$6" && echo correct
test "${anotherArrayWithTwo[1]}" = "$7" && echo correct
#
test "$anotherSingle" = "$8" && echo correct
#
test "${table[test]}" = "works"
table[inside]="adding a new value"
#
# I'm using * just in this example:
test "${anArrayOfVariedSize[*]}" = "${*:10}" && echo correct
}
fourElements=( a1 a2 "a3 with spaces" a4 )
twoElements=( b1 b2 )
declare -A assocArray
assocArray[test]="works"
testPassingParams "first" "${fourElements[#]}" "${twoElements[#]}" "single with spaces" assocArray "and more... " "even more..."
test "${assocArray[inside]}" = "adding a new value"
In other words, not only you can call your parameters by their names (which makes up for a more readable core), you can actually pass arrays (and references to variables - this feature works only in bash 4.3 though)! Plus, the mapped variables are all in the local scope, just as $1 (and others).
The code that makes this work is pretty light and works both in bash 3 and bash 4 (these are the only versions I've tested it with). If you're interested in more tricks like this that make developing with bash much nicer and easier, you can take a look at my Bash Infinity Framework, the code below was developed for that purpose.
Function.AssignParamLocally() {
local commandWithArgs=( $1 )
local command="${commandWithArgs[0]}"
shift
if [[ "$command" == "trap" || "$command" == "l="* || "$command" == "_type="* ]]
then
paramNo+=-1
return 0
fi
if [[ "$command" != "local" ]]
then
assignNormalCodeStarted=true
fi
local varDeclaration="${commandWithArgs[1]}"
if [[ $varDeclaration == '-n' ]]
then
varDeclaration="${commandWithArgs[2]}"
fi
local varName="${varDeclaration%%=*}"
# var value is only important if making an object later on from it
local varValue="${varDeclaration#*=}"
if [[ ! -z $assignVarType ]]
then
local previousParamNo=$(expr $paramNo - 1)
if [[ "$assignVarType" == "array" ]]
then
# passing array:
execute="$assignVarName=( \"\${#:$previousParamNo:$assignArrLength}\" )"
eval "$execute"
paramNo+=$(expr $assignArrLength - 1)
unset assignArrLength
elif [[ "$assignVarType" == "params" ]]
then
execute="$assignVarName=( \"\${#:$previousParamNo}\" )"
eval "$execute"
elif [[ "$assignVarType" == "reference" ]]
then
execute="$assignVarName=\"\$$previousParamNo\""
eval "$execute"
elif [[ ! -z "${!previousParamNo}" ]]
then
execute="$assignVarName=\"\$$previousParamNo\""
eval "$execute"
fi
fi
assignVarType="$__capture_type"
assignVarName="$varName"
assignArrLength="$__capture_arrLength"
}
Function.CaptureParams() {
__capture_type="$_type"
__capture_arrLength="$l"
}
alias #trapAssign='Function.CaptureParams; trap "declare -i \"paramNo+=1\"; Function.AssignParamLocally \"\$BASH_COMMAND\" \"\$#\"; [[ \$assignNormalCodeStarted = true ]] && trap - DEBUG && unset assignVarType && unset assignVarName && unset assignNormalCodeStarted && unset paramNo" DEBUG; '
alias #param='#trapAssign local'
alias #reference='_type=reference #trapAssign local -n'
alias #var='_type=var #param'
alias #params='_type=params #param'
alias #array='_type=array #param'
I was personally hoping to see some sort of syntax like
func(a b){
echo $a
echo $b
}
But since that's not a thing, and a I see quite a few references to global variables (not without the caveat of scoping and naming conflicts), I'll share my approach.
Using the copy function from Michal's answer:
copy(){
cp $from $to
}
from=/tmp/a
to=/tmp/b
copy
This is bad, because from and to are such broad words that any number of functions could use this. You could quickly end up with a naming conflict or a "leak" on your hands.
letter(){
echo "From: $from"
echo "To: $to"
echo
echo "$1"
}
to=Emily
letter "Hello Emily, you're fired for missing two days of work."
