Solutions for Recording Google Protocol Buffer Messages - protocol-buffers

My project is using protobufs for our data types. We need to be able to record our data so it can be played back later. Our use case is to recreate the event or to reprocess the same data but with new algorithms and check for improvements.
As data is flowing through our system it is all protobufs. These are easily serilized to a byte array which could be recorded to files or maybe as blobs in a database. Playback would simply mean reading the byte array and converting back to a protobuf, then sending it off into our software again.
Are there any existing technologies used for recording protobufs?
Even though the initial use case is very simple, eventually the solution will get more complex. It will probably need to:
Farm out recording to multiple hosts to keep up with the input data rate
Allow querying to find out how much data exists during a specific time period
Play back only those data records where some field has a specific value
Save the data for long term storage, e.g. never delete a record but instead move it to a tape backup
I think the above is best accomplished using a database which stores some subset of meta data along with the protobuf byte array itself. Before I go reinventing the wheel, I would like opinions on anything that exists already that might do this job.

Related

Transform data before adding to cache system or after when reading it

I have this situation, which I don't know which could fit better.
I have this solution where I search for soccer players, I only have their names and teams, but when a user comes to my website and clicks on the player I will use detailed information from the player that I get from various external providers (usually based by country).
I know which external provider to use when a call is done, and I pay to the external providers each time I grab data, so to mitigate this, I will try to get the less times possible, so I grab once a user clicks on the player info, and next time if it's in my database cache I will show my cache info. After 10 days I will grab again for the specific player form the external provider as I want the info to be somehow updated.
I will need to transform different providers data that come, usually, as JSON in my own structure so I can handle it the right way, I have my own object structure, so the fields coming from the external providers fall/map/transform in my code always with the same naming and structure..
So, my problem is to decide when should I map/transform data coming form the providers.
I grab data from the provider, I transform it to my JSON structure and record/keep it in the database cache system this once with my main structure, and in my solution code all I need is, everytime a user clicks on the soccer player details I get from the database cache this JSON field and convert it directly to object I know how to use.
I grab data from the provider, keep it as is in my database cache system, and in my solution code everytime someone clicks to get the soccer player detail info I get the JSON record from my database cache, I transform it for my naming and structure, and convert it to object
Notes:
- this is a cache database, records won't be kept forever, if in a call I see the record have more then 10 days I will get new data from the apropriate external provider
Deciding the layer to cache data is an art form all its own. The higher the layer you cache data, the more performant it will be (less reprocessing needed), but the lower the re-use potential will be (different parts of the application may use the same cache, and find value if it hasn’t been transformed too much).
Yours is another case of this. If you store it as the provider provides it, and you need to change the way you transform it, you won’t have to pay to re-retrieve it. If on the other hand, you store it as you need it now, you may have to discard it all if you decide to change the transformation method.
Like all architectural design decisions, it's all about trade-offs. You have to decide what is more important to you and your application.

What is the capacity of a BluePrism Internal Work Queue?

I am working in BluePrism Robotics Process Automation and trying to load an excel sheet with more than 100k records (It might go upwards of 300k in some cases).
I am trying to load internal work queue of BluePrism, but I get an error as quoted below:
'Load Data Into Queue' ERROR: Internal : Exception of type 'System.OutOfMemoryException' was thrown.
Is there a way to avoid this problem, in the way where I can free up more memory?
I plan to process records one by one from queue, and put them into new excel sheets categorically. Loading all that data in a collection and looping over it may be memory consuming, so I am trying to find out a more efficient way.
I welcome any and all help/tips.
Thanks!
Basic Solution:
Break up the number of Excel rows you are pulling into your Collection data item at any one time. The thresholds for this will depend on your resource system memory and architecture, as well as structure and size of the data in the Excel Worksheet. I've been able to quickly move 50k 10-column-rows from Excel to a Collection and then into the Blue Prism queue very quickly.
You can set this up by specifying the Excel Worksheet range to pull into the Collection data item, and then shift that range each time the Collection has been successfully added to the queue.
After each successful addition to the queue and/or before you shift the range and/or at a predefined count limit you can then run a Clean Up or Garbage Collection action to free up memory.
You can do all of this with the provided Excel VBO and an additional Clean Up object.
Keep in mind:
Even breaking it up, looping over a Collection this large to amend the data will be extremely expensive and slow. The most efficient way to make changes to the data will be at the Excel Workbook level or when it is already in the Blue Prism queue.
Best Bet: esqew's alternative solution is the most elegant and probably your best bet.
Jarrick hit it on the nose in that Work Queue items should provide the bot with information on what they are to be working on and a Control Room feedback space, but not the actual work data to be implemented/manipulated.
In this case you would want to just use the items Worksheet row number and/or some unique identifier from a single Worksheet column as the queue item data so that the bot can provide Control Room feedback on the status of the item. If this information is predictable enough in format there should be no need to move any data from the Excel Worksheet to a Collection and then into a Work Queue, but rather simply build the queue based on that data predictability.
Conversely you can also have the bot build the queue "as it happens", in that once it grabs the single row data from the Excel Worksheet to work it, can as well add a queue item with the row number of the data. This will then enable Control Room feedback and tracking. However, this would, in almost every case, be a bad practice as it would not prevent a row from being worked multiple times unless the bot checked the queue first, at which point you've negated the speed gains you were looking to achieve in cutting out the initial queue building in the first place. It would also be impossible to scale the process for multiple bots to work the Excel Worksheet data efficiently.
This is a common issue for RPA, especially if working with large excel files. As far as I know, there are no 100% solutions, but only methods reduce the symptoms. I have run into this problem several times and these are the ways I would try to handle them:
Disable or Errors only for stage logging.
Don`t log parameters on action stages (especially ones that work with the excel files)
Run Garbage collection process
See if it is possible to avoid reading excel files into BP collections and use OLEDB to query the file
See if it is possible to increase the Ram memory on the machines
If they’re using the 32-bit version of the app, then it doesn’t really matter how much memory you feed it, Blue Prism will cap out at 2 GB.
This is may be because of BP Server as the memory is shared between Processes and Work queue.Better option is to use two bots and multiple queues to avoid Memory Error.
If you're using Excel documents or CSV files, you can use the OLEDB object to connect and query against it as if it were a database. You can use the SQL syntax to limit the amount of rows that are returned at a time and paginate through them until you've reached the end of the document.
For starters, you are making incorrect use of the Work Queue in Blue Prism. The Work Queue should not be used to store this type and amount of data. (please read the BP documentation on Work Queues thoroughly).
Solving the issue at hand, being the misuse requires 2 changes:
Only store references in your Item Data which point to the Excel file containing the data.
If you're consulting this much data many times, perhaps convert the file into a CSV, write a VBO that queries the data directly in the CSV.
The first change is not just a recommendation, but as your project progresses and IT Architecture and InfoSec comes into play, it will be mandatory.
As for the CSV VBO, take a look at C#, it will make your life a lot easier than loading all this data into BP (time consuming, unreliable, ...).

How is wordweb english dictionary implemented?

We need to keep some in-memory data structure to keep english word dictionary in memory.
When the computer/wordweb starts,we need to read dictionary from disk into an in-memory data structure.
This question asks how do we populate from disk to in-memory data structure in typical real world dictionaries say wordweb?
Ideally we would like to keep dictionary in disk in the way, we require it in in-memory, so that we don't have to spend time building in-memory data structure, we just read it off the disk. But for linked lists, pointers etc, how do we store the same image in disk. Some relative addresses etc would help here?
Typically, is the entire dictionary read and stored in memory. or only part/handlers and leaf page IOs are done, when searching for a specific word.
If somebody wants to help with what that in-memory data structure is typically, please go ahead.
Thanks,
You mentioned pointers, so I'm assuming you're using C++; if that's the case and you want to read directly from disk into memory without having to "rebuild" your data structure, then you might want to look into serialization: How do you serialize an object in C++?
However, you generally don't want to load the entire dictionary anyway, especially if it's a user application. If the user is looking up dictionary words, then reading from disk happens so fast that the user will never notice the "delay." If you're servicing hundreds or thousands of requests, then it might make sense to cache the dictionary into memory.
So how many users do you have?
What kind of load are you expecting to have on the application?
Wordweb is using Sqlite Database at backend. It makes sense to me to use a Database system to store the content so its easier to GET the content which the user is looking for quickly.
Wordweb has Word prediction as well... so it will be a query to database like
select word from table where word='ab%';
on the other hand, when the user presses enter for the word
select meaning from table where word='abandon'
You do not want to be Serializing the content from disk to memory while the user is typing or after he has pressed Enter to search. Since the data will be large (Dictionary), Serialization will probably take time more then the user will tolerate for every word search.
Else why don't you create a JSON format File containing all the meaning creating a short form of Dictionary ?

How can I limit memory usage when generating a CSV from a large resultset?