# Result:
# From: /tmp/a
# To: Emily
# Hello Emily, you're fired for missing two days of work.
So my approach is to "namespace" them. I name the variable after the function and delete it after the function is done with it. Of course, I only use it for optional values that have default values. Otherwise, I just use positional args.
copy(){
if [[ $copy_from ]] && [[ $copy_to ]]; then
cp $copy_from $copy_to
unset copy_from copy_to
fi
}
copy_from=/tmp/a
copy_to=/tmp/b
copy # Copies /tmp/a to /tmp/b
copy # Does nothing, as it ought to
letter "Emily, you're 'not' re-hired for the 'not' bribe ;)"
# From: (no /tmp/a here!)
# To:
# Emily, you're 'not' re-hired for the 'not' bribe ;)
I would make a terrible boss...
In practice, my function names are more elaborate than "copy" or "letter".
The most recent example to my memory is get_input(), which has gi_no_sort and gi_prompt.
gi_no_sort is a true/false value that determines whether the completion suggestions are sorted or not. Defaults to true
gi_prompt is a string that is...well, that's self-explanatory. Defaults to "".
The actual arguments the function takes are the source of the aforementioned 'completion suggestions' for the input prompt, and as said list is taken from $# in the function, the "named args" are optional[1], and there's no obvious way to distinguish between a string meant as a completion and a boolean/prompt-message, or really anything space-separated in bash, for that matter[2]; the above solution ended up saving me a lot of trouble.
notes:
So a hard-coded shift and $1, $2, etc. are out of the question.
E.g. is "0 Enter a command: {1..9} $(ls)" a value of 0, "Enter a command:", and a set of 1 2 3 4 5 6 7 8 9 <directory contents>? Or are "0", "Enter", "a", and "command:" part of that set as well? Bash will assume the latter whether you like it or not.
Arguments get sent to functions as an tuple of individual items, so they have no names as such, just positions. this allows some interesting possibilities like below, but it does mean that you are stuck with $1. $2, etc. as to whether to map them to better names, the question comes down to how big the function is, and how much clearer it will make reading the code. if its complex, then mapping meaningful names ($BatchID, $FirstName, $SourceFilePath) is a good idea. for simple stuff though, it probably isn't necessary. I certianly wouldn't bother if you are using names like $arg1.
now, if you just want to echo back the parameters, you can iterate over them:
for $arg in "$#"
do
echo "$arg"
done
just a fun fact; unless you are processing a list, you are probably interested in somthing more useful
this is an older topic, but still i'd like to share the function below (requires bash 4). It parses named arguments and sets the variables in the scripts environment. Just make sure you have sane default values for all parameters you need. The export statement at the end could also just be an eval. It's great in combination with shift to extend existing scripts which already take a few positional parameters and you dont want to change the syntax, but still add some flexibility.
parseOptions()
{
args=("$#")
for opt in "${args[#]}"; do
if [[ ! "${opt}" =~ .*=.* ]]; then
echo "badly formatted option \"${opt}\" should be: option=value, stopping..."
return 1
fi
local var="${opt%%=*}"
local value="${opt#*=}"
export ${var}="${value}"
done
return 0
}

Passing parameters to a Bash function

I am trying to search how to pass parameters in a Bash function, but what comes up is always how to pass parameter from the command line.
I would like to pass parameters within my script. I tried:
myBackupFunction("..", "...", "xx")
function myBackupFunction($directory, $options, $rootPassword) {
...
}
But the syntax is not correct. How can I pass a parameter to my function?
There are two typical ways of declaring a function. I prefer the second approach.
function function_name {
command...
}
or
function_name () {
command...
}
To call a function with arguments:
function_name "$arg1" "$arg2"
The function refers to passed arguments by their position (not by name), that is $1, $2, and so forth. $0 is the name of the script itself.
Example:
function_name () {
echo "Parameter #1 is $1"
}
Also, you need to call your function after it is declared.
#!/usr/bin/env sh
foo 1 # this will fail because foo has not been declared yet.
foo() {
echo "Parameter #1 is $1"
}
foo 2 # this will work.
Output:
./myScript.sh: line 2: foo: command not found
Parameter #1 is 2
Reference: Advanced Bash-Scripting Guide.
Knowledge of high level programming languages (C/C++, Java, PHP, Python, Perl, etc.) would suggest to the layman that Bourne Again Shell (Bash) functions should work like they do in those other languages.