I have a web application in Spring that has a functional requirement for generating a CSV/Excel spreadsheet from a result set coming from a large Oracle database. The expected rows are in the 300,000 - 1,000,000 range. Time to process is not as large of an issue as keeping the application stable -- and right now, very large result sets cause it to run out of memory and crash.
In a normal situation like this, I would use pagination and have the UI display a limited number of results at a time. However, in this case I need to be able to produce the entire set in a single file, no matter how big it might be, for offline use.
I have isolated the issue to the ParameterizedRowMapper being used to convert the result set into objects, which is where I'm stuck.
What techniques might I be able to use to get this operation under control? Is pagination still an option?
A simple answer:
Use a JDBC recordset (or something similar, with an appropriate array/fetch size) and write the data back a LOB, either temporary or back into the database.
Another choice:
Use PL/SQL in the database to write a file using UTL_FILE for your recordset in CSV format. As the file will be on the database server, not on the client, Use UTL_SMTP or JavaMail using Java Stored Procedures to mail the file. After all, I'd be surprised if someone was going to watch the hourglass turn over repeatedly waiting for a 1 million row recordset to be generated.
Instead of loading an entire file in memory you can process each row individually and use output stream to send the output directly to the web browser. E.g. in servlets API, you can get the output stream from ServletResponse.getOutputStream() and then simply write result CSV lines to that stream.
I would push back on those requirements- they sound pretty artificial.
What happens if your application fails, or the power goes out before the user looks at that data?
From your comment above, sounds like you know the answer- you need filesystem or oracle access, in order to do your job.
You are being asked to generate some data- something that is not repeatable by sql?
If it were repeatable, you would just send pages of data back to the user at a time.
Since this report, I'm guessing, has something to do with the current state of your data, you need to store that result somewhere, if you can't stream it out to the user. I'd write a stored procedure in oracle- it's much faster not to send data back and forth across the network. If you have special tools or its just easier, sounds like there's nothing wrong with doing it on the java side instead.
Can you schedule this report to run once a week?
Have you considered the performance of an Excel spreadsheet with 1,000,000 rows?

Client-server synchronization pattern / algorithm?