Instead, Bash functions work like shell commands and expect arguments to be passed to them in the same way one might pass an option to a shell command (e.g. ls -l). In effect, function arguments in Bash are treated as positional parameters ($1, $2..$9, ${10}, ${11}, and so on). This is no surprise considering how getopts works. Do not use parentheses to call a function in Bash.
(Note: I happen to be working on OpenSolaris at the moment.)
# Bash style declaration for all you PHP/JavaScript junkies. :-)
# $1 is the directory to archive
# $2 is the name of the tar and zipped file when all is done.
function backupWebRoot ()
{
tar -cvf - "$1" | zip -n .jpg:.gif:.png "$2" - 2>> $errorlog &&
echo -e "\nTarball created!\n"
}
# sh style declaration for the purist in you. ;-)
# $1 is the directory to archive
# $2 is the name of the tar and zipped file when all is done.
backupWebRoot ()
{
tar -cvf - "$1" | zip -n .jpg:.gif:.png "$2" - 2>> $errorlog &&
echo -e "\nTarball created!\n"
}
# In the actual shell script
# $0 $1 $2
backupWebRoot ~/public/www/ webSite.tar.zip
Want to use names for variables? Just do something this.
local filename=$1 # The keyword declare can be used, but local is semantically more specific.
Be careful, though. If an argument to a function has a space in it, you may want to do this instead! Otherwise, $1 might not be what you think it is.
local filename="$1" # Just to be on the safe side. Although, if $1 was an integer, then what? Is that even possible? Humm.
Want to pass an array to a function by value?
callingSomeFunction "${someArray[#]}" # Expands to all array elements.
Inside the function, handle the arguments like this.
function callingSomeFunction ()
{
for value in "$#" # You want to use "$#" here, not "$*" !!!!!
do
:
done
}
Need to pass a value and an array, but still use "$#" inside the function?
function linearSearch ()
{
local myVar="$1"
shift 1 # Removes $1 from the parameter list
for value in "$#" # Represents the remaining parameters.
do
if [[ $value == $myVar ]]
then
echo -e "Found it!\t... after a while."
return 0
fi
done
return 1
}
linearSearch $someStringValue "${someArray[#]}"
In Bash 4.3 and above, you can pass an array to a function by reference by defining the parameter of a function with the -n option.
function callingSomeFunction ()
{
local -n someArray=$1 # also ${1:?} to make the parameter mandatory.
for value in "${someArray[#]}" # Nice!
do
:
done
}
callingSomeFunction myArray # No $ in front of the argument. You pass by name, not expansion / value.
If you prefer named parameters, it's possible (with a few tricks) to actually pass named parameters to functions (also makes it possible to pass arrays and references).
The method I developed allows you to define named parameters passed to a function like this:
function example { args : string firstName , string lastName , integer age } {
echo "My name is ${firstName} ${lastName} and I am ${age} years old."
}
You can also annotate arguments as #required or #readonly, create ...rest arguments, create arrays from sequential arguments (using e.g. string[4]) and optionally list the arguments in multiple lines:
function example {
args
: #required string firstName
: string lastName
: integer age
: string[] ...favoriteHobbies
echo "My name is ${firstName} ${lastName} and I am ${age} years old."
echo "My favorite hobbies include: ${favoriteHobbies[*]}"
}
In other words, not only you can call your parameters by their names (which makes up for a more readable core), you can actually pass arrays (and references to variables - this feature works only in Bash 4.3 though)! Plus, the mapped variables are all in the local scope, just as $1 (and others).
The code that makes this work is pretty light and works both in Bash 3 and Bash 4 (these are the only versions I've tested it with). If you're interested in more tricks like this that make developing with bash much nicer and easier, you can take a look at my Bash Infinity Framework, the code below is available as one of its functionalities.