I have a feeling that there must be client-server synchronization patterns out there. But i totally failed to google up one.
Situation is quite simple - server is the central node, that multiple clients connect to and manipulate same data. Data can be split in atoms, in case of conflict, whatever is on server, has priority (to avoid getting user into conflict solving). Partial synchronization is preferred due to potentially large amounts of data.
Are there any patterns / good practices for such situation, or if you don't know of any - what would be your approach?
Below is how i now think to solve it:
Parallel to data, a modification journal will be held, having all transactions timestamped.
When client connects, it receives all changes since last check, in consolidated form (server goes through lists and removes additions that are followed by deletions, merges updates for each atom, etc.).
Et voila, we are up to date.
Alternative would be keeping modification date for each record, and instead of performing data deletes, just mark them as deleted.
Any thoughts?
You should look at how distributed change management works. Look at SVN, CVS and other repositories that manage deltas work.
You have several use cases.
Synchronize changes. Your change-log (or delta history) approach looks good for this. Clients send their deltas to the server; server consolidates and distributes the deltas to the clients. This is the typical case. Databases call this "transaction replication".
Client has lost synchronization. Either through a backup/restore or because of a bug. In this case, the client needs to get the current state from the server without going through the deltas. This is a copy from master to detail, deltas and performance be damned. It's a one-time thing; the client is broken; don't try to optimize this, just implement a reliable copy.
Client is suspicious. In this case, you need to compare client against server to determine if the client is up-to-date and needs any deltas.
You should follow the database (and SVN) design pattern of sequentially numbering every change. That way a client can make a trivial request ("What revision should I have?") before attempting to synchronize. And even then, the query ("All deltas since 2149") is delightfully simple for the client and server to process.
As part of the team, I did quite a lot of projects which involved data syncing, so I should be competent to answer this question.
Data syncing is quite a broad concept and there are way too much to discuss. It covers a range of different approaches with their upsides and downsides. Here is one of the possible classifications based on two perspectives: Synchronous / Asynchronous, Client/Server / Peer-to-Peer. Syncing implementation is severely dependent on these factors, data model complexity, amount of data transferred and stored, and other requirements. So in each particular case the choice should be in favor of the simplest implementation meeting the app requirements.
Based on a review of existing off-the-shelf solutions, we can delineate several major classes of syncing, different in granularity of objects subject to synchronization:
Syncing of a whole document or database is used in cloud-based applications, such as Dropbox, Google Drive or Yandex.Disk. When the user edits and saves a file, the new file version is uploaded to the cloud completely, overwriting the earlier copy. In case of a conflict, both file versions are saved so that the user can choose which version is more relevant.
Syncing of key-value pairs can be used in apps with a simple data structure, where the variables are considered to be atomic, i.e. not divided into logical components. This option is similar to syncing of whole documents, as both the value and the document can be overwritten completely. However, from a user perspective a document is a complex object composed of many parts, but a key-value pair is but a short string or a number. Therefore, in this case we can use a more simple strategy of conflict resolution, considering the value more relevant, if it has been the last to change.
Syncing of data structured as a tree or a graph is used in more sophisticated applications where the amount of data is large enough to send the database in its entirety at every update. In this case, conflicts have to be resolved at the level of individual objects, fields or relationships. We are primarily focused on this option.
So, we grabbed our knowledge into this article which I think might be very useful to everyone interested in the topic => Data Syncing in Core Data Based iOS apps (http://blog.denivip.ru/index.php/2014/04/data-syncing-in-core-data-based-ios-apps/?lang=en)
What you really need is Operational Transform (OT). This can even cater for the conflicts in many cases.
This is still an active area of research, but there are implementations of various OT algorithms around. I've been involved in such research for a number of years now, so let me know if this route interests you and I'll be happy to put you on to relevant resources.
The question is not crystal clear, but I'd look into optimistic locking if I were you.
It can be implemented with a sequence number that the server returns for each record. When a client tries to save the record back, it will include the sequence number it received from the server. If the sequence number matches what's in the database at the time when the update is received, the update is allowed and the sequence number is incremented. If the sequence numbers don't match, the update is disallowed.
I built a system like this for an app about 8 years ago, and I can share a couple ways it has evolved as the app usage has grown.
I started by logging every change (insert, update or delete) from any device into a "history" table. So if, for example, someone changes their phone number in the "contact" table, the system will edit the contact.phone field, and also add a history record with action=update, table=contact, field=phone, record=[contact ID], value=[new phone number]. Then whenever a device syncs, it downloads the history items since the last sync and applies them to its local database. This sounds like the "transaction replication" pattern described above.
One issue is keeping IDs unique when items could be created on different devices. I didn't know about UUIDs when I started this, so I used auto-incrementing IDs and wrote some convoluted code that runs on the central server to check new IDs uploaded from devices, change them to a unique ID if there's a conflict, and tell the source device to change the ID in its local database. Just changing the IDs of new records wasn't that bad, but if I create, for example, a new item in the contact table, then create a new related item in the event table, now I have foreign keys that I also need to check and update.
Eventually I learned that UUIDs could avoid this, but by then my database was getting pretty large and I was afraid a full UUID implementation would create a performance issue. So instead of using full UUIDs, I started using randomly generated, 8 character alphanumeric keys as IDs, and I left my existing code in place to handle conflicts. Somewhere between my current 8-character keys and the 36 characters of a UUID there must be a sweet spot that would eliminate conflicts without unnecessary bloat, but since I already have the conflict resolution code, it hasn't been a priority to experiment with that.
The next problem was that the history table was about 10 times larger than the entire rest of the database. This makes storage expensive, and any maintenance on the history table can be painful. Keeping that entire table allows users to roll back any previous change, but that started to feel like overkill. So I added a routine to the sync process where if the history item that a device last downloaded no longer exists in the history table, the server doesn't give it the recent history items, but instead gives it a file containing all the data for that account. Then I added a cronjob to delete history items older than 90 days. This means users can still roll back changes less than 90 days old, and if they sync at least once every 90 days, the updates will be incremental as before. But if they wait longer than 90 days, the app will replace the entire database.
That change reduced the size of the history table by almost 90%, so now maintaining the history table only makes the database twice as large instead of ten times as large. Another benefit of this system is that syncing could still work without the history table if needed -- like if I needed to do some maintenance that took it offline temporarily. Or I could offer different rollback time periods for accounts at different price points. And if there are more than 90 days of changes to download, the complete file is usually more efficient than the incremental format.
If I were starting over today, I'd skip the ID conflict checking and just aim for a key length that's sufficient to eliminate conflicts, with some kind of error checking just in case. (It looks like YouTube uses 11-character random IDs.) The history table and the combination of incremental downloads for recent updates or a full download when needed has been working well.
For delta (change) sync, you can use pubsub pattern to publish changes back to all subscribed clients, services like pusher can do this.
For database mirror, some web frameworks use a local mini database to sync server side database to local in browser database, partial synchronization is supported. Check meteror.
This page clearly describes mosts scenarios of data synchronization with patterns and example code: Data Synchronization: Patterns, Tools, & Techniques
It is the most comprehensive source I found, considering whole of delta syncs, strategies on how to handle deletions and server-to-client and client-to-server sync. It is a very good starting point, worth a look.

Resources