shopt -s expand_aliases
function assignTrap {
local evalString
local -i paramIndex=${__paramIndex-0}
local initialCommand="${1-}"
if [[ "$initialCommand" != ":" ]]
then
echo "trap - DEBUG; eval \"${__previousTrap}\"; unset __previousTrap; unset __paramIndex;"
return
fi
while [[ "${1-}" == "," || "${1-}" == "${initialCommand}" ]] || [[ "${##}" -gt 0 && "$paramIndex" -eq 0 ]]
do
shift # First colon ":" or next parameter's comma ","
paramIndex+=1
local -a decorators=()
while [[ "${1-}" == "#"* ]]
do
decorators+=( "$1" )
shift
done
local declaration=
local wrapLeft='"'
local wrapRight='"'
local nextType="$1"
local length=1
case ${nextType} in
string | boolean) declaration="local " ;;
integer) declaration="local -i" ;;
reference) declaration="local -n" ;;
arrayDeclaration) declaration="local -a"; wrapLeft= ; wrapRight= ;;
assocDeclaration) declaration="local -A"; wrapLeft= ; wrapRight= ;;
"string["*"]") declaration="local -a"; length="${nextType//[a-z\[\]]}" ;;
"integer["*"]") declaration="local -ai"; length="${nextType//[a-z\[\]]}" ;;
esac
if [[ "${declaration}" != "" ]]
then
shift
local nextName="$1"
for decorator in "${decorators[#]}"
do
case ${decorator} in
#readonly) declaration+="r" ;;
#required) evalString+="[[ ! -z \$${paramIndex} ]] || echo \"Parameter '$nextName' ($nextType) is marked as required by '${FUNCNAME[1]}' function.\"; " >&2 ;;
#global) declaration+="g" ;;
esac
done
local paramRange="$paramIndex"
if [[ -z "$length" ]]
then
# ...rest
paramRange="{#:$paramIndex}"
# trim leading ...
nextName="${nextName//\./}"
if [[ "${##}" -gt 1 ]]
then
echo "Unexpected arguments after a rest array ($nextName) in '${FUNCNAME[1]}' function." >&2
fi
elif [[ "$length" -gt 1 ]]
then
paramRange="{#:$paramIndex:$length}"
paramIndex+=$((length - 1))
fi
evalString+="${declaration} ${nextName}=${wrapLeft}\$${paramRange}${wrapRight}; "
# Continue to the next parameter:
shift
fi
done
echo "${evalString} local -i __paramIndex=${paramIndex};"
}
alias args='local __previousTrap=$(trap -p DEBUG); trap "eval \"\$(assignTrap \$BASH_COMMAND)\";" DEBUG;'
Drop the parentheses and commas:
myBackupFunction ".." "..." "xx"
And the function should look like this:
function myBackupFunction() {
# Here $1 is the first parameter, $2 the second, etc.
}
A simple example that will clear both during executing script or inside script while calling a function.
#!/bin/bash
echo "parameterized function example"
function print_param_value(){
value1="${1}" # $1 represent first argument
value2="${2}" # $2 represent second argument
echo "param 1 is ${value1}" # As string
echo "param 2 is ${value2}"
sum=$(($value1+$value2)) # Process them as number
echo "The sum of two value is ${sum}"
}
print_param_value "6" "4" # Space-separated value
# You can also pass parameters during executing the script
print_param_value "$1" "$2" # Parameter $1 and $2 during execution
# Suppose our script name is "param_example".
# Call it like this:
#
# ./param_example 5 5
#
# Now the parameters will be $1=5 and $2=5
It takes two numbers from the user, feeds them to the function called add (in the very last line of the code), and add will sum them up and print them.
#!/bin/bash
read -p "Enter the first value: " x
read -p "Enter the second value: " y
add(){
arg1=$1 # arg1 gets to be the first assigned argument (note there are no spaces)
arg2=$2 # arg2 gets to be the second assigned argument (note there are no spaces)
echo $(($arg1 + $arg2))
}
add x y # Feeding the arguments
Another way to pass named parameters to Bash... is passing by reference. This is supported as of Bash 4.0
#!/bin/bash
function myBackupFunction(){ # directory options destination filename
local directory="$1" options="$2" destination="$3" filename="$4";
echo "tar cz ${!options} ${!directory} | ssh root#backupserver \"cat > /mnt/${!destination}/${!filename}.tgz\"";
}
declare -A backup=([directory]=".." [options]="..." [destination]="backups" [filename]="backup" );
myBackupFunction backup[directory] backup[options] backup[destination] backup[filename];
An alternative syntax for Bash 4.3 is using a nameref.
Although the nameref is a lot more convenient in that it seamlessly dereferences, some older supported distros still ship an older version, so I won't recommend it quite yet.

Resources